Skip to main content

Computing the Brain and the Computing Brain

  • Chapter
Computational Neuroanatomy
  • 305 Accesses

Abstract

Computational neuroanatomy is a new emerging field in neuroscience, combining the vast, data-rich field of neuroanatomy with the computational power of novel hardware, software, and computer graphics. Many research groups are developing scientific strategies to simulate the structure of the nervous system at different scales. This first chapter reviews several of these strategies and briefly introduces those that are expanded in the subsequent chapters of the book. The long-tersm end result of the collective effort by researchers in computational neuroanatomy and neuroscience at large will be a comprehensive structural and functional model of the brain. Such a model might have deep implications for scientific understanding as well as technological development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramon y Cajal S. Textura del Sistema Nervioso del Hombre y los Vertebrados. 1994 English translation by N and LW Swanson, Oxford University Press, New York, 1894–1904.

    Google Scholar 

  2. Squire L. (ed.) History of Neuroscience in Autobiography, Vol. 1–3. Academic Press, San Diego, CA, 1996–2001.

    Google Scholar 

  3. Poisson K. Chronology of Events in the History of Microcomputers from 1947 to 2000. Published online at http://www.islandnet.com/-kpolsson/comphist 1995–2000 Ken Poisson.

  4. Kurzweil R. The Law of Accelerating Returns. Published online at http://www.kurzweilai.net/articles/art0134.html© 2001 Raymond Kurzweil.

  5. Li Z. Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex. Neural Comput 2001; 13: 1749–1780.

    Article  PubMed  CAS  Google Scholar 

  6. Riesenhuber M., Poggio T. Models of object recognition. Nat Neurosci 2000; Supp1:1199–1204.

    Google Scholar 

  7. Deco G., Zihl J. A neurodynamical model of visual attention: feedback enhancement of spatial resolution in a hierarchical system. J Comput Neurosci 2001; 10: 231–253.

    Article  PubMed  CAS  Google Scholar 

  8. Ohzawa I. Mechanisms of stereoscopic vision: the disparity energy model. Curr Opin Neurobiol 1998; 8: 509–515.

    Article  PubMed  CAS  Google Scholar 

  9. Findlay JM, Walker R. A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci 1999; 22:661–674; discussion 674–721.

    Google Scholar 

  10. Poirazi P, Mel BW. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 2001; 29: 779–796.

    Article  PubMed  CAS  Google Scholar 

  11. Schultz SR, Rolls ET. Analysis of information transmission in the Schaffer collaterals. Hippocampus 1999; 9: 582–598.

    Article  PubMed  CAS  Google Scholar 

  12. Wallenstein GV, Hasselmo ME. GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J Neurophysiol 1997; 78: 393–408.

    PubMed  CAS  Google Scholar 

  13. Traub RD, Jefferys JG, Whittington MA. Functionally relevant and functionally disruptive (epileptic) synchronized oscillations in brain slices. Adv Neurol 1999; 79: 709–724.

    PubMed  CAS  Google Scholar 

  14. Britton NF, Skevington SM. On the mathematical modelling of pain. Neurochem Res 1996; 21: 1133–1140.

    Article  PubMed  CAS  Google Scholar 

  15. Koch C, Segev I. (eds.) Methods in Neuronal Modeling: From Ions to Networks. 2nd ed. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  16. Bower JM, Beeman D. (eds.) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. Springer-Verlag, New York, 1998.

    Google Scholar 

  17. Inoue T, Watanabe S, Kawahara S, Kirino Y. Phase-dependent filtering of sensory information in the oscillatory olfactory center of a terrestrial mollusk. J Neurophysiol 2000; 84: 1112–1115.

    PubMed  CAS  Google Scholar 

  18. Pouill F, Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 2001; 293: 1159–1163.

    Article  Google Scholar 

  19. Koch C, Segev I. The role of single neurons in information processing. Nat Neurosci 2000; Suppl.:1171–1177.

    Google Scholar 

  20. Gordon-Weeks PR. RNA transport in dendrites. Trends Neurosci 1988; 11: 342–343.

    Article  PubMed  CAS  Google Scholar 

  21. Newman EA. Calcium signaling in retinal glial cells and its effect on neuronal activity. Prog Brain Res 2001; 13: 241–254.

    Article  Google Scholar 

  22. Stuart G, Spruston N, Hausser M. (eds.) Dendrites. Oxford University Press, New York, 1999.

    Google Scholar 

  23. Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with longterm synaptic plasticity. Annu Rev Neurosci 2001; 24: 1071–1089.

    Article  PubMed  CAS  Google Scholar 

  24. Segal M. Dendritic spines for neuroprotection: a hypothesis. Trends Neurosci 1995; 18: 468–471.

    Article  PubMed  CAS  Google Scholar 

  25. Harris KM. Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol 1999; 9: 343–348.

    Article  PubMed  CAS  Google Scholar 

  26. Sorra KE, Harris KM. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 2000; 10: 501–511.

    Article  PubMed  CAS  Google Scholar 

  27. Capani F, Martone ME, Deerinck TJ, Ellisman MH. Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J Comp Neurol 2001; 435: 156–170.

    Article  PubMed  CAS  Google Scholar 

  28. Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 2001; 31: 289–303.

    Article  PubMed  CAS  Google Scholar 

  29. Cannon RC, Turner DA, Pyapali GK, Wheal HV An on-line archive of reconstructed hippocampal neurons. J Neurosci Methods 1998; 84: 49–54.

    Article  PubMed  CAS  Google Scholar 

  30. Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley and Sons, New York, 1990.

    Google Scholar 

  31. Costa Ld, Velte Ti. Automatic characterization and classification of ganglion cells from the salamander retina. J Comp Neurol 1999; 404: 35–51.

    Google Scholar 

  32. Hillman DE. Neuronal shape parameters and substructures as a basis of neuronal form. In: The Neurosciences, Fourth Study Program (Schmitt F, ed.), MIT Press, Cambridge, MA, 1979:, pp. 477–498.

    Google Scholar 

  33. Hillman DE. Parameters of dendritic shape and substructure: intrinsic and extrinsic determination? In: Intrinsic Determinants of Neuronal Form and Function ( Lasek RJ, Black MM, eds.), Liss, New York, 1988, pp. 83–113.

    Google Scholar 

  34. Ascoli GA. Progress and perspectives in computational neuroanatomy. Anat Rec 1999; 257: 195–207.

    Article  PubMed  CAS  Google Scholar 

  35. Ascoli GA, Krichmar JL, Scorcioni R, Nasuto SJ, Senft SL. Computer generation and quantitative morphometric analysis of virtual neurons. Anat Embryol 2001; 204: 283–301.

    Article  PubMed  CAS  Google Scholar 

  36. Burke RE, Marks WB, Ulfhake B. A parsimonious description of motoneurons dendritic morphology using computer simulation. J Neurosci 1992; 12: 2403–2416.

    PubMed  CAS  Google Scholar 

  37. Tamori Y. Theory of dendritic morphology. Physiol Rev E 1993; 48: 3124–3129.

    Article  Google Scholar 

  38. Nowakowski RS, Hayes NL, Egger MD. Competitive interactions during dendritic growth: a simple stochastic growth algorithm. Brain Res 1992; 576: 152–156.

    Article  PubMed  CAS  Google Scholar 

  39. Ascoli GA, Krichmar JL. L-Neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 2000; 32–33: 1003–1011.

    Article  Google Scholar 

  40. Carriquiry AL, Ireland WP, Kliemann W, Uemura E. Statistical evaluation of dendritic growth models. Bull Math Biol 1991; 53: 579–589.

    PubMed  CAS  Google Scholar 

  41. Li GH, Qin CD. A model for neurite growth and neuronal morphogenesis. Math Biosci 1996; 132: 97–110.

    Article  PubMed  CAS  Google Scholar 

  42. Van Pelt J, Uylings HBM. Natural variability in the geometry of dendritic branching patterns. In: Modeling in the Neurosciences from Ionic Channels to Neural Networks ( Poznanski RR, ed.), Harwood Academic Publishers, Amsterdam, NL, 1999, pp. 79–108.

    Google Scholar 

  43. Senft SL and Ascoli GA. Reconstruction of brain networks by algorithmic amplification of morphometry data. Lect Notes Comp Sci 1999; 1606: 25–33.

    Article  Google Scholar 

  44. Winslow JL, Jou SF, Wang S, Wojtowicz JM. Signals in stochastically generated neurons. J Comput Neurosci 1999; 6: 5–26.

    Article  PubMed  CAS  Google Scholar 

  45. Cullheim S, Fleshman JW, Glenn LL, Burke RE. Three-dimensional architecture of dendritic trees in type-identified alpha-motoneurons. J Comp Neurol 1987; 255: 82–96.

    Article  PubMed  CAS  Google Scholar 

  46. Jones CL and Jelinek HF. Wavelet packet fractal analysis of neuronal morphology. Methods 2001; 24: 347–358.

    Article  PubMed  CAS  Google Scholar 

  47. Claiborne BJ, Amaral DG, Cowan WM. Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyms. J Comp Neurol 1990; 302: 206–219.

    Article  PubMed  CAS  Google Scholar 

  48. Senft SL. A statistical framework to present developmental neuroanatomy. In: Neural-Network Models of Cognition: Biobehavioral Foundations ( Donahoe JW, ed.), Elsevier Press, New York, 1997.

    Google Scholar 

  49. Ascoli GA, Krichmar JL, Nasuto SJ, Senft SL. Generation, description and storage of dendritic morphology data. 2001; Philos Trans R Soc Lond B Biol Sci 356: 1131–1145.

    Article  PubMed  CAS  Google Scholar 

  50. Ascoli GA, Samsonovich A. Bayesian morphometry of hippocampal cells suggests same-cell somatodendritic repulsion. Advances in Neural Information Processing Systems 14. 2002; in press.

    Google Scholar 

  51. Scorcioni R, Ascoli GA. Algorithmic extraction of morphological statistics from electronic archives of neuroanatomy. Lect Notes Comp Sci 2001; 2084: 30–37.

    Google Scholar 

  52. Mitchison G. Neuronal branching patterns and the economy of cortical wiring. Proc R Soc Lond B Biol Sci 1991; 245: 151–158.

    Article  CAS  Google Scholar 

  53. Condron BG, Zinn K Regulated neurite tension as a mechanism for determination of neuronal arbor geometries in vivo. 1997; Curr Biol 7: 813–816.

    Article  PubMed  CAS  Google Scholar 

  54. Cherniak C. Neural component placement. Trends Neurosci 1995; 18: 522–527.

    Article  PubMed  CAS  Google Scholar 

  55. Cherniak C, Changizi MA, Kang D. Large-scale optimization of neuron arbors. Physiol Rev E 1999; 59: 6001–6009.

    Article  CAS  Google Scholar 

  56. Hines ML, Carnevale NT. NEURON: a tool for neuroscientists. Neuroscientist 2001; 7: 123–135.

    Article  PubMed  CAS  Google Scholar 

  57. Goddard N, Hood G, Howell F, Hines M, De Schutter E. NEOSIM: Portable large-scale plug and play modelling. Neurocomputing 2001; 38–40: 1657–1661.

    Article  Google Scholar 

  58. Mirsky JS, Nadkarni PM, Healy MD, Miller PL, Shepherd GM. Database tools for integrating and searching membrane property data correlated with neuronal morphology. J Neurosci Methods 1998; 82: 105–121.

    Article  PubMed  CAS  Google Scholar 

  59. Mainen ZF, Sejnowski T. Influence of dendritic structure on firing pattern in model neo-cortical neurons. Nature 1996; 382: 363–366.

    Article  PubMed  CAS  Google Scholar 

  60. Vetter P, Roth A, Hausser M. Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 2001; 85: 926–937.

    PubMed  CAS  Google Scholar 

  61. Duijnhouwer J, Remme MWH, van Ooyen A, van Pelt J. Influence of dendritic topology on firing patterns in model neurons. Neurocomputing 2001; 38–40: 183–189.

    Article  Google Scholar 

  62. Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA. Influence of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Research 2002; In press.

    Google Scholar 

  63. Nasuto SJ, Knape R, Krichmar JL, Ascoli GA. A computational study of the relationship between neuronal morphology and electrophysiology in an Alzheimer’s disease model. Neurocomputing 38–40: 1477–1487.

    Google Scholar 

  64. De Schutter E. (ed.) Computational Neuroscience: Realistic Modeling for Experimentalists. CRC Press, Boca Raton, FL, 2000.

    Google Scholar 

  65. Nasuto SJ, Krichmar JL, Scorcioni R, Ascoli GA. Algorithmic analysis of electrophysiological data for the investigation of structure-activity relationship in single neurons. InterJournal Complex Syst 389: 1–7.

    Google Scholar 

  66. Hubel D, Wiesel T. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962; 160: 106–154.

    PubMed  CAS  Google Scholar 

  67. Toga AW, Mazziotta JC, Frackowiak RSJ. (eds.) Brain Mapping: The Trilogy, 3 Vol. Set. Academic Press, San Diego, CA, 2000.

    Google Scholar 

  68. Paydar S, Doan CA, Jacobs GA. Neural mapping of direction and frequency in the cricket cercal sensory system. J Neurosci 1999; 19: 1771–1781.

    PubMed  CAS  Google Scholar 

  69. Jacobs GA, Theunissen FE. Extraction of sensory parameters from a neural map by primary sensory interneurons. J Neurosci 2000; 20: 2934–2943.

    PubMed  CAS  Google Scholar 

  70. Zaborszky L, Duque A. Local synaptic connections of basal forebrain neurons. Behav Brain Res 2000; 115: 143–158.

    Article  PubMed  CAS  Google Scholar 

  71. Zaborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I. The basal forebrain corticopetal system revisited. Ann NY Acad Sci 1999; 877: 339–367.

    Article  PubMed  CAS  Google Scholar 

  72. Leergaard TB, Alloway KD, Mutic JJ, Bjaalie JG. Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J Neurosci 2000; 20: 8474–8484.

    PubMed  CAS  Google Scholar 

  73. Leergaard TB, Lyngstad KA, Thompson JH, Taeymans S, et al. Rat somatosensory cerebropontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map. J Comp Neurol 2000; 422: 246–266.

    Article  PubMed  CAS  Google Scholar 

  74. van Ooyen A. Competition in the development of nerve connections: a review of models. Network 2001; 12: R1 - R47.

    Article  PubMed  Google Scholar 

  75. Mori S, Barker PB. Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 1999; 257: 102–109.

    Article  PubMed  CAS  Google Scholar 

  76. Stieltjes B, Kaufmann WE, van Zijl PC, et al. Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage 2001; 14: 723–735.

    PubMed  CAS  Google Scholar 

  77. Hilgetag CC, Burns GA, O’Neill MA, Scannell JW, Young MP. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans. R Soc Lond B Biol Sci 2000; 355: 91–110.

    Article  Google Scholar 

  78. Sporns O, Tononi G, Edelman GM. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 2000; 13: 909–922.

    Article  PubMed  CAS  Google Scholar 

  79. Press WA, Olshausen BA, Van Essen DC. A graphical anatomical database of neural connectivity. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  80. Burns GA, Young MP. Analysis of the connectional organization of neural systems associated with the hippocampus in rats. Philos Trans R Soc Lond B Biol Sci 2000; 355: 55–70.

    Article  PubMed  CAS  Google Scholar 

  81. Burns GA. Neuroscholar 1.00, a neuroinformatics databasing website. Neurocomputing 1999; 26–27: 963–970.

    Article  Google Scholar 

  82. Goodhill GJ, Richards LJ. Retinotectal maps: molecules, models and misplaced data. Trends Neurosci 1999; 22: 529–534.

    Article  PubMed  CAS  Google Scholar 

  83. Dickson J, Drury H, Van Essen DC. `The surface management system’ (SuMS) database: a surface-based database to aid cortical surface reconstruction, visualization and analysis. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1277–1292.

    Article  PubMed  CAS  Google Scholar 

  84. Dale AM, Halgren E. Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 2001; 11: 202–208.

    Article  PubMed  CAS  Google Scholar 

  85. Wang Y, Gupta A, Markram H. Anatomical and functional differentiation of glutamatergic synaptic innervation in the neocortex. J Physiol Paris 1999; 93: 305–317.

    Article  PubMed  CAS  Google Scholar 

  86. Gupta A, Wang Y, Markram H. Organizing principles for a diversity of GABAergic inter-neurons and synapses in the neocortex. Science 2000; 287: 273–278.

    Article  PubMed  CAS  Google Scholar 

  87. Kotter R. Neuroscience databases: tools for exploring brain structure-function relationships. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  88. Howell FW, Dyhrfjeld-Johnsen J, Maex R, Goddard N, De Schutter E. A large-scale model of the cerebellar cortex using PGENESIS. Neurocomputing 2000; 32–33: 1041–1046.

    Article  Google Scholar 

  89. Scorcioni R, Bouteiller JM, Ascoli GA. A real-scale anatomical model of the dentate gyrus based on single cell reconstructions and 3D rendering of a brain atlas. Neurocomputing, 2002; in press.

    Google Scholar 

  90. Tamamaki N, Nojyo Y. Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure-injection of neurobiotin. Hippocampus 1993; 3: 471–480.

    Article  PubMed  CAS  Google Scholar 

  91. Dhenain M, Ruffins SW, Jacobs RE. Three-dimensional digital mouse atlas using high-resolution MRI. Dey Biol 2001; 232: 458–470.

    Article  CAS  Google Scholar 

  92. Lester, DS, Lyon RC, McGregor GN, et al. 3-Dimensional visualization of lesions in rat brain using magnetic resonance imaging microscopy. Neuroreport 1999; 10: 737–741.

    Article  PubMed  CAS  Google Scholar 

  93. Lester DS, Pine PS, Delnomdedieu M, Johannessen JN, Johnson GA. Virtual neuropathology: three-dimensional visualization of lesions due to toxic insult. Toxicol Pathol 2000; 28: 100–104.

    Article  PubMed  CAS  Google Scholar 

  94. Nickerson LD, Martin CC, Lancaster JL, Gao JH, Fox PT A tool for comparison of PET and fMRI methods: calculation of the uncertainty in the location of an activation site in a PET image. NeuroImage 2001; 14: 194–201.

    PubMed  CAS  Google Scholar 

  95. Chen JW, O’Farrell AM, Toga AW. Optical intrinsic signal imaging in a rodent seizure model. Neurology 2000; 55: 312–315.

    Article  PubMed  CAS  Google Scholar 

  96. Shankle WR, Romney AK, Landing BH, Hara J. Developmental patterns in the cytoarchitecture of the human cerebral cortex from birth to 6 years examined by correspondence analysis. Proc Natl Acad Sci USA 1998; 95: 4023–4028.

    Article  PubMed  CAS  Google Scholar 

  97. Shankle WR, Rafii MS, Landing BH, Fallon JH. Approximate doubling of numbers of neurons in postnatal human cerebral cortex and in 35 specific cytoarchitectural areas from birth to 72 months. Pediatr Dev Pathol 1999; 2: 244–259.

    Article  PubMed  CAS  Google Scholar 

  98. Haykin SS. Neural Networks: A Comprehensive Foundation. Prentice Hall, U. Saddle River, NJ, 1998.

    Google Scholar 

  99. Ascoli GA. The complex link between neuroanatomy and consciousness. Complexity 2000; 6: 20–26.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ascoli, G.A. (2002). Computing the Brain and the Computing Brain. In: Ascoli, G.A. (eds) Computational Neuroanatomy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-275-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-275-3_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-297-1

  • Online ISBN: 978-1-59259-275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics