Skip to main content

Part of the book series: Nutrition ◊ and ◊ Health ((NH))

  • 299 Accesses

Abstract

Zinc deficiency appears to be a common but overlooked problem in developing countries (1).The unique chemical properties of this transition element confer on zinc an important role in a wide variety of biological processes. Zinc occurs in the divalent state (Zn++) and does not exhibit redox chemistry in living organisms. It has a high affinity for electrons and typically binds to proteins, amino acids, peptides, and nucleotides, permitting both catalytic and structural functions. Intakes of zinc in populations are commonly lower than recommended levels, but adaption mechanisms preclude the development of severe deficiency states. There is increasing evidence, however, that adaption to low zinc intakes is not without consequence. Recent studies have shown that zinc supplementation reduces the morbidity and mortality from common childhood infectious diseases such as diarrhea, acute lower-respiratory infections, and malaria (2). A large and growing literature on zinc and immune function also emphasizes the importance of mild zinc deficiency in reducing resistance to infection (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shrimpton R. Zinc deficiency: is it widespread but under-recognized? In: Subcommittee on Nutrition News, vol 9. Geneva: United Nations Administrative Committee on Coordination, 1993, pp. 24–27.

    Google Scholar 

  2. Black RE. Therapeutic and preventive effects of zinc on serious childhood infectious diseases in developing countries. Am J Clin Nutr 1998; 68 (suppl): 476S - 479S.

    CAS  Google Scholar 

  3. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 1998; 68 (suppl): 447S - 463S.

    CAS  Google Scholar 

  4. United Nations International Childrens Emergency Fund (UNICEF). Consensus statement on zinc nutrition and public health in developing countries. Report of a meeting held in Brisbane, Australia. New York, UNICEF 1993.

    Google Scholar 

  5. UNICEF. The State of the World’s Children 1998. New York, NY: Oxford University Press, 1998.

    Google Scholar 

  6. Sandstead HH. Is zinc deficiency a public health problem? Nutrition 1995; 11: 87–92.

    CAS  Google Scholar 

  7. Raulin J. Études cliniques sur la vegetation. Ann Sci Nat XI Bot 1869: 93. Ann Sci Nat (5th series) 1869; 2: 224.

    Google Scholar 

  8. Birkner V The zinc content of some foods. J Biol Chem 1919; 38: 191–203.

    Google Scholar 

  9. Todd WR, Elvehjem CA, Hart EB. Zinc in the nutrition of the rat. Am J Physiol 1934; 107: 146–156.

    CAS  Google Scholar 

  10. Eggleton WGE. Zinc content of epidermal stuctures in beri-beri. Biochem J 1939; 33: 403–406.

    CAS  Google Scholar 

  11. Eggleton WGE. Zinc and copper content of blood in beri-beri in conditions associated with protein deficiency and in diabetes mellitus. China J Physiol 1940; 15: 33–44.

    CAS  Google Scholar 

  12. Macy IG. Nutrition and chemical growth in childhood, vol 1, Evaluation. Thomas, Springfield, IL. 1942, pp 198–202.

    Google Scholar 

  13. Youmans JB. Nutritional Deficiencies: Diagnosis and Treatment. Philadelphia: J. B. Lippincott, 1943.

    Google Scholar 

  14. Hegsted, DM, McKibbin JM, Drinker CK. The biological, hygienic and medical properties of zinc and zinc compounds. US Public Health Rep Suppl. 179, 1945.

    Google Scholar 

  15. Darby WJ. Trace elements in human nutrition. In: Symposium on Nutrition, Herriot RM, ed. Baltimore: Johns Hopkins Press, 1953, pp. 229–261.

    Google Scholar 

  16. Monty KJ. Trace element deficiencies. In: Control of Malnutrition in Man. Subcommittee on control of nutritional diseases of the committee on evaluation and standards. Washington, DC: American Public Health Association, 1960, p. 40.

    Google Scholar 

  17. Tucker HF and Salmon ND. Parakeratosis or zinc deficiency disease in pig. Proc Soc Exp Biol Med 1955; 88: 613–616.

    CAS  Google Scholar 

  18. O’Dell BL, and Savage JE. Effect of phytic acid on zinc availability. Proc Soc Exp Biol Med 1960; 103: 304–306.

    Google Scholar 

  19. Prasad AS, Halsted JA, Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism, and geophagia. Am J Med 1961; 31: 532–546.

    Article  CAS  Google Scholar 

  20. Prasad AS, Miale A, Farid Z, Schulert AR, Sandstead HH. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hypogonadism, and dwarfism. J Lab Clin Med 1963; 61: 537–549.

    CAS  Google Scholar 

  21. Sandstead HH, Prasad AS, Schulert AR, Farid Z, Miale A Jr, Bassily S, Darby WJ. Human zinc deficiency, endocrine manifestations, and response to treatment. Am J Clin Nutr 1967; 20: 422–442.

    CAS  Google Scholar 

  22. Halsted JA, Ronaghy HA, Abadi P, Haghshenass M, Amirhakemi GH, Barakat RM, Reinhold JG. Zinc deficiency in man. The Shiraz experiment. Am J Med 1972; 53: 277–284.

    Article  CAS  Google Scholar 

  23. Food and Nutrition Board. Recommended Dietary Allowances. Washington, DC: National Research Council, National Academy of Sciences, 1974, p. 140.

    Google Scholar 

  24. Murphy SP, Beaton GH, Calloway DH. Estimated mineral intakes of toddlers: predicated prevalence of inadequacy in village populations in Egypt, Kenya, and Mexico. Am J Clin Nutr 1992; 56: 565–572.

    CAS  Google Scholar 

  25. Tamura T, Goldenberg RL. Zinc nutriture and pregnancy outcome. Nutr Res 1996; 16: 138–181.

    Article  Google Scholar 

  26. Caulfield LE, Zavaletta N, Shankar AH, Merialdi M. Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am J Clin Nutr 1998; 68 (suppl): 499S - 508S.

    CAS  Google Scholar 

  27. Cousins RJ. Zinc. In: Present Knowledge in Nutrition, 7th ed. Filer JL, Ziegler E, eds. Washington, DC: International Life Sciences Institute Press, 1996, pp. 293–306.

    Google Scholar 

  28. Steel L, Cousins RJ. Kinetics of zinc absorption by luminally and vascularly perfused rat intestine. Am J Physiol 1985; 248: G46 - G53.

    CAS  Google Scholar 

  29. Raffaniello RD, Wapnir RA. Zinc uptake by isolated rat enterocytes: effect of low molecular weight ligands. Proc Soc Exp Biol Med 1989; 192: 219–224.

    CAS  Google Scholar 

  30. Hempe JM, Cousins RJ. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proc Natl Acad Sci USA 1991; 88: 9671–9674.

    Article  CAS  Google Scholar 

  31. Cousins RJ, Lee-Ambrose LM. Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. J Nutr 1992; 122: 56–64.

    CAS  Google Scholar 

  32. Fung EB, Ritchie LD, Woodhouse LR, Roehl R, King J. Zinc absorption in women during pregancy and lactation: a longitudinal study.

    Google Scholar 

  33. Jackson MJ, Giugliano R, Giugliano LG, Oliveira EF, Shrimpton R, Swainbank IG. Stable isotope metabolic studies of zinc nutrition in slum dwelling lactating in the Amazon valley. Br J Nutr 1988; 59: 193–203

    Article  CAS  Google Scholar 

  34. Cousins RJ. Regulation of zinc absorption: Role of intracellular ligands. Am J Clin Nutr 1979; 32: 339–345.

    CAS  Google Scholar 

  35. Prasad AS, Oberleas D. Binding of zinc to amino acids and serum proteins “in vitro. ” J Lab Clin Med 1970; 76: 416–425.

    CAS  Google Scholar 

  36. Giroux EL, Henkin RI. Competition for zinc among serum albumin and amino acids. Biochem et Biophys Acta 1972; 273: 64–72.

    Article  CAS  Google Scholar 

  37. Hess FM, King JC, Margen, S. Zinc excretion in young women on low zinc intakes and oral contraceptive agents. J. Nutr. 1977; 107: 1610–1620.

    CAS  Google Scholar 

  38. Prasad AS, Rabbani P, Abbassi A, Bowersox E, Fox MRS. Experimental zinc deficiency in humans. Ann Int Med 1978; 89: 483–490.

    Article  CAS  Google Scholar 

  39. Swanson CA, King JC. Zinc and pregnancy outcome. Am J Clin Nutr 1987; 46: 763–771.

    CAS  Google Scholar 

  40. Spencer H, Osis D, Kramer L, Norris C. Intake, excretion and retention of zinc in man. In: Trace Elements in Human Health and Disease, vol 1. Prasad AS, ed. New York, NY: Academic, 1976, pp. 345–361.

    Google Scholar 

  41. Baer MT, King JC. Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. Am J Clin Nutr 1984; 39: 556–570.

    CAS  Google Scholar 

  42. Krebs NF, Reidinger CJ, Hartley S, Robertson AD, Hambidge KM. Zinc supplementation during lactation: effects on maternal status and milk concentrations. Am J Clin Nutr 1995; 61: 1030–1036.

    CAS  Google Scholar 

  43. Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 1994; 102 (Suppl 2): 5–46.

    Article  CAS  Google Scholar 

  44. Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990; 29: 5647–5659.

    Article  CAS  Google Scholar 

  45. Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science 1996; 271: 1081–1085.

    Article  CAS  Google Scholar 

  46. Bettger WJ, O’Dell BL. Minireview: a critical physiological role of zinc in the structure and function of biomembranes. Life Sci 1981; 28: 1425–1438.

    Article  CAS  Google Scholar 

  47. Bunce GE. Interactions between zinc, vitamins A and D and hormones in the regulation of growth. In: Nutrient Regulation During Pregnancy, Lactation and Infant Growth. Allen L, King J, Lonnerdal B, eds. New York, NY: Plenum, 1994, pp. 257–264.

    Google Scholar 

  48. Solomons NW, Shrimpton R. Zinc. In: Tropical and Geographical Medicine. Warren K, Mahmoud AF, eds. New York, NY: McGraw-Hill, 1983, pp. 1059–1063.

    Google Scholar 

  49. WHO Complementary Feeding of Young Children in Developing Countries: a review of current scientific knowledge. Geneva: WHO, 1998.

    Google Scholar 

  50. Shrimpton R. Zinc intake from non-breast milk sources in the first year of life in a poor urban slum in Manaus, Amazonas Brazil. Proc Nut Soc. 1997; 56: 19A.

    Google Scholar 

  51. Turnlund JR, King JC, Keyes WR, Gong B, Michel MC. A stable isotope study of zinc absorption in young men: effects of phytate and a-cellulose. Am J Clin Nutr 1984; 40: 1071–1077.

    CAS  Google Scholar 

  52. Solomons NW, Jacob RA, Pineda O, Viteri FE. Studies on the bioavailability of zinc in man. II. Absorption of zinc from organic and inorganic sources. J Lab Clin Med 1979; 94: 335–343.

    CAS  Google Scholar 

  53. Mills CF. Dietary interactions involving trace elements. Ann Rev Nutr 1985; 5: 173–193.

    Article  CAS  Google Scholar 

  54. Gibson RS, Yeudall F, Drost N, Mtitimuni B, Cullinan T. Dietary interventions to prevent zinc deficiency. Am J Clin Nutr 1998; 68 (suppl): 4845–487S.

    Google Scholar 

  55. Lönnderdal B, Cederblad A, Davidsson L, Sandström B. The effect of individual components of soy formula and cows’ milk formula on zinc bioavailability. Am J Clin Nutr 1984; 1064–1070.

    Google Scholar 

  56. Sandström B, Cederblad A, Lönnderdal B. Zinc absorption from human milk, cow’s milk, and infant formulas. Am J Dis Child 1983; 137: 726–729.

    Google Scholar 

  57. World Health Organization. Trace elements in human nutrition and health. Geneva: WHO, 1996.

    Google Scholar 

  58. National Research Council. Subcommittee on the 10th edition of the RDAs. Recommended Dietary Allowances. 10th Edition. Washington, D.C.: National Academy, 1989.

    Google Scholar 

  59. Golden MH, Jackson AA, Golden BE. Effect of zinc on thymus of recently malnourished children. Lancet 1997; 2 (8047): 1057–1059.

    Google Scholar 

  60. Golden BE, Golden MH. Plasma zinc, rate of weight gain, and the energy cost of tissue deposition in children recovering from sever malnutrition on a cow’s milk or soya protein based diet. Am J Clin Nutr 1981; 34: 892–899.

    CAS  Google Scholar 

  61. Jameson S. Zinc status in pregnancy: the effect of zinc therapy on perinatal mortality, prematurity, and placental ablation. Ann NY Acad Sci 1993; 678: 178–192.

    Article  CAS  Google Scholar 

  62. Bunce GE, Lytton F, Gunesekera B, Vessal M, Kim C. Molecular basis for abnormal parturition in zinc deficiency in rats. In: Nutrient Regulation during Pregnancy, Lactation and Infant Growth. Allen L, King J, Lonnerdal B, New York, NY: Plenum, 1994, pp. 209–234.

    Google Scholar 

  63. Black MM. Zinc deficiency and child development. Am J Clin Nutr 1998; 68: 464S - 469S.

    CAS  Google Scholar 

  64. Brown KH. Effect of infections on plasma zinc concentrations and implications for zinc status assessment in low-income countries. Am J Clin Nutr 1998; 68 (suppl): 425S - 429S.

    CAS  Google Scholar 

  65. Beisel WR, Pekarek RS, Wannemacher RW Jr. Homeostatic mechanisms affecting plasma zinc levels in acute stress. In: Trace Elements in Human Health and Disease, vol. 1, Zinc and Copper. Prasad AS, ed. New York, NY: Academic, pp. 87–106.

    Google Scholar 

  66. Swanson CA, King JC. Reduced serum zinc concentration during pregnancy. Obstet Gynecol 1983; 62: 313–318.

    Article  CAS  Google Scholar 

  67. Solomons NW. On the assessment of zinc and copper nutriture in man Am J Clin Nutr 1979; 32: 856–871.

    CAS  Google Scholar 

  68. Pilch SM, Senti FR. Analysis of zinc data from the second national health and nutrition examination survey (NHANES II). J Nutr 1985; 115: 1393–1397.

    CAS  Google Scholar 

  69. Gibson RS. Principles of Nutritional Assessment. New York and Oxford: Oxford University Press, 1990.

    Google Scholar 

  70. Brown KH, Peerson JM, Allen LH. Effect of zinc supplementation on children’s growth: a meta-analysis of intervention trials. Bibl Nutr Dieta 1998; 54: 76–83.

    CAS  Google Scholar 

  71. Brown KH, Lanata CF, Yuen ML, Peerson JM, Butron B, Lönnerdal B. Potential magnitude of the misclassification of a population’s trace element status due to infection: example from a survey of young Peruvian children. Am J Clin Nutr 1993; 58: 549–554.

    CAS  Google Scholar 

  72. Ruz M, Solomons NW, Mejia LA, Chew F. Alterations of circulating micronutrients with overt and occult infections in anaemic Guatemalan preschool children. Intl J Food Sci Nutr 1995; 46: 257–265.

    Article  CAS  Google Scholar 

  73. Friis H, Ndhlovu P, Kaondera K, Sandstrom B, Michaelsen KF, Vennervald BJ, Christensen NO. Serum concentration of micronutrients in relation to schistosomiasis and indicators of infection: a cross-sectional study among rural Zimbabwean school children. Eur J Clin Nutr 1996; 50: 386–391.

    CAS  Google Scholar 

  74. Smith JC Jr, Butrimovitz GP, Purdy WC. Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin Chem 1979; 25: 1487–1491.

    CAS  Google Scholar 

  75. English JL, Hambidge KM. Plasma and serum zinc concentrations: effect of time between collection and separation. Clin Chim Acta 1988; 175: 211–216.

    Article  CAS  Google Scholar 

  76. Smith JC, Holbrook JT, Danford DE. Analysis and evaluation of zinc and copper in human plasma and serum. J Am Coll Nutr 1985; 4: 627–638.

    CAS  Google Scholar 

  77. Gibson RS, Ferguson EL. Assessment of dietary zinc in population. Am J Clin Nutr 1998; 68 (suppl): 430S - 434S.

    CAS  Google Scholar 

  78. Ferguson EL, Gadowsky SL, Huddle JM, Cullinan TR, Gibson RS. An interactive 24-h recall technique for assessing the adequacy of trace mineral intakes of rural Malawian women: its advantages and limitations. Eur J Clin Nutr 1995; 49: 565–578.

    CAS  Google Scholar 

  79. Ferguson EL, Gibson RS, Opare-Obisaw C, et al. The phytate, nonstarch polysaccharide, zinc, calcium, copper, and manganese contents of 78 locally grown and prepared African foods. J Food Comp Anal 1993; 6: 87–99.

    Article  CAS  Google Scholar 

  80. Hambidge KM. Hair analyses: worthless for vitamins, limited for minerals. Am J Clin Nutr 1982; 36: 943–949.

    CAS  Google Scholar 

  81. Jones RB, Keeling PW, Hilton PJ, Thompson RP. The relationship between leukocyte and muscle zinc in health and disease. Clin Sci 1981; 60: 237–239.

    CAS  Google Scholar 

  82. Hambidge KM, Hambidge C, Jacobs M, Baum JD. Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children. Pediatr Res 1972; 6: 868–874.

    Article  CAS  Google Scholar 

  83. Hambidge KM, Krebs NF, Miller L. Evaluation of zinc metabolism with use of stable-isotope techniques: implications for the assessment of zinc status. Am J Clin Nutr 1998; 68: 410S - 413S.

    CAS  Google Scholar 

  84. Sachdev HPS, Mittal NK, Mittal SK, Yadav HS. A controlled trial on utility of oral zinc supplementation in acute dehydrating diarrhea in infants. J Pediatr Gastroenterol Nutr 1988; 7: 877–881.

    Article  CAS  Google Scholar 

  85. Sachdev HPS, Mittal NK, Yadav HS. Oral zinc supplementation in persistent diarrhoea in infants. Ann Trop Pediatr 1990; 10: 63–69.

    CAS  Google Scholar 

  86. Sazawal S, Black RE, Bhan MK, Bhandari N, Sinha A, Jalla S. Zinc supplementation in young children with acute diarrhea in India. N Engl J Med 1995; 333: 839–844.

    Article  CAS  Google Scholar 

  87. Sazawal S, Black RE, Bhan MK, Jalla S, Sinha A, Bhandari N. Efficacy of zinc supplementation in reducing the incidence and prevalence of acute diarrhea: a community-based, double-blind, controlled trial. Am J Clin Nutr 1997; 66: 413–418.

    CAS  Google Scholar 

  88. Sazawal S, Black RE, Bhan MK, Jalla S, Bhandari N, Sinha A, Majumdar S. Zinc supplementation reduces the incidence of persistent diarrhea and dysentery among low socioeconomic children in India. J Nutr 1996; 126: 443–450.

    CAS  Google Scholar 

  89. International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh. Zinc supplementation in the treatment of childhood diarrhoea. Indian J Pediatr 1995; 62: 181–193.

    Article  Google Scholar 

  90. Ninh NX, Thissen JP, Collette L, Gerard G, Khoi HH, Ketelslegers JM. Zinc supplementation increases growth and circulating insulin-like growth factor I (IFG-I) in growth-retarded Vietnamese children. Am J Clin Nutr 1996; 63: 514–519.

    CAS  Google Scholar 

  91. Rosado JL, Lopez P, Munoz E, Martinez H, Allen LH. Zinc supplementation reduced morbidity, but neither zinc nor iron supplementation affected growth or body composition of Mexican preschoolers. Am J Clin Nutr 1997; 65: 13–19.

    CAS  Google Scholar 

  92. Ruel MT, Rivera JA, Santizo MC, Lönnerdal B, Brown KH. Impact of zinc supplementation on morbidity from diarrhea and respiratory infections among rural Guatemalan children. Pediatrics 1997; 99: 808–813.

    Article  CAS  Google Scholar 

  93. Lira PIC, Ashworth A, Morris SS. Effect of zinc supplementation on the morbidity, immune function, and growth of low-birth-weight, full-term infants in northeast Brazil. Am J Clin Nutr 1998; 68 (suppl): 418S - 424S.

    CAS  Google Scholar 

  94. Sazawal S, Black RE, Jalla S, Mazumdar S, Sinha A, Bhan MK. Zinc supplementation reduces the incidence of acute lower respiratory infection in infants and preschool children: a double-blind controlled trial. Pediatrics 1998; 102: 1–5.

    Article  CAS  Google Scholar 

  95. Bates CJ, Evans PH, Dardenne M, et al. A trial of zinc supplementation in young rural Gambian children. Br J Nutr 1993; 69: 243–255.

    Article  CAS  Google Scholar 

  96. Genton B, Baisor M, et al. Zinc supplementation reduces morbidity due to plasmodium falicparum: a randomized trial in pre-school children in Papua, New Guinea. Am J Trop Med Hyg (In press).

    Google Scholar 

  97. Sazawal S, Bentley M, Black RE, Dhingra P, George S, Bhan MK. Effect of zinc supplementation among observed activity in preschool children in an urban slum population. Pediatrics 1996; 98: 1132–1137.

    CAS  Google Scholar 

  98. Bentley ME, Caulfield LE, Ram M, Santizo MC, Hurtado E, Rivera JA, Ruel MT, Brown KH. Zinc supplementation affects the activity patterns of rural Guatemalan infants. J Nutr 1997; 127: 1333–1338.

    CAS  Google Scholar 

  99. Goldenberg RL, Tamura T, Neggers Y, Copper RL, Johnston KE, DuBard MB, Hauth JC. The effect of zinc supplementation on pregnancy outcome. JAMA 1995; 274: 463–468.

    Article  CAS  Google Scholar 

  100. Caulfield LE, Zavaleta N, Figueroa A, Leon A. Maternal zinc supplementation does not affect size at birth or pregnancy duration in Peru. J Nutr 1999; 129: 1563–1568.

    CAS  Google Scholar 

  101. Merialdi M, Caulfield LE, Zavaleta N, Figueroa A, DiPietro JA. Adding zinc to prenatal iron and folate tablets improves fetal neurobehavioural development. Am J Obstet Gynecol 1999; 180 (2 Pt 1): 483–490.

    Article  CAS  Google Scholar 

  102. Shrimpton R, Franca TS, RochaYS, Alencar FH. Zinc supplementation in urban Amazonian mothers: concentrations of zinc and retinol in maternal serum and milk. Proc Nut Soc 1983; 42: 122A

    Google Scholar 

  103. Shrimpton R, Allencar, FH, Vasconcellos JC, Rocha YR. Effects of maternal zinc supplementation on growth and diarrhoeal status of breastfed infants. Nutr Res 1985; Supp 1: 338–342.

    Google Scholar 

  104. Shrimpton R, Lehti K. Influence of zinc supplementation on breastmilk SigA levels. In: Trace Elements on Man and Animals TEMA 5. Mill CF, Bremner I, Chester JK, eds. UK: Commonwealth Agricultural Bureaux, 1985, pp. 90–93.

    Google Scholar 

  105. Beach RS, Mantero-Atienza E, Shor-Posner G, Javvier JJ, Szapocznik J, Morgan R, et al. Specific nutrient abnormalities in asymptomatic HIV-1 infection. AIDS 1992; 6: 701–708.

    Article  CAS  Google Scholar 

  106. Koch J, Neal EA, Schlott MJ, Garcia-Shelton YL, Chan MF, Weaver KE, Cello JP. Zinc levels and infections in hospitalized patients with AIDS. Nutrition 1996; 12: 515–518.

    Article  CAS  Google Scholar 

  107. Falutz J, Tsoukas C, Gold P. Zinc as a cofactor in human immunodeficiency virus-induced immunosuppression. JAMA 1988; 259: 2850–2851.

    Article  CAS  Google Scholar 

  108. Graham NMH, Sorensen D, Odaka N, Brookmeyer R, Chan D, Willett WC, et al. Relationship of serum copper and zinc levels to HIV-1 seropositivity and progression to AIDS. J Acquir Immune Defic Syndr 1991; 4: 976–980.

    CAS  Google Scholar 

  109. Baum MK, Shor-Posner G, Lu Y, Rosner B, Sauberlich HE, Fletcher MA, et al. Micronutrients and HIV-1 disease progression. AIDS 1995; 9: 1051–1056.

    Article  CAS  Google Scholar 

  110. Mocchegiani E, Veccia S, Ancarani F, Scalise G, Fabris N. Benefit of oral zinc supplementation as an adjunct to zidovudine (AZT) therapy against opportunistic infections in AIDS. Intl J Immunopharm 1995; 17: 719–727.

    Article  CAS  Google Scholar 

  111. Ruel MT, Bouis HE. Plant breeding: a long-term strategy for the control of zinc deficiency in vulnerable populations. Am J Clin Nutr 1998; 68: 488S - 494S.

    CAS  Google Scholar 

  112. Allen LH. Zinc and micronutrient supplements for children. Am J Clin Nutr 1998; 68: 495S - 498S.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shrimpton, R. (2001). Zinc Deficiency. In: Semba, R.D., Bloem, M.W. (eds) Nutrition and Health in Developing Countries. Nutrition ◊ and ◊ Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-225-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-225-8_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6052-1

  • Online ISBN: 978-1-59259-225-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics