Skip to main content

Methods for the Detergent Release of Particle-Bound Plant Proteins

  • Chapter
Methods in Plant Electron Microscopy and Cytochemistry
  • 450 Accesses

Abstract

There are three major classes of membrane proteins, i.e., peripheral or extrinsic proteins, integral or intrinsic proteins and transport proteins (1). The peripheral proteins (see Fig. 1) appear to be restricted to either the outer or inner layers of the membrane bilayer. These proteins, which are bound chiefly by ionic forces to the polar heads of phospholipids (electrostatic bonding), can be isolated through alteration of the pH or ionic strength of the suspension medium. Integral or transmembrane proteins are linked either electrostatically or by means of biophysical lipophilicity to the inner domains of the membrane bilayer (1). Integral proteins appear to be anchored in the membrane bilayer via polar amino acid sequences (2). There are two types of integral proteins, simple and complex. Whereas the former possess γ helical structure (3), the latter are globular and comprised of several y helical loops that may traverse the membrane more than once (multiple hairpin bending). The transport proteins may be either of the peripheral or integral type consisting of pumps, carriers, and channels based on energy input (1). Thorough treatments of various aspects of membrane proteins can be found in Martanosi (4), Azzi (5), Gennis (6), Turner (7), Shinitzky (8), Lee (9), Papa and Tager (10), Findlay (11), and Van Heijne (12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leshem YY with the participation of Shewfelt RL, Willmer CM, Pantoja O. Plant Membranes: A Biological Approach to Structure, Development and Senescence, Kluwer Academic Publishers, Amsterdam, The Netherlands, 1991.

    Google Scholar 

  2. Evans WH, Graham JM. Membrane Structure and Function, IRL Press, Oxford, UK, 1989.

    Google Scholar 

  3. Zubay G. Principles ofBiochemistry, Wm. C. Brown Publishers. Dubuque, IA, 1993.

    Google Scholar 

  4. Martanosi A. The Enzymes of Biological Membranes, 4 Vols, Plenum Press, New York, 1985.

    Book  Google Scholar 

  5. Azzi A. Membrane Proteins: Isolation and Characterization, Springer-Verlag, New York, 1986.

    Google Scholar 

  6. Gennis RB. Biomembranes: Molecular Structure and Function, Springer-Verlag, New York, 1989.

    Google Scholar 

  7. Turner AJ. Molecular and Cell Biology ofMembrane Proteins: Glycolipid Anchors of Cell Surface Proteins, Ellis Horwood, New York, 1990.

    Google Scholar 

  8. Shinitzky M. Biomembranes, Verlagesellshaft, New York, 1993.

    Google Scholar 

  9. Lee A. Biomembrane-bound Enzyme Systems, Jai Press, London, UK, 1995.

    Google Scholar 

  10. Papa S, Tager JM. Biochemistry of Cell Membranes: A Compendium of Selected Topics, Birkhauser-Verlag, Basel, Switzerland, 1995.

    Book  Google Scholar 

  11. Findlay JBC. Membrane Protein Models, Bios Scientific Publishers, Herndon, VA, 1996.

    Google Scholar 

  12. Van Heijne G. Membrane Protein Assembly, R. G. Landes, Austin, TX, 1997.

    Google Scholar 

  13. Higgins JA. Separation and analysis of membrane components, in Biological Membranes: A Practical Approach (Findlay JB, Evans WH, eds.), IRL Press, Oxford, UK, 1987, pp. 103–138.

    Google Scholar 

  14. Baker RW. Membrane Separation Systems: Recent Developments and Future Directions, Noyes, Westwood, NJ, 1991.

    Google Scholar 

  15. Graham J, Higgins JA. Biomembrane Protocols. I. Isolation and Analysis, Humana Press, Totowa, NJ, 1993.

    Book  Google Scholar 

  16. Critser JR. Membrane Separation Processes, Lexington Data. Ashland. MA. 1995.

    Google Scholar 

  17. Nobel RD, Stern SA. Membrane Separation. Technology Principles and Applications, Elsevier, New York, 1995.

    Google Scholar 

  18. Schwuger MJ, Bartnik FG. Interaction of anionic surfactants with proteins, enzymes and membranes, in Anionic Surfactants (Gloxhuber C, ed.), Marcel Dekker, New York, 1980, pp. 1–49.

    Google Scholar 

  19. Bordier C. Phase separations of integral membrane proteins in Triton X-114 solution. J Biol Chem 1981; 256: 1604–1607.

    PubMed  CAS  Google Scholar 

  20. Venter JC, Harrison LC. Membranes, Detergents and Receptor Solubilization, Alan R. Liss, New York. 1984.

    Google Scholar 

  21. Jones OT, Earnest JP, McNamee MG. Solubilization and reconstitution of membrane proteins, in Biological Membranes: A Practical Approach (Findlay JB, Evans WH, eds.), IRL Press, Oxford, UK, 1987, pp. 139–178.

    Google Scholar 

  22. Banerjee R, Jao JB, Bush JT, Dawson G. Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem Phys Lipids 1995; 77: 65–78.

    Article  PubMed  CAS  Google Scholar 

  23. Shepherd FM, Holzenburg A. The potential of fluorinated surfactants in membrane biochemistry. Anal Biochem 1995; 224: 21–27.

    Article  PubMed  CAS  Google Scholar 

  24. Dong M, Baggetto LG, Folson P, LeMaire M, Penin F. Complete removal and exchange of sodium dodecyl sulfate bound to soluble and membrane proteins and restoration of their activities, using ceramic hydroxyapatite chromatography. Anal Biochem 1997; 247: 333–341.

    Article  PubMed  CAS  Google Scholar 

  25. Chabaud E, Barthelemy P, Mora N, Popot JL, Pucci B. Stabilization of integral membrane proteins in aqueous solution using fluorinated surfactants. Biochemie1998; 80: 515–530.

    Article  CAS  Google Scholar 

  26. Chevallet M, Santoni V, Poinas A, Rouquie D, Fuchs A, Kieffer S, Rossignol M, Lunadi J, Gerin J, Rabilloud T. New zwitteronic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 1998; 19: 1901–1909.

    Article  PubMed  CAS  Google Scholar 

  27. Krogh-Hansen U, LeMarie M, Moller JV. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J 1998; 75: 2932–2941.

    Article  Google Scholar 

  28. Poste G, Nicolson G. Membrane Reconstitution, North Holland Publ. Co, Amsterdam, The Netherlands, 1982.

    Google Scholar 

  29. Sajo M Mar, Nunez-Delicado E, Garcia-Carmona F, Sanchez-Ferrer A. Partial purification of a bannana polyphenol oxidase using Triton X-114 and PEG 800G for removal of polyphenols. J Agric Food Chem 1998; 46: 4924–4930.

    Article  Google Scholar 

  30. Nennstiel D, Scheel D, Nuernberger T. Characterization and partial purification of a oligopeptide elicitor receptor for parsley (Petroselium crispum). FEBS Lett 1998; 431: 405–410.

    Article  CAS  Google Scholar 

  31. Galle AM, Demandre JM, Guercke C, Dibacq, JA. Ouised A, Mazliak P, Pelletier G, Koder JC. Biosynthesis of gamma-linolenic acid in developing solubilization of bio membrane enzymes of borage seeds (Borago officinalis L.) microsomes Δ12 and Δ6 desaturases involved in the biosynthesis of polyunsaturated fatty acids. Biochem Biophys Acta 1993; 1158: 52–58.

    Article  PubMed  CAS  Google Scholar 

  32. Fath A, Boller T. Solubilization, partial purification and characterization of a binding site for a glycopeptide elicitor from microsomal membranes of tomato cells. Plant Physiol 1996; 112: 1659–1668.

    PubMed  CAS  Google Scholar 

  33. Funk C, Schroder WP, Napiwotzki A, Tjus SE, Renger G, Andersson B. The PS 11-S protein of higher plants: A new type of pigment binding protein. Biochemistry 1995; 34: 11,133–11,141.

    Article  Google Scholar 

  34. Jolivet P, Bergeron E, Meunier J-C. Evidence for sulphite oxidase activity in spinach leaves. Phytochemistry 1995; 40: 667–672.

    Article  CAS  Google Scholar 

  35. Janson J-C, Ryder LG. Protein Purification: Principles, High Resolution Methods and Applications, Wiley, New York, 1977.

    Google Scholar 

  36. Righetti PG. Isoelectic Focusing Theory, Methodology and Applications, Elsevier, New York, 1983.

    Google Scholar 

  37. Henschev A. High Performance Liquid Chromatography in Biochemistry, Verlagesellshaft, New York, 1985.

    Google Scholar 

  38. Ragan CI, Cherry RJ. Techniques for the Analysis ofMembrane Proteins, Chapman and Hall, London, UK, 1986.

    Book  Google Scholar 

  39. Deutscher MP. Guide to Protein Purification Methods in Enzymology, Academic Press, New York, 1990.

    Google Scholar 

  40. Harris El L, Angal S. Protein Purification: A Practical Approach, IRL Press, Oxford, UK, 1990.

    Google Scholar 

  41. Doonan S. Protein Purification Protocols, Humana Press, Totowa, NJ, 1996.

    Book  Google Scholar 

  42. Scopes RK. Protein Purification: Principles and Practice, Springer-Verlag, New York, 1996.

    Google Scholar 

  43. Walker JM. Protein Purification Handbook, Humana Press, Totowa, NJ, 1996.

    Google Scholar 

  44. Eisethat R, Danson MJ. Enzyme Assays. A Practical Approach, QUP, Oxford University Press. Oxford. UK. 1992.

    Google Scholar 

  45. Dashek WV, Micales J. Assay and purification of enzymes-oxalate decarboxylase, in Methods in Plant Biochemistry and Molecular Biology (Dashek WV, ed.), CRC Press, Boca Raton, FL, 1997, pp. 49–71.

    Google Scholar 

  46. Moore NL, Mariam DH, Williams AL, Dashek WV. Substrate specificity, de novo synthesis and partial purification of polyphenol oxidase derived from the wooddecay fungus, Coriolus versicolor. J Indust Microbiol 1989; 4: 349–364.

    Article  CAS  Google Scholar 

  47. Moore NL, Brako LA, Claussen C, Jones BR, Dashek WV. Distribution of polyphenol oxidase in organelles of hyphae of the wood deteriorating fungus, Coriolus versicolor. Biodeterioration Research4. Plenum Press, New York, 1994.

    Google Scholar 

  48. Martyn RD, Samuelson DA, Freeman TB. Ultrastructural localization of polyphenol oxidase activity in leaves of healthy and disease water hyacinth. Phytopathology 1979; 69: 1278–1287.

    Article  CAS  Google Scholar 

  49. Vaughn KC, Duke SO. Tissue localization of polyphenoloxidase in Sorghum. Protoplasma 1981; 108: 319–327.

    Article  CAS  Google Scholar 

  50. Ryan ID, Gregory R, Tingey WH. Phenolic oxidase activities in glandular trichomes of Solanum berthauttii. Phytochemistry 1983; 21: 1885–1887.

    Article  Google Scholar 

  51. Flurkey WH. In vitro biosynthesis of Vicia faba polyphenoloxidse. Plant Physiol 1985; 79: 564–567.

    Article  PubMed  CAS  Google Scholar 

  52. Flurkey WH. Polyphenoloxidase in higher plants immunological detection and analysis of in vitro translation products. Plant Physiol 1986; 86: 614–618.

    Article  Google Scholar 

  53. Mayer AM, Harel E. Polyphenol oxidases and their significance in fruits and vegetables, in Enzymes in Foods, Elsevier, Amsterdam, The Netherlands, 1990.

    Google Scholar 

  54. Moore BM, Flurkey WH. SDS activation of a plant polyphenoloxidase effect of SDS on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. Biol Chem 1990; 265: 4982–4988.

    CAS  Google Scholar 

  55. Kowalaksi SP. Bamberg J, Tringey WM, Steffens JC. Inheritance of polyphenol oxidase in type A glandular trichomes of Solanum berthaultii. J Hered 1990; 81: 475–478.

    Google Scholar 

  56. Menter JM, Moore CL, Willis I, Fisher MS. Melanin markedly accelerates the tyrosinase mediated oxidation of phenolic depigmenters. Photochem Photobiol 1986; 43: 255.

    Google Scholar 

  57. Hutcheson SW, Buchanan BB. Polyphenol oxidation by Viciafaba chloroplast membranes studies on the latent membrane-bound polyphenol oxidase and on the mechanism of photochemical polyphenol oxidation. Plant Physiol 1966; 66: 1150–1154.

    Article  Google Scholar 

  58. Sanchez-Ferrer A, Bru R, Garcia-Carmora F. Novel procedure for extraction of a latent grape polyphenoloxidase using temperature-induced phase separation in Triton X-114. Plant Physiol 1989; 91: 1481–1487.

    Article  PubMed  CAS  Google Scholar 

  59. Nunez-Delicádo E, Bru R, Sanchez-Ferrer A, Garcia-Carmona F. Triton X-114-aided purification of latent tyrosinase. J Chromatogr B Biomed Appl 1996; 680,105–107.

    Article  PubMed  Google Scholar 

  60. Kieselbach T, Hagman A, Andersson B, Schroder WP. The thylakoid lumen chloroplaste. Isolation and characterization. J Biol Chem 1998; 273: 6710–6716.

    Article  PubMed  CAS  Google Scholar 

  61. Wilhelnova N. Thylakoid membranes fragmentation by means of different detergents during leaf antogeny. Photosynthetica 1994; 30: 415–424.

    Google Scholar 

  62. Highley TL, Dashek WV. Biotechnology in the study of white-rot and brown-rot decay, in Forest Products Biotechnology (Bruce A, Palfreyman JW, eds.), Taylor and Francis, London, UK, 1998, pp. 15–36.

    Google Scholar 

  63. Micales JA. Oxalate decarboxylase in the brown-rot wood decay fungus, Postia placenta. Mat U Org 1995; 29: 177.

    CAS  Google Scholar 

  64. Dashek W, Micales JA. Unpublished.

    Google Scholar 

  65. Micales JA. Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus, Postia placenta. Int Biodeter Biodegrad 1997; 39: 125–132.

    Article  CAS  Google Scholar 

  66. Green F, Larsen M, Highley TL. Ultrastructural morphology of the hyphal sheath of wood-decay fungi modified by preparation for scanning electron microscopy, in Biodeterioration Research,. Vol. III, Plenum Press, New York, 1990.

    Google Scholar 

  67. Kim YS, Goodell B, Jellison J. Immuno-electron microscopic localization of extracellular metabolites in spruce wood decayed by brown-rot fungus, Postia placenta. International Research Group on Wood Decay, Stockholm, Sweden, 1990; 1441.

    Google Scholar 

  68. Micales JA, Richter AL, and Highley TL. Extracellular glucan production by Postia (=Poria) placenta. Mater Org 1990; 24: 259–270.

    Google Scholar 

  69. Green F, Clausen CA, Larsen MJ, Highley TL. Immuno-scanning electron microscopic localization of extracellular wood-degrading enzymes within the fibullar sheath of the brown-rot fungus, Postia placenta. Can J Microbiol 1992; 38: 898–904.

    Article  CAS  Google Scholar 

  70. Larsen M, Green F. Mycofibrillar cell wall extensions in the hyphal sheath of Postia placenta. Can J Microbiol 1992; 38: 905–911.

    Article  Google Scholar 

  71. Nicole M, Chamberland H, Geiger JP, Lecours N, Valero J, Rio B, Quellette GB. Immunocytochemical localization of laccase in wood decayed by Rigidoporus lignosus. Appl Environ Microbiol 1992; 58: 1727–1739.

    PubMed  CAS  Google Scholar 

  72. Labrou NE, Clonis YD. Biomimetic dye-ligand for oxalate requiring enzymes: Studies with oxalate oxidase and oxalate decarboxylase. J Biochem 1995; 40: 59.

    CAS  Google Scholar 

  73. Lambert O, Lev D, Ranck J-L, Leblanc G, Rigaud J-L. A new “gel-like” phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution studies. Biophys J 1998; 74: 918–930.

    Article  PubMed  CAS  Google Scholar 

  74. Vermelho AB, Pereira MC, Meirelles M. Use of the detergent Triton in biochemical and biological research: a minireview. Ciencia Cultura 40: 45–51.

    Google Scholar 

  75. Vinogradova O, Sonnichsen F, Sanders CR II. On choosing a detergent for solution NMR studies of membrane proteins. J Biomol NMR 1998; 11: 381–386.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dashek, W.V. (2000). Methods for the Detergent Release of Particle-Bound Plant Proteins. In: Dashek, W.V. (eds) Methods in Plant Electron Microscopy and Cytochemistry. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-232-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-232-6_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-199-8

  • Online ISBN: 978-1-59259-232-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics