Skip to main content

A Short Introduction to Immunocytochemistry and a Protocol for Immunovisualization of Proteins with Alkaline Phosphatase

  • Chapter
Methods in Plant Electron Microscopy and Cytochemistry
  • 455 Accesses

Abstract

Immunocytochemical methods have been widely applied to visualize proteins, carbohydrates, or lipids in sectioned material. The advantage of using immunocytochemistry is to be able to localize the molecules of interest within the tissue. Several procedures have been described. Basically, these procedures can be split into four main steps that are described in subheadings: (1) tissue preparation, (2) the primary antibodies, (3) the visualization of the target, and (4) enhancement of signals with antibody complexes. In addition, a protocol for alkaline phosphatase will be presented in detail in Subheading 5. The terms “primary” and “secondary” antibodies refer to the order in which they are applied to the target. The immunocytochemical procedures are not limited to sectionedmaterial. The immunocytochemical procedures can also be used for fixed and enzymatically permeabilized cells of Saccharomyces cerevisiae (1,2), Schizosaccharomyces pombe (3), and Chara (4) protoplasts and organelles (5). The immunocytochemical techniques are used in combination with other techniques: flow cytometry (6), tissue prints (7), in situ hybridization (8–10), and in situ PCR (polymerase chain reaction) (11–13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams AE, Pringle PR. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 1984; 98: 934–945.

    Article  PubMed  CAS  Google Scholar 

  2. Pringle JR, Adams AE, Drubin DG, Haarer BK. Immunofluorescent methods in yeast. Methods Enzymol 1991; 194: 565–602.

    Article  PubMed  CAS  Google Scholar 

  3. Hagan IM, Hyams JS. The use of cell division cycle mutants to investigate the control of micotubule distribution in the fission yeast Schizosaccharomyces pombe. J Cell Sci 1988; 89: 343–357.

    PubMed  Google Scholar 

  4. Katembe WJ, Swatzell LJ, Makaroff CA, Kiss JZ. Immunolocalization of integrinlike proteins in Arabidopsis and Chara. Physiologia Plantarum 1997; 99: 7–14.

    Article  PubMed  CAS  Google Scholar 

  5. Singh MB, Taylor PE, Knox RB. Special preparation methods for immunocytochemistry of plant cells, in Immunocytochemistry, A Practical Approach (Beesley JE, ed.), Oxford University Press, Oxford, UK, 1993, pp. 77–100.

    Google Scholar 

  6. Johnstone A, Thorpe R. Immunochemistry in Practice, Blackwell Science Ltd, Oxford, UK, 1996.

    Google Scholar 

  7. Kaufmann A, Koenig R, Lesemann D-E. Tissue print-immunoblotting reveals an uneven distribution of beet necrotic yellow vein and beet soil-borne viruses in sugar beet. Arch Virol 1992; 126: 329–335.

    Article  PubMed  CAS  Google Scholar 

  8. Chan VT-W, McGee Jo’D. Non-radioactive probes: preparation, characterization, and detection, in In Situ Hybridization, Principles and Practice (Polak JM, McGee JO’D, eds.), IRL Press at Oxford University Press, Oxford, UK, 1990, pp. 1–14.

    Google Scholar 

  9. Davies JT. In situ hybridization, in Immunocytochemistry, A Practical Approach (Beesley JE, ed.) Oxford University Press, Oxford, UK, 1993, pp. 176–205.

    Google Scholar 

  10. Dirks RW, van de Rijke FM, Fujishita S, van der Ploeg M, Raap AK. Methodologies for specific intron and exon RNA localization in cultured cells by hapterized and fluochromized probes. J Cell Sci 1993; 104: 1187–1197.

    PubMed  CAS  Google Scholar 

  11. Gu J, ed. In Situ Polymerase Chain Reaction and Related Technology, Birchäuser, Boston, MA, 1995.

    Google Scholar 

  12. Johansen B. In situ PCR on plant material with sub-cellular resolution. Ann Bot 1997; 80: 697–700.

    Article  CAS  Google Scholar 

  13. Yasuhiko M, Appels R. Direct chromosome mapping of plant genes by in situ polymerase chain reaction (in situ PCR). Chromosome Res 1996; 4: 401–404.

    Google Scholar 

  14. Ormerod MG, Imrie F. Immunohistochemistry, in Light Microscopy in Biology. A Practical Approach (Lacey AJ, ed.), IRL Press Ltd., Oxford, UK, 1989, pp. 103–136.

    Google Scholar 

  15. O’Brien TP, McCully ME. The Study of Plant Structure Principles and Selected Methods, Termarcarphi Pty. Ltd, Melbourne, Australia, 1981.

    Google Scholar 

  16. Harlow E, Lane D. Using Antibodies. A Laboratory Manual, Cold Spring Habor Laboratory Press, Cold Spring Harbor, NY, 1999.

    Google Scholar 

  17. Beltz BS, Burd GD. Immunocytochemical Techniques, Blackwell Scientific Publishers, Inc, Malden, MA, 1989.

    Google Scholar 

  18. Hjelm H, Hjelm K, Sjöquist J. Protein A from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins. FEBS Lett 1972; 28: 73–76.

    Article  PubMed  CAS  Google Scholar 

  19. Patrick CC, Virella G. Isolation of normal human IgG3. Identical molecular weight for normal and monoclonal gamma-3 chains. Immunochemistry 1978; 15: 137–139.

    Article  PubMed  CAS  Google Scholar 

  20. Sonnewald U, Studer D, Rocha-Sosa M, Wilmitzer L. Immunocytochemical localization of patatin, the major glycoprotein in potato (Solanum tuberosum). Planta 1989; 178: 176–183.

    Article  CAS  Google Scholar 

  21. Edge ABS, Faltynek CR, Hof L, Reichert LE Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem 1981; 118: 131–137.

    Article  PubMed  CAS  Google Scholar 

  22. De Mey J, Moeremans M. Raising and testing polyclonal antibodies for immunocytochemistry, in Immunocytochemistry, Modern Methods and Applications (Polack JM, Van Noorden S, eds.), Wright, Bristol, UK, 1986, pp. 3–12.

    Google Scholar 

  23. Ritter MA. Raising and testing monoclonal antibodies for immunocytochemistry, in Immunocytochemistry, Modern Methods and Applications (Polack JM, Van Noorden S, eds.), Wright, Bristol, UK, 1986, pp. 13–25.

    Google Scholar 

  24. Kohler G, Milstein C. Continuous cultures of fused cells producing antibody of predefined specificity. Nature 1975; 256: 495–497.

    Article  PubMed  CAS  Google Scholar 

  25. Knox JP. The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol 1997; 171: 79–120.

    Article  PubMed  CAS  Google Scholar 

  26. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Annu Rev Immunol 1994; 12: 433–455.

    Article  PubMed  CAS  Google Scholar 

  27. Rader C, Barbas CF. Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 1997: 8: 503–508.

    Article  PubMed  CAS  Google Scholar 

  28. Griffeths AD, Duncan AR. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol 1998; 9: 102–108.

    Article  Google Scholar 

  29. Willats WGT, Gilmartin PM, Mikkelsen JD, Knox JP. Cell wall antibodies without immunization: generation and use of de-esterified homogalacturonan block-specific antibodies from a naive phage display library. Plant J. 1999; 18: 57–65.

    Article  PubMed  CAS  Google Scholar 

  30. Brooks SA, Leathem AJC, Schumacher U. Lectin Histochemistry, A Concise Practical Handbook, BIOS Scientific Publishers Ltd, Herndon, VA, 1997.

    Google Scholar 

  31. Knox RB, Clarke AE. Localization of proteins and glycoproteins by binding to labeled antibodies and lectins, in Electron Microscopy and Cytochemistry of Plant Cells (Hall JL, ed.), Elsevier-North Holland, Biomedical Press, Amsterdam, 1978, pp. 149–185.

    Google Scholar 

  32. Robinson G, Ellis IO, MacLannan KA. Immunochemistry, in Theory and Practice of Histological Techniques (Bancroft JD, Stevens A, eds.), Churchill Livingston, Edinburgh, New York, 1990.

    Google Scholar 

  33. Johnson GD, Nogueira Araujo GM de C. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 1981; 43: 349–350.

    Article  PubMed  CAS  Google Scholar 

  34. Verkleij AJ, Leunissen JLM. Immuno-Gold Labeling in Cell Biology, CRC Press, Boca Raton, FL, 1989.

    Google Scholar 

  35. Vandenbosch KA. Immunogold labeling, in Electron Microscopy of Plant Cells (Hall JL, Hawes C, eds.), Academic Press, San Diego, CA, 1991, pp. 181–218.

    Google Scholar 

  36. Monaghan P, Robertson D, Beesley JE. in Immunocytochemistry, A Practical Approach (Beesley JE, ed.) Oxford University Press, Oxford, UK, 1993, pp. 43–76.

    Google Scholar 

  37. Beesley JE. Multiple immunolabeling techniques, in Immunocytochemistry, A Practical Approach (Beesley JE, ed.), Oxford University Press, Oxford, UK, 1993, pp. 103–125.

    Google Scholar 

  38. Jackson P, Blythe D. Immunolabeling techniques for light microscopy, in Immunocytochemistry, A Practical Approach (Beesley JE, ed.), Oxford University Press, Oxford, UK, 1993, pp. 15–41.

    Google Scholar 

  39. Kragh KM, Nielsen JE, Nielsen KK, Drebolt S, Mikkelsen JD. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol PlantMicrobe Interact 1995; 8: 424–434.

    Article  CAS  Google Scholar 

  40. Nielsen KK, Nielsen JE, Madrid S, Mikkelsen JD. New antifungal proteins from sugar beet (Beta vulgaris L.) showing homology to non-specific lipid transfer proteins. Plant Mol Biol 1996; 31: 539–552.

    Article  PubMed  CAS  Google Scholar 

  41. Nielsen JE, Nielsen KK, Mikkelsen JD. Immunohistological localization of a basic class IV chitinase in Beta vulgaris leaves after infection with Cercospora beticola. Plant Sci 1996; 119: 191–202.

    Article  CAS  Google Scholar 

  42. Gottschalk TE, Mikkelsen JD, Nielsen JE, Nielsen KK, Brunstedt J. Immunolocalization and characterization of a ß-1.3-glucanase in sugar beet, deduction of its primary structure and nucleotide sequence by cDNA and genomic cloning. Plant Sci 1998; 132: 153–167.

    Article  CAS  Google Scholar 

  43. Kristensen AK, Brunstedt J, Nielsen JE, Mikkelsen JD, Roepsstorff P, Nielsen KK. Processing, disulfide pattern and biological activity of sugar beet defensin AX2, expression in Pichia pastoris. Protein Expr Purif 1999; 16: 377–387.

    Article  PubMed  CAS  Google Scholar 

  44. Christensen TMIE, Nielsen JE, Mikkelsen JD. Isolation, characterization and immunolocalization of orange fruit acetyl esterase, in Progress in Biotechnology 14 Pectins and Pectinases (Visser J, Voragen AGJ, eds.), Elsevier, Amsterdam, The Netherlands, 1996, pp. 723–730.

    Chapter  Google Scholar 

  45. Christensen TMIE, Nielsen JE, Kreiberg JD, Rasmussen P, Mikkelsen JD. Pectin methylesterase from orange fruits: characterization and localization by in situ hybridization and immunohistochemistry. Planta 1998; 206: 493–503.

    Article  PubMed  CAS  Google Scholar 

  46. Joersboe M., Petersen SG, Nielsen JE, Marcussen J, Brunstedt J. Isolation and expression of two cDNA clones encoding UDP-galactose epimerase expressed in developing seeds of the endospermous legume guar. Plant Sci 1999; 142: 147–154.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, J.E. (2000). A Short Introduction to Immunocytochemistry and a Protocol for Immunovisualization of Proteins with Alkaline Phosphatase. In: Dashek, W.V. (eds) Methods in Plant Electron Microscopy and Cytochemistry. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-232-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-232-6_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-199-8

  • Online ISBN: 978-1-59259-232-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics