Skip to main content

Adenosine and Its Receptors During Inflammation

  • Chapter
Molecular and Cellular Basis of Inflammation

Part of the book series: Current Inflammation Research ((CIRES))

Abstract

The number of endogenous mediators of inflammation is large and growing, but the list of endogenous inhibitors of inflammation has remained relatively small. Most investigators are familiar with glucocorticoids, and there is an increasing appreciation of lipid mediators, select cytokines, and endogenous cytokine inhibitors as anti-inflammatory mediators. Adenosine, a purine nucleoside, is another agent that has received increasing interest as an endogenous anti-inflammatory agent. In this chapter the author will discuss the generation of adenosine at inflamed sites, the cell surface receptors for adenosine, which, when occupied, affect inflammatory cell function and the functional effects of adenosine on the various inflammatory cells and the inflammatory process. Finally, the author will discuss the potential pharmacologic uses of adenosine as an anti-inflammatory agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearson, J. D. and Gordon, J. L. (1979) Vascular endothelial and smooth muscle cells in culture selectively released adenine nucleotides. Nature 281, 384–386.

    PubMed  CAS  Google Scholar 

  2. Kitakaze, M., Hori, M., Morioka, T., Takashima, S., Minamino, T., Sato, H., Inoue, M., and Kamada, T. (1993) Attenuation of ecto-5′-nucleotidase activity and adenosine release in activated human polymorphonuclear leuLocytes. Circ. Res. 73, 524–533.

    PubMed  CAS  Google Scholar 

  3. Node, K., Kitakaze, M., Minamino, T., Tasa, M., Inoue, M., Nori, M., and Kamsda, T. (1997) Activation of ecto-5′-nucleotidase by protein kinase and its role in ischaemic tolerance in the canine head. Br. J. Pharmacol. 120, 273–281.

    PubMed  CAS  Google Scholar 

  4. Van Belle, H. (1993) Nucleoside transport inhibition: a therapeutic approach to cardioprotection via adenosine? Cardiovasc. Res. 27, 68–76.

    PubMed  Google Scholar 

  5. Resta, R., Hooker, S. W., Laurent, A. B., Jamshedur, S. M., Rahman, Franklin, M., Knudsen, T. B., Nadon, N. L., and Thompson, L. F. (1997) Insights into thymic purine metabolism and adenosine deaminase deficiency revealed by transgenic mice overexpressing ecto-5′-nucleoti-dase (CD73). J. Clin. Invest. 99(4), 676–683.

    PubMed  CAS  Google Scholar 

  6. van Waeg, G. and Van den Berghe, G. (1991) Purine catabolism in polymorphonuclear neutrophils: Phorbol myristate acetate-induced accumulation of adenosine owing to inactivation of extracellularly released adenosine deaminase. J. Clin. Invest. 87, 305–312.

    PubMed  Google Scholar 

  7. Drury, A. N. and Szent-Gyorgi, A. (1929) J. Physiol. 68, 213–237.

    PubMed  CAS  Google Scholar 

  8. Sattin, A. and Rail, T. W. (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine-3′,5′-phosphate content of guinea pig cerebral cortex slices. Mol. Pharmacol. 6, 13–23.

    PubMed  CAS  Google Scholar 

  9. van Calker, D., Muller, M., and Hamprecht, B. (1979) Adenosine regulates, via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33, 999–1005.

    PubMed  Google Scholar 

  10. Londos, C., Cooper, D. M. F., and Wolff, J. (1980) Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77, 2551–2554.

    PubMed  CAS  Google Scholar 

  11. Tucker, A. L. and Linden, J. (1993) Cloned receptors and cardiovascular responses to adenosine. Cardiovasc. Res. 27, 62–67.

    PubMed  CAS  Google Scholar 

  12. Revan, S., Montesinos, M. C., Naime, D., Landau, S., and Cronstein, B. N. (1996) Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J. Biol Chem. 271, 17,114–17,118.

    PubMed  CAS  Google Scholar 

  13. Sexl, V., Mancusi, G., Baumgartner-Parzer, S., Schutz, W., and Freissmuth, M. (1995) Stimulation of human umbilical vein endothelial cell proliferation by A2-adenosine and beta 2-adrenoceptors. Br. J. Pharmacol 114, 1577–1586.

    PubMed  CAS  Google Scholar 

  14. Sexl, V., Mancusi, G., Holler, C., Gloria-Maercker, E., Schutz, W., and Freissmuth, M. (1997) Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells. J. Biol. Chem. 212, 5792–5799.

    Google Scholar 

  15. Marone, G., Thomas, L., and Lichtenstein, L. (1980) The role of agonists that activate adenylate cyclase in the control of cAMP metabolism and enzyme release by human polymorphonuclear leukocytes. J. Immunol 125, 2277–2283.

    PubMed  CAS  Google Scholar 

  16. Cronstein, B. N., Kramer, S. B., Weissmann, G., and Hirschhorn, R. (1983) Adenosine: a physiological modulator of Superoxide anion generation by human neutrophils. J. Exp. Med. 58, 1160–1177.

    Google Scholar 

  17. Cronstein, B. N., Rosenstein, E. D., Kramer, S. B., Weissmann, G., and Hirschhorn, R. (1985) Adenosine: a physiologic modulator of Superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J. Immunol 135, 1366–1371.

    PubMed  CAS  Google Scholar 

  18. Roberts, P. A., Newby, A. C., Hallett, M. B., and Campbell, A. K. (1985) Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. Biochem. J. 227, 669–674.

    PubMed  CAS  Google Scholar 

  19. Burkey, T. H. and Webster, R. O. (1993) Adenosine inhibits fMLP-stimulated adherence and Superoxide anion generation by human neutrophils at an early step in signal transduction. Biochim. Biophys. Acta 1175(3), 312–318.

    PubMed  CAS  Google Scholar 

  20. Axtell, R. A., Sandborg, R. R., Smolen, J. E., Ward, P. A., and Boxer, L. A. (1990) Exposure of human neutrophils to exogenous nucleotides causes elevation in intracellular calcium, transmembrane calcium fluxes, and an alteration of a cytosolic factor resulting in enhanced Superoxide production in response to FMLP and arachidonic acid. Blood 75, 1324–1332.

    PubMed  CAS  Google Scholar 

  21. Basford, R. E., Clark, R. L., Stiller, R. A., Kaplan, S. S., Kuhns, D. B., and Rinaldo, J. E. (1990) Endothelial cells inhibit receptor-mediated Superoxide anion production by human polymorphonuclear leukocytes via a soluble inhibitor. Am. J. Respir. Cell Mol. Biol. 2, 235–243.

    PubMed  CAS  Google Scholar 

  22. de la Harpe, J. and Nathan, C. F. (1989) Adenosine regulates the respiratory burst of cytokine-triggered human neutrophils adherent to biologic surfaces. J. Immunol. 143, 596–602.

    PubMed  Google Scholar 

  23. Currie, M. S., Rao, K. M., Padmanabhan, J., Jones, A., Crawford, J., and Cohen, H. J. (1990) Stimulus-specific effects of pentoxifylline on neutrophil CR3 expression, degranulation, and Superoxide production. J. Leukoc. Biol. 47, 244–250.

    PubMed  CAS  Google Scholar 

  24. Günther, G. R. and Herring, M. B. (1991) Inhibition of neutrophil Superoxide production by adenosine released from vascular endothelial cells. Ann. Vascular Surg. 5, 325–330.

    Google Scholar 

  25. Nielson, C. P. and Vestal, R. E. (1989) Effects of adenosine on polymorphonuclear leucocyte function, cyclic 3′:5′-adenosine monophosphate, and inkacellular calcium. Br. J. Pharmacol. 97, 882–888.

    PubMed  CAS  Google Scholar 

  26. Kaneko, M., Suzuki, K., Furui, H., Takagi, K., and Satake, T. (1990) Comparison of theophyl-line and enprotylline effects on human neutrophil Superoxide production. Clin. Exper. Pharmacol. Physiol. 17, 849–859.

    CAS  Google Scholar 

  27. McGarrity, S. T., Stephenson, A. H., and Webster, R. O. (1989) Regulation of human neutrophil functions by adenine nucleotides. J. Immunol. 142, 1986–1994.

    PubMed  CAS  Google Scholar 

  28. Sipka, S., Szentmiklosi, A. J., Nagy, A., Taskov, V., and Szegedi, G. (1989) Inhibition of the zymosan-induced chemiluminescence of human phagocytes by adenosine, polyadenylic acid and agents influencing adenosine metabolism. Allergol. Immunopathol. 17, 209–212.

    CAS  Google Scholar 

  29. Thiel, M. and Bardenheuer, H. (1992) Regulation of oxygen radical production of human polymorphonuclear leukocytes by adenosine: The role of calcium. Pflugers Arch.—Eur. J. Physiol. 420, 522–528.

    CAS  Google Scholar 

  30. Cronstein, B. N., Duguma, L., Nicholls, D., Hutchison, A., and Williams, M. (1990) The adenosine/neutrophil paradox resolved: Human neutrophils possess both Al and A2 receptors which promote chemotaxis and inhibit O2 generation, respectively. J. Clin. Invest. 85, 1150–1157.

    PubMed  CAS  Google Scholar 

  31. van Calker, D., Steber, R., Klotz, K. N., and Greil, W. (1991) Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses. Eur. J. Pharmacol. 206, 285–290.

    PubMed  Google Scholar 

  32. Fredholm, B. B., Zhang, Y., and van der Ploeg, I. (1996) Adenosine A2A receptors mediate the inhibitory effect of adenosine on formyl-Met-Leu-Phe-stimulated respiratory burst in neutrophil leucocytes. Naunyn-Schmiedebergs Arch. Pharmacol. 354(3), 262–267.

    PubMed  CAS  Google Scholar 

  33. Cronstein, B. N., Kramer, S. B., Rosenstein, E. D., Korchak, H. M., Weissmann, G., and Hirschhorn, R. (1988) Occupancy of adenosine receptors raises cyclic AMP alone and in synergy with occupancy of chemoattractant receptors and inhibits membrane depolarization. Biochem. J. 252, 709–715.

    PubMed  CAS  Google Scholar 

  34. Grinstein, S. and Furuya, W. (1986) Cytoplasmic pH regulation in activated human neutrophils: Effects of adenosine and pertussis toxin on Na+/H+ exchange and metabolic acidification. Biochim. Biophys. Acta. 889, 301–309.

    PubMed  CAS  Google Scholar 

  35. Walker, B. A. M., Cunningham, T. W., Freyer, D. R., Todd, R. F. III, Johnson, K. J., and Ward, P. A. (1989) Regulation of Superoxide responses of human neutrophils by adenine compounds: independence of requirement for cytoplasmic granules. Lab. Invest. 61, 515–521.

    PubMed  CAS  Google Scholar 

  36. Bouma, M. G., Jeunhomme, T. M. M. A., Boyle, D. L., Dentener, M. A., Voitenok, N. N., van den Wildenberg, F. A. J. M., and Buurman, W. A. (1997) Adenosine inhibits neutrophil degranulation in activated human whole blood: Involvement of adenosine A2 and A3 receptors. J. Immunol. 158, 5400–5408.

    PubMed  CAS  Google Scholar 

  37. Richter, J. (1992) Effect of adenosine analogues and cAMP-raising agents on TNF, GM-CSF-, and chemotactic peptide-induced degranulation in single adherent neutrophils. J. Leukoc. Biol. 51, 270–275.

    PubMed  CAS  Google Scholar 

  38. Schmeichel, C. J. and Thomas, L. L. (1987) Methylxanthine bronchodilators potentiate multiple human neutrophil functions. J. Immunol. 138, 1896–1903.

    PubMed  CAS  Google Scholar 

  39. Salmon, J. E. and Cronstein, B. N. (1990) Fcgamma receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy: A1 receptors are stimulatory and A2 receptors are inhibitory. J. Immunol. 145, 2235–2240.

    PubMed  CAS  Google Scholar 

  40. Cronstein, B. N., Levin, R. I., Philips, M. R., Hirschhorn, R., Abramson, S. B., and Weissmann, G. (1992) Neutrophil adherence to endotheliurn is enhanced via adenosine Al receptors and inhibited via adenosine A2 receptors. J. Immunol. 148, 2201–2206.

    PubMed  CAS  Google Scholar 

  41. Zalavary, S., Stendahl, O., and Bengtsson, T. (1994) The role of cyclic AMP, calcium and filamentous actin in adenosine modulation of Fc receptor-mediated phagocytosis in human neutrophils. Biochim. Biophys. Acta 1222, 249–256.

    PubMed  CAS  Google Scholar 

  42. Firestein, G. S., Bullough, D. A., Erion, M. D., Jimenez, R., Ramirez-Weinhouse, M., Barankiewicz, J., Smith, C. W., Gruber, H. E., and Mullane, K. M. (1995) Inhibition of neutrophil adhesion by adenosine and an adenosine kinase inhibitor: the role of selectins. J. Immunol. 154, 326–334.

    PubMed  CAS  Google Scholar 

  43. Wollner, A., Wollner, S., and Smith, J. B. (1993) Acting via A2 receptors, adenosine inhibits the upregulation of Mac-1 (CDllb/CD18) expression on FMLP-stimulated neutrophils. Am. J. Resp. Cell Mol. Biol. 9, 179–185.

    CAS  Google Scholar 

  44. Thiel, M., Chambers, J. D., Chouker, A., Fischer, S., Zourelidis, C., Bardenheuer, H. J., Arfors, K. E., and Peter, K. (1996) Effect of adenosine on the expression of beta(2) integrins and L-selectin of human polymorphonuclear leukocytes in vitro. J. Leukoc. Biol. 59(5), 671–682.

    PubMed  CAS  Google Scholar 

  45. Krump, E., Lemay, G., and Borgeat, P. (1996) Adenosine A2 receptor-induced inhibition of leukotriene B4 synthesis in whole blood ex vivo. Brit. J. Pharm. 117, 1639–1644.

    CAS  Google Scholar 

  46. Thiel, M. and Chouker, A. (1995) Acting via A2 receptors, adenosine inhibits the production of tumor necrosis factor-alpha of endotoxin-stimulated human polymorphonuclear leukocytes. J. Lab. Clin. Med. 126(3), 275–282.

    PubMed  CAS  Google Scholar 

  47. Boisseau, M. R., Pruvost, A., Renard, M., Closse, C., Belloc, F., Seigneur, M., and Maurel, A. (1996) Effect of buflomedil on the neutrophil-endothelial cell interaction under inflammatory and hypoxia conditions. Haemostasis 26(Suppl. 4), 182–188.

    PubMed  CAS  Google Scholar 

  48. Zhao, Z. Q., Sato, H., Williams, M. W., Fernandez, A. Z., and Vinten-Johansen, J. (1996) Adenosine A2-receptor activation inhibits neukophil-mediated injury to coronary endothelium. Am. J. Physiol. 271(4 Pt. 2), H1456–H1464.

    PubMed  CAS  Google Scholar 

  49. Minamino, T., Kitakaze, M., Node, K., Funaya, H., Inoue, M., Hori, M., and Kamada, T. (1996) Adenosine inhibits leukocyte-induced vasoconstriction. Am. J. Physiol. 271(6 Pt. 2), H2622–H2628.

    PubMed  CAS  Google Scholar 

  50. Jordan, J. E., Zhao, Z. Q., Sato, H., Taft, S., and Vinten-Johansen, J. (1997) Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, super-oxide generation and coronary endothelial adherence. J. Pharmacol Exp. Ther. 280(1), 301–309.

    PubMed  CAS  Google Scholar 

  51. Vinten-Johansen, J., Zhao, Z. Q., and Sato, H. (1995) Reduction in surgical ischemic-reperfusion injury with adenosine and nitric oxide therapy. Ann. Thorac. Surg. 60(3), 852–857.

    PubMed  CAS  Google Scholar 

  52. Bullough, D. A., Magill, M. J., Firestein, G. S., and Mullane, K. M. (1995) Adenosine activates A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes. J. Immunol. 155(5), 2579–2586.

    PubMed  CAS  Google Scholar 

  53. Walker, B. A., Rocchini, C., Boone, R. H., Ip, S., and Jacobson, M. A. (1997) Adenosine A receptor activation delays apoptosis in human neutrophils. J. Immunol 158(6), 2926–2931.

    PubMed  CAS  Google Scholar 

  54. Iannone, M. A., Reynolds-Vaughn, R., Wolberg, G., and Zimmerman, T. P. (1985) Human neutrophils possess adenosine A2 receptors. Fed. Proc. 44, 580.

    Google Scholar 

  55. Iannone, M. A., Wolberg, G., and Zimmerman, T. P. (1989) Chemotactic peptide induces cAMP elevation in human neutrophils by amplification of the adenylate cyclase response to endogenously produced adenosine. J. Biol. Chem. 264, 20,177–20,180.

    PubMed  CAS  Google Scholar 

  56. Cronstein, B. N., Haines, K. A., Kolasinski, S. L., and Reibman, J. (1992) Occupancy of G-alpha s-linked receptors uncouples chemoattractant receptors from their stimulus-transduction mechanisms in the neutrophil. Blood 80, 1052–1057.

    PubMed  CAS  Google Scholar 

  57. Revan, S., Montesinos, M. C., Naime, D., Landau, S., and Cronstem, B. N. (1996) Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J. Biol Chem. 271(29), 17,114–17,118.

    PubMed  CAS  Google Scholar 

  58. Walker, B. A. M., Hagenlocker, B. E., Douglas, V. K., and Ward, P. A. (1990) Effects of adenosine on inositol 1,4,5-trisphosphate formation and intracellular calcium changes in formylmet-leu-phe-stimulated human neutrophils. J. Leuk. Biol. 48, 281–283.

    CAS  Google Scholar 

  59. Cronstein, B. N. and Haines, K. A. (1992) Adenosine A2 receptor occupancy does not affect “triggering” but inhibits “activation” of human neutrophils by a mechanism independent of actin filament formation. Biochem. J. 281, 631–635.

    PubMed  CAS  Google Scholar 

  60. Cronstein, B. N., Haines, K. A., Kolasinski, S. L., and Reibman, J. (1991) Gs linked receptors (Beta-adrenergic and adenosine A2) uncouple chemoattractant receptors from G proteins. Clin. Res. 39, 343A.

    Google Scholar 

  61. Burkey, T. H. and Webster, R. O. (1993) Adenosine inhibits fMLP-stimulated adherence and Superoxide anion generation by human neutrophils at an early step in signal transduction. Biochim. Biophys. Acta 1175, 312–318.

    PubMed  CAS  Google Scholar 

  62. Eppell, B. A., Newell, A. M., and Brown, E. J. (1989) Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. J. Immunol. 143, 4141–4145.

    PubMed  CAS  Google Scholar 

  63. Salmon, J. E., Brownlie, C., Brogle, N., Edberg, J. C., Chen, B.-X., and Erlanger, B. F. (1993) Human mononuclear phagocytes express adenosine A1 receptors: a novel mechanism for differential regulation of Fc-gamma receptor function. J. Immunol. 151, 2775–2865.

    PubMed  CAS  Google Scholar 

  64. Elliott, K. R. F., Stevenson, H. C., Miller, P. J., and Leonard, E. J. (1986) Synergistic action of adenosine and Fmet-leu-phe in raising cyclic AMP content of purified human monocytes. Biochem. Biophys. Res. Commun. 138, 1376–1382.

    PubMed  CAS  Google Scholar 

  65. Leonard, E. J., Shenai, A., and Skeel, A. (1987) Dynamics of chemotactic peptideinduced superoxide generation by human monocytes. Inflammation 11, 229–240.

    PubMed  CAS  Google Scholar 

  66. Hasko, G., Szabo, C., Nemeth, Z. H., Kvetan, V., Pastores, S. M., and Vizi, E. S. (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-a, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J. Immunol. 157, 4634–4640.

    PubMed  CAS  Google Scholar 

  67. Hon, W. M., Moochhala, S., and Khoo, H. E. (1997) Adenosine and its receptor agonists potentiate nitric oxide synthase expression induced by lipopolysaccharide in RAW 264.7 murine macrophages. Life Sci. 60(16), 1327–1335.

    PubMed  CAS  Google Scholar 

  68. Merrill, J. T., Shen, C., Schreibman, D., Coffey, D., Zakharenko, O., Fisher, R., Lahita, R. G., Salmon, J., and Cronstein, B. N. (1997) Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arth. Rheum. 40, 1308–1315.

    CAS  Google Scholar 

  69. Lappin, D. and Whaley, K. (1984) Adenosine A2 receptors on human monocytes modulate C2 production. Clin. Exp. Immunol. 57, 454–460.

    PubMed  CAS  Google Scholar 

  70. Hasday, J. D. and Sitrin, R. G. (1987) Adenosine receptors on rabbit alveolar macrophages: binding characteristics and effects on cellular function. J. Lab. Clin. Med. 110, 264–273.

    PubMed  CAS  Google Scholar 

  71. Colli, S. and Tremoli, E. (1991) Multiple effects of dipyridamole on neutrophils and mononuclear leukocytes: adenosine-dependent and adenosine-independent mechanisms. J. Lab. Clin. Med. 118, 136–145.

    PubMed  CAS  Google Scholar 

  72. Prabhakar, U., Brooks, D. P., Lipshlitz, D., and Esser, K. M. (1995) Inhibition of LPS-induced TNF alpha production in human monocytes by adenosine (A2) receptor selective agonists. Int. J. Immunopharmacol. 17(3), 221–224.

    PubMed  CAS  Google Scholar 

  73. Sajjadi, F. G., Takabayashi, K., Foster, A. C., Domingo, R. C., and Firestein, G. S. (1996) Inhibition of TNFa expression by adenosine: role of A3 adenosine receptors. J. Immunol. 156, 3435–3442.

    PubMed  CAS  Google Scholar 

  74. Parmely, M. J., Zhou, W-W, Edwards, C. K. III, Borcherding, D. R., Silverstein, R., and Morrison, D. C. (1993) Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-alpha production and protect mice against endotoxin challenge. J. Immunol. 151, 389–396.

    PubMed  CAS  Google Scholar 

  75. Le Vraux, V., Chen, Y. L., Masson, I., De Sousa, M., Giroud, J. P., Florentin, I., and Chauvelot-Moachon, L. (1993) Inhibition of human monocyte TNF production by adenosine receptor agonists. Life Sci. 52(24), 1917–1924.

    PubMed  Google Scholar 

  76. Bouma, M. G., Stad, R. K., van den Wildenberg, F. A. J. M., and Buurman, W. A. (1994) Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J. Immunol. 153, 4159–4168.

    PubMed  CAS  Google Scholar 

  77. Bowlin, T. L., McWhinney, C. D., Borcherding, D. R., Edwards, C. K., Hoffman, P. F., Watts, L., and Wolos, J. A. (1995) Inhibition of NFkB nuclear translocation and TNFa gene expression by a novel adenosine A3 receptor agonist. Arth. Rheum. 38, S401.

    Google Scholar 

  78. McWhinney, C. D., Dudley, M. W., Bowlin, T. L., Peet, N. R., Schook, L., Bradshaw, M., De, M., Borcherding, D. R., and Edwards, C. K., III (1996) Activation of adenosine A3 receptors on macrophages inhibits tumor necrosis-a. Eur. J. Pharm. 310, 209–216.

    CAS  Google Scholar 

  79. Le Moine, O., Stordeur, P., Schandene, L., Marchant, A., de Groote, D., Goldman, M., and Deviere, J. (1996) Adenosine enhances IL-10 secretion by human monocytes. J. Immunol. 156, 4408–4414.

    PubMed  Google Scholar 

  80. Walker, B. A. (1996) Effects of adenosine on guinea pig pulmonary eosinophils. Inflammation 20(1), 11–21.

    PubMed  CAS  Google Scholar 

  81. Kohno, Y., Ji, X., Mawhorter, S. D., Koshiba, M., and Jacobson, K. A. (1996) Activation of A3 adenosine receptors on human eosinophils elevates intracellular calcium. Blood 88(9), 3569–3574.

    PubMed  CAS  Google Scholar 

  82. Marquardt, D. L., Parker, C. W., and Sullivan, T. J. (1978) Potentiation of mast cell mediator release by adenosine. J. Immunol. 120, 871–878.

    PubMed  CAS  Google Scholar 

  83. Holgate, S. T., Church, M. K., and Polosa, R. (1991) Adenosine: a positive modulator of airway inflammation in asthma. Ann. NY Acad. Sci. 629, 227–236.

    PubMed  CAS  Google Scholar 

  84. Hannon, J. P., Pfannkuche, H. J., and Fozard, J. R. (1995) A role for mast cells in adenosine A3 receptor-mediated hypotension in the rat. Br. J. Pharmacol. 115(6), 945–952.

    PubMed  CAS  Google Scholar 

  85. Ali, H., Choi, O. H., Fraundorfer, P. F., Yamada, K., Gonzaga, H. M., and Beaven, M. A. (1996) Sustained activation of phospholipase D via adenosine A3 receptors is associated with enhancement of antigen-and Ca(2+)-ionophore-induced secretion in a rat mast cell line. J. Pharmacol. Exp. Ther. 276(2), 837–845.

    PubMed  CAS  Google Scholar 

  86. Fozard, J. R., Pfannkuche, H. J., and Schuurman, H. J. (1996) Mast cell degranulation following adenosine A3 receptor activation in rats. Eur. J. Pharmacol. 298(3), 293–297.

    PubMed  CAS  Google Scholar 

  87. Shepherd, R. K., Linden, J., and Duling, B. R. (1996) Adenosine-induced vasoconstriction in vivo: role of the mast eel] and A3 adenosine receptor. Circulation Res. 78(4), 627–634.

    PubMed  CAS  Google Scholar 

  88. Meade, C. J., Mierau, J., Leon, I., and Ensinger, H. A. (1996) In vivo role of the adeno sine A3 receptor: N6-2-(4-aminophenyl)ethyladeno sine induces broncho spasm in BDE rats by a neurally mediated mechanism involving cells resembling mast cells. J. Pharmacol. Exper. Ther. 279(3), 1148–1156.

    CAS  Google Scholar 

  89. Feoktistov, I. and Biaggioni, I. (1995) Adenosine A2b receptors evoke interleukin8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J. Clin. Invest. 96(4), 1979–1986.

    PubMed  CAS  Google Scholar 

  90. Ethier, M. F., Chander, V., and Dobson, J. G., Jr. (1993) Adenosine stimulates proliferation of human endothelial cells in culture. Am. J. Physiol. 265, H131–H138.

    PubMed  CAS  Google Scholar 

  91. Takagi, H., King, G. L., Robinson, G. S., Ferrara, N., and Aiello, L. P. (1996) Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest. Ophthalmol. Vis. Sci. 37, 2165–2176.

    PubMed  CAS  Google Scholar 

  92. Takagi, H., King, G. L., Ferrara, N., and Aiello, L. P. (1996) Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Invest. Ophthalmol. Vis. Sci. 37, 1311–1321.

    PubMed  CAS  Google Scholar 

  93. Schiele, J. O. and Schwabe, U. (1994) Characterization of the adenosine receptor in microvascular coronary endothelial cells. Eur. J. Pharm. 269, 51–58.

    CAS  Google Scholar 

  94. Pillinger, M. H., Feoktistov, A. S., Capodici, C., Solitar, B., Levy, J., Oei, T. T., and Philips, M. R. (1996) Mitogen-activated protein kinase in neutrophils and enucleate neutrophil cytoplasts: evidence for regulation of cell—cell adhesion. J. Biol. Chem. 271(20), 12049–56.

    PubMed  CAS  Google Scholar 

  95. Bouma, M. G., van den Wildenberg, F. A. J. M., and Buurman, W. A. (1996) Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am. J. Physiol. 39, C522–C529.

    Google Scholar 

  96. Rosengren, S., Arfors, K. E., and Proctor, K. G. (1991) Potentiation of leukotriene B4-mediated inflammatory response by the adenosine antagonist, 8-phenyl theophylline. Intl. J. Microcirc. Clin. Exp. 10, 345–357.

    CAS  Google Scholar 

  97. Becker, B. F., Zahler, S., Raschke, P., Schwartz, L. M., Beblo, S., Schrodl, W., and Kiesl, D. (1992) Adenosine enhances neutrophil sticking in the coronary system: A novel mechanism contributing to cardiac reperfusion damage. Pharm. Pharmacol. Lett. 2, 8–11.

    CAS  Google Scholar 

  98. Schwartz, L. M., Raschke, P., Becker, B. F., and Gerlach, E. (1993) Adenosine contributes to neutrophil-mediated loss of myocardial function in post-ischemic guinea-pig hearts. J. Mol Cell. Cardiol. 25, 927–938.

    PubMed  CAS  Google Scholar 

  99. Zahler, S., Becker, B. F., Raschke, R., and Gerlach, E. (1994) Stimulation of endothelial adenosine A1 receptors enhances adhesion of neutrophils in the intact guinea pig coronary system. Cardiovasc. Res. 28, 1366–1372.

    PubMed  CAS  Google Scholar 

  100. Raschke, P. and Becker, B. F. (1995) Adenosine and PAF dependent mechanisms lead to myocardial reperfusion injury by neutrophils after brief ischemia. Cardiovasc. Res. 29, 569–576.

    PubMed  CAS  Google Scholar 

  101. Schrier, D. J., Lesch, M. E., Wright, C. D., and Gilbertsen, R. B. (1990) The antiinflammatory effects of adenosine receptor agonists on the carrageenan-induced pleural inflammatory response in rats. J. Immunol 145, 1874–1879.

    PubMed  CAS  Google Scholar 

  102. Lesch, M. E., Ferin, M. A., Wright, C. D., and Schrier, D. J. (1991) The effects of (R)-N-(l-methyl-2-phenylethyl) adenosine (L-PIA), a standard A1-selective adenosine agonist on rat acute models of inflammation and neutrophil function. Agents Actions 34, 25–27.

    PubMed  CAS  Google Scholar 

  103. Bong, G. W., Rosengren, S., and Firestein, G. S. (1996) Spinal cord adenosine receptor stimulation in rats inhibits peripheral neutrophil accumulation: the role of N-methyl-D-aspartate receptors. J. Clin. Invest. 98, 2779–2785.

    PubMed  CAS  Google Scholar 

  104. Green, P. G., Basbaum, A. I., Helms, C., and Levine, J. D. (1991) Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in the rat. Proc. Natl. Acad. Sci. USA 88, 4162–4165.

    PubMed  CAS  Google Scholar 

  105. Moser, G. H., Schrader, J., and Deussen, A. (1989) Turnover of adenosine in plasma of human and dog blood. Am. J. Physiol. 256, C799–C806.

    PubMed  CAS  Google Scholar 

  106. Rosengren, S., Bong, G. W., and Firestein, G. S. (1995) Anti-inflammatory effects of an adenosine kinase inhibitor: decreased neutrophil accumulation and vascular leakage. J. Immunol. 154, 5444–5451.

    PubMed  CAS  Google Scholar 

  107. Cronstein, B. N., Naime, D., and Firestein, G. S. (1995) The antiinflammatory effects of an adenosine kinase inhibitor are mediated by adenosine. Arth. Rheum. 38, 1040–1045.

    CAS  Google Scholar 

  108. Firestein, G. S., Boyle, D., Bullough, D. A., Gruber, H. E., Sajjadi, F. G., Montag, A., Sambol, B., and Mullane, K. M. (1994) Protective effect of an adenosine kinase inhibitor in septic shock. J. Immunol. 152(12), 5853–5859.

    PubMed  CAS  Google Scholar 

  109. Cronstein, B. N., Eberle, M. A., Gruber, H. E., and Levin, R. I. (1991) Methotrexate inhibits neutrophil-function by stimulating adenosine release from connective tissue cells. Proc. Natl. Acad. Sci. USA 88, 2441–2445.

    PubMed  CAS  Google Scholar 

  110. Cronstein, B. N., Naime, D., and Ostad, E. (1993) The antiinflammatory mechanism of methotrexate: Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J. Clin. Invest. 92, 2675–2682.

    PubMed  CAS  Google Scholar 

  111. Gadangi, P., Longaker, M., Naime, D., Levin, R. I., Recht, P. A., Montesinos, M. C., Buckley, M. T., Carlin, G., and Cronstein, B. N. (1996) The antiinflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J. Immunol. 156, 1937–1941.

    PubMed  CAS  Google Scholar 

  112. Morabito, L., Montesinos, M. C., Schreibman, D. M., Baiter, L., Thompson, L. F., Resta, R., and Cronstein, B. N. (1997) Methotrexate and sulfasalazine promote adenosine release: the role of ecto-51 nucleotidase. J. Invest. Med. 45, 241A.

    Google Scholar 

  113. Yap, J. S., Montesinos, M. C., McCrary, C. T., and Cronstein, B. N. (1997) Theophylline reverses the effect of methotrexate on adjuvant arthritis: evidence that adenosine mediates the anti-inflammatory effects of methotrexate. Arth. Rheum. 40, 598.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cronstein, B.N. (1999). Adenosine and Its Receptors During Inflammation. In: Serhan, C.N., Ward, P.A. (eds) Molecular and Cellular Basis of Inflammation. Current Inflammation Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-253-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-253-1_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-089-2

  • Online ISBN: 978-1-59259-253-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics