Skip to main content

Some Approaches to Quantitative Dendritic Morphology

  • Chapter
Book cover Computational Neuroanatomy

Abstract

The availability of powerful desktop computers and of a large amount of detailed data about the morphology of a wide variety of neurons has led to the development of computational approaches that are designed to synthesize such data into biologically meaningful patterns. The hope is, of course, that the emerging patterns will provide clues to the factors that control the formation of neuronal dendrites during development, as well as their maintenance in the adult animal. One class of approaches to this problem is to develop quantitative computational models that can reproduce as many aspects of the original data as possible. The development of such simulations requires analysis of the original data that is directed by the model requirements, and their relative success depends on detailed comparisons between model outputs and the original data sets. Refinement of the models may require not only new experiments, as in other scientific disciplines, but also new ways of looking at the data already in hand. This chapter discusses some examples of this process, with emphasis on spinal motoneurons.

“If ye canna mak a model, then ye dinna understand it.”

(Attributed to Lord Kelvin)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stuart G, Spruston N, Häusser M. (eds.) Dendrites. Oxford University Press, New York, 1999, pp. 376.

    Google Scholar 

  2. Cajal S. Histology of the Nervous System of Man and Vertebrates. (translated by Swanson N, Swanson LW) Oxford University Press, New York, 1995.

    Google Scholar 

  3. Ramon-Moliner E. An attempt at classifying nerve cells on the basis of their dendritic patterns. J Comp Neurol 1962; 119: 211–227.

    Article  PubMed  CAS  Google Scholar 

  4. Cullheim S, Kellerth J-O. Combined light and electron microscopical tracing of neurons, including axons and synaptic terminals, after intracellular injection of horseradish peroxidase. Neurosci Lett 1976; 2: 307–313.

    Article  PubMed  CAS  Google Scholar 

  5. Snow P, Rose P, Brown A. Tracing axons and axon collaterals of spinal neurons using intracellular injection of horseradish peroxidase. Science 1976; 191: 312–313.

    Article  PubMed  CAS  Google Scholar 

  6. Glaser E, Van der Loos H. A semiautomatic computermicroscope for the analysis of neuronal morphology. IEEE Trans Biomed Eng 1965; 12:22–31.

    Google Scholar 

  7. Johnson E, Capowski J. A system for the three-dimensional reconstruction of biological structures. Comput Biomed Res 1983; 16: 79–87.

    Article  PubMed  CAS  Google Scholar 

  8. Hillman D. Neuronal shape parameters and substructures as a basis of neuronal form. In: The Neurosciences. Fourth Study Program ( Schmitt FO, Worden FG, eds.) MIT Press, Cambridge, MA, 1979, pp. 477–498.

    Google Scholar 

  9. Cline HT. Development of dendrites. In: Dendrites ( Stuart G, Spruston N, Häusser M, eds.) Oxford University Press, New York, 1999, pp. 35–67.

    Google Scholar 

  10. Segev I, Burke RE, Hines M. Compartmental models of complex neurons. In: Methods in Neuronal Modeling ( Segev I, Koch C, eds.) MIT Press, Cambridge, MA, 1997, pp. 93136.

    Google Scholar 

  11. Sholl D. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 1953; 87: 387–401.

    PubMed  CAS  Google Scholar 

  12. Cullheim S, Fleshman JW, Glenn LL, Burke RE. Membrane area and dendritic structure in type-identified triceps surae alpha-motoneurons. J Comp Neurol 1987; 255: 68–81.

    Article  PubMed  CAS  Google Scholar 

  13. Ulfhake B and Kellerth J-O. A quantitative light microscopic study of the dendrites of cat spinal a-motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol 1981; 202: 571–584.

    Article  PubMed  CAS  Google Scholar 

  14. Dityatev A, Chymykhova N, Studer L, Karamian O, Kozhanov V, Clamann H. Comparison of the topology and growth rules of motoneuronal dendrites. J Comp Neurol 1995; 363: 505–516.

    Article  PubMed  CAS  Google Scholar 

  15. van Veen M, van Pelt J. A model for outgrowth of branching neurites. J Theor Biol 1992; 159:1–23.

    Google Scholar 

  16. Verwer R, van Pelt J. Descriptive and comparative analysis of geometrical properties of neuronal tree structures. J Neurosci Methods 1986; 18:179–206.

    Google Scholar 

  17. Hillman D. Parameters of dendritic shape and substructure: intrinsic and extrinsic determination? In: Intrinsic Determinants of Neuronal Form and Function (Lasek RJ, Black MM, eds,) Alan R. Liss, New York, 1988, pp. 83–113.

    Google Scholar 

  18. Stevens J, Trogadis J, Jacobs J. Development and control of axial neurite form: a serial electron microscopic analysis. In: Intrinsic Determinants of Neuronal Form and Function ( Lasek RJ, Black MM, eds.) Alan R. Liss, New York, 1988, pp. 115–145.

    Google Scholar 

  19. Tamori Y. Theory of dendritic morphology. Phys Rev E 1993; 48: 3124–3129.

    Article  Google Scholar 

  20. Burke RE, Marks WB, Ulfhake B. A parsimonious description of motoneuron dendritic morphology using computer simulation. J Neurosci 1992; 12: 2403–2416.

    PubMed  CAS  Google Scholar 

  21. Ascoli GA. Progress and perspectives in computational neuroanatomy. Anat Rec 1999; 257:195–207.

    Google Scholar 

  22. Carriquiry AL, Ireland WP, Kliemann W, Uemura E. Statistical evaluation of dendritic growth models. Bull Math Biol 1991; 53: 579–589.

    PubMed  CAS  Google Scholar 

  23. Brown C. Neuron orientations: a computer application. In: Computer Analysis of Neuronal Structures ( Lindsey RD, ed.) Plenum Press, New York, 1977, pp. 177–188.

    Chapter  Google Scholar 

  24. Yelnik J, Percheron G, François C, Burnod Y. Principle component analysis: a suitable method for the 3-dimensional study of the shape, dimensions and orientation of dendritic arborizations. J Neurosci Meth 1983; 9:115–125.

    Google Scholar 

  25. Lindsey RD. Neuronal field analysis using Fourier series. In: Computer Analysis of Neuronal Structures ( Lindsey RD, ed.) Plenum Press, New York, 1977, pp. 165–175.

    Chapter  Google Scholar 

  26. Cullheim S, Fleshman JW, Glenn LL, Burke RE. Three-dimensional architecture of dendritic trees in type-identified alpha-motoneurons. J Comp Neurol 1987; 255: 82–96.

    Article  PubMed  CAS  Google Scholar 

  27. Ascoli GA, Krichmar JL. L-neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 2000; 32–33:1003–1011.

    Google Scholar 

  28. Ascoli GA, Krichmar JL, Scorcioni R, Nasuto SJ, Senft SL. Computer generation of anatomically accurate virtual neurons. Anat Embryol 2001; 204: 283–301.

    Article  PubMed  CAS  Google Scholar 

  29. Ford R, Ford ED. Structure and basic equations of a simulator for branch growth in the Pinaceae. J Theor Biol 1990; 146:1–13.

    Google Scholar 

  30. Honda H. Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body. J Theor Biol 1971; 31: 331–338.

    Article  PubMed  CAS  Google Scholar 

  31. Li GH, Qin CD, Wang ZS. Neurite branching pattern formation—modeling and computer simulation. J Theor Biol 1992; 157: 463–486.

    Article  PubMed  CAS  Google Scholar 

  32. Meyer F. Mathematical morphology: from two dimensions to three dimensions. J Microscopy 1992; 165: 5–28.

    Article  Google Scholar 

  33. West MJ. Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 1999; 22: 51–61.

    Article  PubMed  CAS  Google Scholar 

  34. Tredici G, Tarelli L, Cavaletti G, Marmiroli P. Ultrastructural organization of lamina VI of the spinal cord of the cat. Neurobiology 1985; 24: 293–331.

    CAS  Google Scholar 

  35. Moschovakis AK, Burke RE, Fyffe REW. The size and dendritic structure of HRP-labeled gamma motoneurons in the cat spinal cord. J Comp Neurol 1991; 311: 531–545.

    Article  PubMed  CAS  Google Scholar 

  36. Brännström T. Quantitative synaptology of functionally different types of cat medial gastrocnemius alpha-motoneurons. J Comp Neurol 1993; 330: 439–454.

    Article  PubMed  Google Scholar 

  37. Destombes J, Horchelle-Bossavit G, Thiesson D, Jami L. Alpha and gamma motoneurons in the peroneal nuclei of the cat spinal cord: An ultrastructural study. J Comp Neurol 1992; 317: 79–90.

    Article  PubMed  CAS  Google Scholar 

  38. Burke RE, Strick PL, Kanda K, Kim CC, Walmsley B. Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord. J Neurophysiol 1977; 40: 667–680.

    PubMed  CAS  Google Scholar 

  39. Aitken JT, Bridger JE. Neuron size and neuron population density in the lumbosacral region of the cat’s spinal cord. J Anat 1961; 95: 38–53.

    PubMed  CAS  Google Scholar 

  40. Thompson D. On Growth and Form. Cambridge University Press, Cambridge, UK, 1942.

    Google Scholar 

  41. Burke RE. Motor units: anatomy, physiology and functional organization. In Handbook of Physiology, Sect. 1: The Nervous System, Vol. II. Motor Control, Part 1 ( Brooks VB, ed.) American Physiological Society, Washington, DC, 1981, pp. 345–422.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burke, R.E., Marks, W.B. (2002). Some Approaches to Quantitative Dendritic Morphology. In: Ascoli, G.A. (eds) Computational Neuroanatomy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-275-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-275-3_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-297-1

  • Online ISBN: 978-1-59259-275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics