Skip to main content

The Physiology and Cell Biology of Calcium Transport in Relation to the Development of Osteoporosis

  • Chapter
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 346 Accesses

Abstract

The vital role that calcium plays as a second messenger in cell signaling processes highlights its importance in a wide range of cellular activities and its fundamental importance to the sustenance of health. In addition, calcium has a specific role in the conduction of action potential along nerves and in the coupling of excitation and contraction in striated and cardiac muscle. These concepts are mentioned in order to acknowledge the importance of calcium in many physiological processes, but the principle focus of this chapter will be on the mechanisms regulating extracellular calcium levels and the ways in which they may affect bone function. In the short term, extracellular calcium balance is far more important to the survival of the individual than total body calcium stores. Since the skeleton contains most of the total body calcium (1–2 kg), it is this compartment that compensates for any reduction in extracellular calcium and it does so at the expense of bone mineral accretion. Consequently, it is the tension between the requirements of separate body compartments that sets the scene for the importance of calcium nutrition in the prevention and treatment of age related osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hebert SC, Brown EM, Harris HW. Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis. J Exp Biol 1997; 200: 295–302.

    PubMed  CAS  Google Scholar 

  2. Silver J, Russell J, Sherwood LM. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci USA 1985; 82: 4270–4273.

    PubMed  CAS  Google Scholar 

  3. Prince RL, Dick I, Garcia-Webb P, Retallack RW. The effects of the menopause on calcitriol and parathyroid hormone: responses to a low dietary calcium stress test. J Clin Endocrinol Metab 1990; 70: 1119–1123.

    PubMed  CAS  Google Scholar 

  4. Prince RL. Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis. Endocr Rev 1994; 15: 301–309.

    PubMed  CAS  Google Scholar 

  5. Dick IM, Liu J, Prince R. Testosterone regulation of plasma membrane calcium pump in MDBK renal distal tubule cells. Bone 2000; 27: 19S.

    Google Scholar 

  6. Hofmann F, Biel M, Flockerzi V. Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci 1994; 17: 399–418.

    PubMed  CAS  Google Scholar 

  7. Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ. Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 1999; 274: 8375–8378.

    PubMed  CAS  Google Scholar 

  8. Christakos S, Gill R, Lee S, Li H. Molecular aspects of the calbindins. J Nutr 1992; 122: 678–682.

    PubMed  CAS  Google Scholar 

  9. Christakos S, Gabrielides C, Rhoten WB. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev 1989; 10: 3–26.

    PubMed  CAS  Google Scholar 

  10. Carafoli E, Garcia-Martin E, Guerini D. The plasma membrane calcium pump: recent developments and future perspectives. Experientia 1996; 52: 1091–1100.

    PubMed  CAS  Google Scholar 

  11. Dominguez JH, Juhaszova M, Feister HA. The renal sodium-calcium exchanger. J Lab Clin Med 1992; 119: 640–649.

    PubMed  CAS  Google Scholar 

  12. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem 1987; 56: 395–433.

    PubMed  CAS  Google Scholar 

  13. Niggli V, Penniston JT, Carafoli E. Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 1979; 254: 9955–9958.

    PubMed  CAS  Google Scholar 

  14. Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. Faseb J 1994; 8: 993–1002.

    PubMed  CAS  Google Scholar 

  15. Suki WN. Calcium transport in the nephron [editorial]. Am J Physiol 1979; 237: F1–6.

    PubMed  CAS  Google Scholar 

  16. Aida K, Koishi S, Tawata M, Onaya T. Molecular cloning of a putative Ca(2+)-sensing receptor cDNA from human kidney. Biochem Biophys Res Commun 1995; 214: 524–529.

    PubMed  CAS  Google Scholar 

  17. Riccardi D, Park J, Lee WS, Gamba G, Brown EM, Hebert SC. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci USA 1995; 92: 131–135.

    PubMed  CAS  Google Scholar 

  18. Costanzo LS, Windhager EE. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol 1978; 235: F492–506.

    PubMed  CAS  Google Scholar 

  19. Massey LK, Whiting SJ. Dietary salt, urinary calcium, and bone loss. J Bone Miner Res 1996; 11: 731–736.

    PubMed  CAS  Google Scholar 

  20. Sakhaee K, Nicar M, Hill K, Pak YC. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int 1983; 24: 348–352.

    PubMed  CAS  Google Scholar 

  21. Lemann J, Gray RW, Pleuss J. Potassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balance in healthy men. Kidney Int 1989; 35: 688–695.

    PubMed  Google Scholar 

  22. Devine A, Criddle RA, Dick IM, Kerr DA, Prince RL. A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women. Am J Clin Nutr 1995; 62: 740–745.

    PubMed  CAS  Google Scholar 

  23. Hegsted MS, Schuette SA, Zemel MB, Linkswiler HM. Urinary calcium and calcium balance in young men as affected by level of protein and phosphorus intake. J Nutr 1981; 111: 553–562.

    PubMed  CAS  Google Scholar 

  24. Lutz J. Calcium balance and acid-base status of women as affected by increased protein intake and by sodium bicarbonate ingestion. Am J Clin Nutr 1984; 39: 281–288.

    PubMed  CAS  Google Scholar 

  25. Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med 1997; 126: 497–504.

    PubMed  CAS  Google Scholar 

  26. Schurch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, BonjourJP. Protein supplements increase serum insulin-like growth factor-1 levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomised, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128: 801–809.

    PubMed  CAS  Google Scholar 

  27. Devine A, Rosen C, Mohan S, Baylink D, Prince RL. Effects of zinc and other nutritional factors on insulin-like growth factor I and insulin-like growth factor binding proteins in postmenopausal women. Am J Clin Nutr 1998; 68: 200–206.

    PubMed  CAS  Google Scholar 

  28. Barzel U. The skeleton as an ion exchange system: implications for the role of acid-base imbalance in the genesis of osteoporosis. J Bone Miner Res 1995; 10: 1431–1436.

    PubMed  CAS  Google Scholar 

  29. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RCJ. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 1994; 330: 1776–1781.

    PubMed  CAS  Google Scholar 

  30. Bourdeau JE, Taylor AN, Iacopino AM. Immunocytochemical localization of sodium-calcium exchanger in canine nephron. J Am Soc Nephrol 1993; 4: 105–110.

    PubMed  CAS  Google Scholar 

  31. Reilly RF, Shugrue CA, Lattanzi D, Biemesderfer D. Immunolocalization of the Na+/Ca2+ exchanger in rabbit kidney. Am J Physiol 1993; 265: F327–332.

    PubMed  CAS  Google Scholar 

  32. Borke JL, Minami J, Verma AK, Penniston JT, Kumar R. Co-localization of erythrocyte Ca++- Mg++ ATPase and vitamin D-dependent 28-kDa-calcium binding protein. Kidney Int 1988; 34: 262–267.

    PubMed  CAS  Google Scholar 

  33. Stauffer TP, Guerini D, Carafoli E. Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem, 1995;270:12, 184–12, 190.

    Google Scholar 

  34. Caride Ai, Filoteo AG, Enyedi A, Verma AK, Penniston IT. Detection of isoform 4 of the plasma membrane calcium pump in human tissues by using isoform-specific monoclonal antibodies. Biochem J 1996; 316: 353–359.

    Google Scholar 

  35. Brunette MG, Leclerc M, Huo TL, Porta A, Christakos S. Effect of calbindin D 28K on sodium transport by the luminal membrane of the rabbit nephron. Mol Cell Endocrinol 1999; 152: 161–168.

    PubMed  CAS  Google Scholar 

  36. Rizzo M, Capasso G, Bleich M, Pica A, Grimaldi D, Bindels kJ, Greger R. Effect of chronic metabolic acidosis on calbindin expression along the rat distal tubule. J Am Soc Nephrol 2000; 11: 203–210.

    PubMed  CAS  Google Scholar 

  37. Bouhtiauy I, Lajeunesse D, Brunette MG. Effect of vitamin D depletion on calcium transport by the luminal and basolateral membranes of the proximal and distal nephrons. Endocrinology 1993; 132: 115–120.

    PubMed  CAS  Google Scholar 

  38. Bindels Ri, Hartog A, Timmermans J, Van Os CH. Active Ca2+ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am J Physiol 1991; 261: F799–807.

    Google Scholar 

  39. Glendenning P, Ratajczak T, Dick IM, Prince RL. Calcitriol upregulates expression and activity of the lb isoform of the plasma membrane calcium pump in immortalised distal kidney tubular cells. Arch Biochem Biophys 2000; 126–132.

    Google Scholar 

  40. Huang YC, Christakos S. Modulation of rat calbindin-D28 gene expression by 1,25-dihydroxyvitamin D3 and dietary alteration [published erratum appears in Mol Endocrinol 1988;2(12):1236]. Mol Endocrinol 1988; 2: 928–935.

    PubMed  CAS  Google Scholar 

  41. Li H, Christakos S. Differential regulation by 1,25-dihydroxyvitamin D3 of calbindin-D9k and calbindin-D28k gene expression in mouse kidney. Endocrinology, 1991; 128: 2844–2852.

    PubMed  CAS  Google Scholar 

  42. Hall AK, Norman AW. Regulation of calbindin-D28K gene expression by 1,25-dihydroxyvitamin D3 in chick kidney. J Bone Miner Res 1990; 5: 325–330.

    PubMed  CAS  Google Scholar 

  43. Gill RK, Christakos S. Identification of sequence elements in mouse calbindin-D28k gene that confer 1,25-dihydroxyvitamin D3- and butyrate-inducible responses. Proc Natl Acad Sci USA 1993; 90: 2984–2988.

    PubMed  CAS  Google Scholar 

  44. Barley NF, Prathalingam SR, Zhi P, Legon S, Howard A, Walters JR. Factors involved in the duodenal expression of the human calbindin-D9k gene. Biochem J 1999; 341: 491–500.

    PubMed  CAS  Google Scholar 

  45. Clemens TL, McGlade SA, Garrett KP, Craviso GL, Hendy GN. Extracellular calcium modulates vitamin D-dependent calbindin-D28K gene expression in chick kidney cells. Endocrinology 1989; 124: 1582–1584.

    PubMed  CAS  Google Scholar 

  46. Bouhtiauy I, Lajeunesse D, Brunette MG. The mechanism of parathyroid hormone action on calcium reabsorption by the distal tubule. Endocrinology 1991; 128: 251–258.

    PubMed  CAS  Google Scholar 

  47. Friedman PA, Gesek FA, Morley P, Whitfield JF, Willick GE. Cell-specific signaling and structure-activity relations of parathyroid hormone analogs in mouse kidney cells. Endocrinology 1999; 140: 301–309.

    PubMed  CAS  Google Scholar 

  48. Friedman PA, Gesek FA. Vitamin D3 accelerates PTH-dependent calcium transport in distal convoluted tubule cells. Am J Physiol 1993; 265: F300–308.

    PubMed  CAS  Google Scholar 

  49. Hemmingsen C, Staun M, Lewin E, Nielsen PK, Olgaard K. Effect of parathyroid hormone on renal calbindin-D28k. J Bone Miner Res 1996; 11: 1086–1093.

    PubMed  CAS  Google Scholar 

  50. Criddle RA, Zheng MH, Dick IM, Callus B, Prince RL. Estrogen responsiveness of renal calbindinD28k gene expression in rat kidney. J Cell Biochem 1997; 65: 340–348.

    PubMed  CAS  Google Scholar 

  51. Recker RR, Heaney RP. The effect of milk supplements on calcium metabolism, bone metabolism and calcium balance. Am J Clin Nutr 1985; 41: 254–263.

    PubMed  CAS  Google Scholar 

  52. Heaney RP, Recker RR. Determinants of endogenous fecal calcium in healthy women. J Bone Miner Res 1994; 9: 1621–1627.

    PubMed  CAS  Google Scholar 

  53. Draper CR, Dick IM, Prince R. The effect of estrogen deficiency on calcium balance in mature rats. Calcif Tissue Int 1999; 64: 325–328.

    PubMed  CAS  Google Scholar 

  54. Cochet B, Jung A, Griessen M, Bartholdi P, Schaller P, Donath A. Effects of lactose on intestinal calcium absorption in normal and lactase-deficient subjects. Gastroenterology 1983; 84: 935–940.

    PubMed  CAS  Google Scholar 

  55. Sheikh MS, Schiller LR, and Fordtran JS. In vivo intestinal absorption of calcium in humans. Miner Electrolyte Metab 1990; 16: 130–146.

    PubMed  CAS  Google Scholar 

  56. Honkanen R, Kroger H, Alhava E, Turpeinen P, Tuppurainen M, Saarikoski S. Lactose intolerance associated with fractures of weight-bearing bones in Finnish women aged 38–57 years. Bone 1997; 21: 473–477.

    PubMed  CAS  Google Scholar 

  57. Wisker E, Nagel R, Tanudjaja TK, Feldheim W. Calcium, magnesium, zinc, and iron balances in young women: effects of a low-phytate barley-fiber concentrate. Am J Clin Nutr 1991; 54: 553–559.

    PubMed  CAS  Google Scholar 

  58. Knox TA, Kassarjian Z, Dawson-Hughes B, Golner B, Dallal GE, Arora S, Russel RM. Calcium absorption in elderly subjects on high-and low-fiber diets: effect of gastric acidity. Am J Clin Nutr 1991; 53: 1480–1486.

    PubMed  CAS  Google Scholar 

  59. Sheikh MS, SantaAna CA, Nicar MJ, Schiller LR, and Fordtran JS. Gastrointestinal absorption of calcium from milk and calcium salts. N Engl J Med 1987; 317: 532–536.

    PubMed  CAS  Google Scholar 

  60. Harvey JA, Zobitz MM, Pak CYC. Dose dependency of calcium absorption: a comparison of calcium carbonate and calcium citrate. J Bone Miner Res 1988; 3: 253–258.

    PubMed  CAS  Google Scholar 

  61. Sheikh MS, Fordtran JS. Calcium bioavailability from two calcium carbonate preparations. N Engl J Med 1990; 323: 921.

    PubMed  CAS  Google Scholar 

  62. Whiting SJ, Pluhator MM. Comparison of in vitro and in vivo tests for determination of availability of calcium from calcium carbonate tablets. J Am Coll Nutr 1992; 11: 553–560.

    PubMed  CAS  Google Scholar 

  63. Prince RL, Devine A, Dick IM, Criddle A, Kerr D, Kent N, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res, 1995; 10: 1068–1075.

    PubMed  CAS  Google Scholar 

  64. Devine A, Dick IM, Heal SJ, Criddle RA, Prince RL. A 4-year follow-up study of the effects of calcium supplementation on bone density in elderly postmenopausal women. Osteoporos Int 1997; 7: 23–28.

    PubMed  CAS  Google Scholar 

  65. Wasserman RH, Kallfelz FA. Vitamin D3 and the unidirectional calcium fluxes across rachitic chich duodenum. Am J Physiol 1961; 203: 221–224.

    Google Scholar 

  66. Zheng MH, Fan Y, Wysocki S, Wood DJ, Papadimitriou JM. Detection of mRNA for carbonic anhydrase II in human osteoclast-like cells by in situ hybridization. J Bone Miner Res 1993; 8: 113–118.

    PubMed  CAS  Google Scholar 

  67. Karbach U. Paracellular calcium transport across the small intestine. J Nutr 1992; 122: 672–677.

    PubMed  CAS  Google Scholar 

  68. Howard A, Legon S, Walters JR. Human and rat intestinal plasma membrane calcium pump isoforms. Am J Physiol 1993; 265: G917–925.

    PubMed  CAS  Google Scholar 

  69. Borke JL, Carde A, Verma AK, Penniston JT, Kumar R. Cellular and segmental distribution of Ca2(+)-pump epitopes in rat intestine. Pflugers Arch 1990; 417: 120–122.

    PubMed  CAS  Google Scholar 

  70. Hildmann B, Schmidt A, Murer H. Ca++ transport across basal-lateral plasma membranes from rat small intestinal epithelial cells. J Membr Biol 1982; 65: 55–62.

    PubMed  CAS  Google Scholar 

  71. Kikuchi K, Kikuchi T, Ghishan FK. Characterisation of calcium transport by basolateral membrane vesicles of human small intestine. Am J Physiol 1988; 255: G482 - G489.

    PubMed  CAS  Google Scholar 

  72. Armbrecht HJ, Boltz MA, Wongsurawat N. Expression of plasma membrane calcium pump mRNA in rat intestine: effect of age and 1,25-dihydroxyvitamin D. Biochim Biophys Acta 1994; 1195: 110–114.

    PubMed  CAS  Google Scholar 

  73. Nemere I, Norman AW. Transcaltachia, vesicular calcium transport, and microtubule-associated calbindin D28K: emerging views of 1,25-dihydroxyvitamin D3-mediated intestinal calcium absorption. Miner Electrolyte Metab 1990; 16: 109–114.

    PubMed  CAS  Google Scholar 

  74. Nemere I. Vesicular calcium transport in chick intestine. J Nutr 1992; 122: 657–661.

    PubMed  CAS  Google Scholar 

  75. Armbrecht HJ, Boltz MA, Christakos S, Bruns ME. Capacity of 1,25-dihydroxyvitamin D to stimulate expression of calbindin D changes with age in the rat. Arch Biochem Biophys 1998; 352: 159–164.

    PubMed  CAS  Google Scholar 

  76. Lemay J, Demers C, Hendy GN, Gascon-Barre M. Oral calcium transiently increases calbindin9k gene expression in adult rat duodena. Calcif Tissue Int 1997; 60: 43–47.

    PubMed  CAS  Google Scholar 

  77. Brehier A, Thomasset M. Stimulation of calbindin-D9K (CaBP9K) gene expression by calcium and 1,25-dihydroxycholecalciferol in fetal rat duodenal organ culture. Endocrinology 1990; 127: 580–587.

    PubMed  CAS  Google Scholar 

  78. Staun M, Boesby S, Daugaard H, Jarnum S. Calcium-binding protein in human duodenal biopsies. Calcif Tissue Int 1988; 42: 205–209.

    PubMed  CAS  Google Scholar 

  79. Walters JR, Howard A, Lowery LJ, Mawer EB, Legon S. Expression of genes involved in calcium absorption in human duodenum. Eur J Clin Invest, 1999; 29: 214–219.

    PubMed  CAS  Google Scholar 

  80. Dupret JM, Brun P, Perret C, Lomri N, Thomasset M, Cuisinier-Gleizes P. Transcriptional and post-transcriptional regulation of vitamin D-dependent calcium-binding protein gene expression in the rat duodenum by 1,25-dihydroxycholecalciferol. J Biol Chem 1987;262:16, 553–16, 557.

    Google Scholar 

  81. Darwish HM, DeLuca HF. Identification of a 1,25-dihydroxyvitamin D3-response element in the 5’-flanking region of the rat calbindin D-9k gene. Proc Natl Acad Sci USA 1992; 89: 603–607.

    PubMed  CAS  Google Scholar 

  82. Colin EM, Van Den Bernd GJ, Van Aken M, Christakos S, De Jonge HR, Deluca HF, et al. Evidence for involvement of 17beta-estradiol in intestinal calcium absorption independent of 1,25dihydroxyvitamin D3 level in the Rat. J Bone Miner Res 1999; 14: 57–64.

    PubMed  CAS  Google Scholar 

  83. Liel Y, Shany S, Smirnoff P, Schwartz B. Estrogen increases 1,25-dihydroxyvitamin D receptors expression and bioresponse in the rat duodenal mucosa. Endocrinology 1999; 140: 280–285.

    PubMed  CAS  Google Scholar 

  84. Burr D, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner C. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 1997; 12: 6–15.

    PubMed  CAS  Google Scholar 

  85. Devlin RD, Retallack RW, Fenton Ai, Grill V, Gutteridge DH, Kent GN, et al. Long-term elevation of 1,25-dihydroxyvitamin D after short-term intravenous administration of pamidronate (aminohydroxypropylidene biphosphonate, APD) in Paget’s disease of bone. J Bone Miner Res 1994; 9: 81–85.

    PubMed  CAS  Google Scholar 

  86. Horowitz M, Need AG, Philcox JC, Nordin BE. Effect of calcium supplementation on urinary hydroxyproline in osteoporotic postmenopausal women. Am J Clin Nutr 1984; 39: 857–859.

    PubMed  CAS  Google Scholar 

  87. Prince R. The calcium controversy revisited: implications of new data. Med J Aust 1993; 159: 404407.

    Google Scholar 

  88. Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N. Modulation of osteoclast differentiation by local factors. Bone 1995; 17: 87S - 91S.

    PubMed  CAS  Google Scholar 

  89. Miller SC, Jee WS. The bone lining cell: a distinct phenotype? Calcif Tissue Int 1987; 41: 1–5.

    PubMed  CAS  Google Scholar 

  90. Matthews JL, Wiel CV, Talmage RV. Bone lining cells and the bone fluid compartment, an ultra-structural study. Adv Exp Med Biol 1978; 103: 451–458.

    PubMed  CAS  Google Scholar 

  91. Matthews JL, Talmage RV. Influence of parathyroid hormone on bone cell ultrastructure. Clin Orthop 1981; 156: 27–38.

    PubMed  Google Scholar 

  92. Norimatsu H, Wiel CJ, Talmage RV. Electron microscopic study of the effects of calcitonin on bone cells and their extracellular milieu. Clin Orthop 1979; 139: 250–258.

    PubMed  CAS  Google Scholar 

  93. Norimatsu H, Yamamoto T, Ozawa H, Talmage RV. Changes in calcium phosphate on bone surfaces and in lining cells after the administration of parathyroid hormone or calcitonin. Clin Orthop 1982; 164: 271–278.

    PubMed  CAS  Google Scholar 

  94. Hock JM, Hummert JR, Boyce R, Fonseca J, Raisz LG. Resorption is not essential for the stimulation of bone growth by hPTH-(1–34) in rats in vivo. J Bone Miner Res 1989; 4: 449–458.

    PubMed  CAS  Google Scholar 

  95. Cosman F, Nieves J, Woelfert L, Shen V, Lindsay R. Alendronate does not block the anabolic effect of PTH in postmenopausal osteoporotic women. J Bone Miner Res 1998; 13: 1051–1055.

    PubMed  CAS  Google Scholar 

  96. Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK. Removal of osteoclast bone resorption products by transcytosis. Science 1997; 276: 270–273.

    PubMed  CAS  Google Scholar 

  97. Akisaka T, Yamamoto T, Gay CV. Ultracytochemical investigation of calcium-activated adenosine triphosphatase (Ca++-ATPase) in chick tibia. J Bone Miner Res 1988; 3: 19–25.

    PubMed  CAS  Google Scholar 

  98. Lorget F, Kamel S, Mentaverri R, Wattel A, Naassila M, Maamer M, Brazier M. High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Comm 2000; 268: 899–903.

    PubMed  CAS  Google Scholar 

  99. Pazianas M, Zaidi M, Huang CL, Moonga BS, Shankar VS. Voltage sensitivity of the osteoclast calcium receptor. Biochem Biophys Res Comm 1993; 192: 1100–1105.

    PubMed  CAS  Google Scholar 

  100. Zaidi M, Moonga BS, Adebanjo OA. Novel mechanisms of calcium handling by the osteoclast: a review-hypothesis. Proc Assoc Am Phys 1999; 111: 319–327.

    PubMed  CAS  Google Scholar 

  101. Kanatani M, Sugimoto T, Kanzawa M, Yano S, Chihara K. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Comm 1999; 261: 144–148.

    PubMed  CAS  Google Scholar 

  102. Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M, et al. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Comm 1998; 245: 419–422.

    PubMed  CAS  Google Scholar 

  103. Stains JP, Gay CV. Asymmetric distribution of functional sodium-calcium exchanger in primary osteoblasts. J Bone Miner Res 1998; 13: 1862–1869.

    PubMed  CAS  Google Scholar 

  104. Krieger NS. Parathyroid hormone, prostaglandin E2, and 1,25-dihydroxyvitamin D3 decrease the level of Na+-Ca2+ exchange protein in osteoblastic cells. Calcif Tissue Int 1997; 60: 473–478.

    PubMed  CAS  Google Scholar 

  105. Berdal A, Hotton D, Saffar JL, Thomasset M, Nanci A. Calbindin-D9k and calbindin-D28k expression in rat mineralized tissues in vivo. J Bone Miner Res, 1996; 11: 768–779.

    PubMed  CAS  Google Scholar 

  106. Faucheux C, Bareille R, Amedee J. Synthesis of calbindin-D28K during mineralization in human bone marrow stromal cells. Biochem J 1998; 333: 817–823.

    PubMed  CAS  Google Scholar 

  107. Christakos S, Norman AW. Vitamin D3-induced calcium binding protein in bone tissue. Science 1978; 202: 70, 71.

    Google Scholar 

  108. Bellido T, Huening M, Raval-Pandya M, Manolagas SC, Christakos S. Calbindin-D (sub28 } K is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity. J Biol Chem 2000;34:26, 328–26, 332.

    Google Scholar 

  109. Shen V, Hruska K, Avioli LV. Characterization of a (Ca2+ + Mg2+)-ATPase system in the osteoblast plasma membrane. Bone 1988; 9: 325–329.

    PubMed  CAS  Google Scholar 

  110. Glendenning P, Ratajczak T, Dick IM, Prince RL. Regulation of the lb isoform of the plasma membrane calcium pump by 1,25-dihydroxvitamin D3 in rat osteoblast-like cells. J Bone Miner Res 2001; 16: 525–534.

    PubMed  CAS  Google Scholar 

  111. Glendenning P, Ratajczak T, Prince RL, Garamszegi N, Strehler EE. The promoter region of the human PMCA1 gene mediates transcriptional downregulation by 1,25-dihydroxyvitamin D3. Biochem Biophys Res Comm 2000; 277: 722–728.

    PubMed  CAS  Google Scholar 

  112. Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci USA 1997; 94: 1488–1493.

    PubMed  CAS  Google Scholar 

  113. Sooy K, Kohut J, Meyer M, Yeh C-C, Huo T-L, Christakos S. Increased urinary calcium excretion in calbindin-D28K knockout mice. J Bone Miner Res 1999; 14 (Suppl 1): S211.

    Google Scholar 

  114. Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. J Clin Invest 1979; 64: 729–736.

    PubMed  CAS  Google Scholar 

  115. Devine A, Prince RL, Kerr DA, Dick IM, Criddle RA, Kent GN, et al. Correlates of intestinal calcium absorption in women 10 years past the menopause. Calcif Tissue Int 1993; 52: 358–360.

    PubMed  CAS  Google Scholar 

  116. McKane WR, Khosla S, Ristelli J, Robins SP, Muhs JM, Riggs BL. Role of estrogen deficiency in pathogenisis of secondary hyperaparathyroidism and increased bone resorption in elderly women. Proc Assoc Am Phys 1993; 109: 174–180.

    Google Scholar 

  117. Wiske PS, Epstein S, Bell NH, Queener SF, Edmonson J, Johnston CCJ. Increases in immunoreactive parathyroid hormone with age. N Engl J Med 1979; 300: 1419–1421.

    PubMed  CAS  Google Scholar 

  118. Insogna KL, Lewis AM, Lipinski BA, Bryant C, Baran DT. Effect of age on serum immunoreactive parathyroid hormone and its biological effects. J Clin Endocrinol Metab 1981; 53: 1072–1075.

    PubMed  CAS  Google Scholar 

  119. Prince RL, Dick IM, Devine A, Price RI, Gutteridge DH, Kerr D, et al. The effects of menopause and age on calcitropic hormones: a cross-sectional study of 655 healthy women aged 35 to 90. J Bone Miner Res 1995; 10: 835–842.

    PubMed  CAS  Google Scholar 

  120. Kalkwarf HJ, Specker BL, Bianchi DC, Ranz J, Ho M. The effect of calcium supplementation on bone density during lactation and after weaning. N Engl J Med 1997; 337: 523–528.

    PubMed  CAS  Google Scholar 

  121. Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 1991; 88: 6613–6617.

    PubMed  CAS  Google Scholar 

  122. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37: 411–417.

    PubMed  CAS  Google Scholar 

  123. Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopusal women are site-specific and load-dependent. J Bone Miner Res 1996; 11: 218–225.

    PubMed  CAS  Google Scholar 

  124. Kelly PJ, Eisman JA, Stuart MC, Pocock NA, Sambrook PN, Gwinn TH. Somatomedin-C, physical fitness, and bone density. J Clin Endocrinol Metab 1990; 70: 718–723.

    PubMed  CAS  Google Scholar 

  125. Tobias JH, Chow J, Colston KW, Chambers TJ. High concentrations of 17 beta-estradiol stimulate trabecular bone formation in adult rats. Endocrinology 1991; 128: 408–412.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prince, R.L., Glendenning, P. (2003). The Physiology and Cell Biology of Calcium Transport in Relation to the Development of Osteoporosis. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics