Skip to main content

Epidermal Growth Factor-Related Peptides in Endocrine Neoplasias

  • Chapter
Endocrine Oncology

Abstract

The development of cancer results from the cumulative acquisition of somatic and/or germline mutations in regulatory genes that control various aspects of cellular proliferation, differentiation, apoptosis, and DNA repair (1–6). Gain or loss of function in protooncogenes or tumor suppressor genes accounts for the majority of these genetic defects (6–8). Generally, gain of function is observed in dominantly transforming oncogenes, which can occur by point mutations, gene amplification, chromosomal translocation, or insertional mutagenesis (6,9,10). Conversely, loss of function, because of the inactivation of tumor suppressor genes, can occur by point mutations or a loss of heterozygosity (LOH) in one allele (11,12). Changes in the expression of these genes can also contribute to the pathogenesis of cancer, and may be caused by environmental stimuli such as viruses, radiation, carcinogens, hormones, and growth factors (GFs) (6–10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knudson AG. Anti-oncogenes and human cancer. Proc Natl Acad Sci USA 1993;90:10, 914–10, 921.

    Google Scholar 

  2. Levine AJ. The tumor suppressor genes. Ann Rev Biochem 1993; 62: 623–651.

    Article  PubMed  CAS  Google Scholar 

  3. Carney D, Sikora K, eds. Genes and Cancer. John Wiley, New York, 1990.

    Google Scholar 

  4. Vogelstein B, Kinzler KW. The multi-step nature of cancer. Trends Genet 1993; 9: 138–141.

    Article  PubMed  CAS  Google Scholar 

  5. Eng C, Ponder B. Role of gene mutation in the genesis of familial cancers. Science 1992; 256: 668–670.

    Article  Google Scholar 

  6. Weinberg RA. Oncogenes and the Molecular Origins of Cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.

    Google Scholar 

  7. Kahn P, Graf T, eds. Oncogenes and Growth Control. Springer-Verlag, New York, 1986.

    Google Scholar 

  8. Hunter T. Oncogenes and cell proliferation. Curr Opin Genet Dev 1993; 3: 1–4.

    Article  Google Scholar 

  9. Bishop JM. Molecular themes in carcinogenesis. Cell 1991; 64: 235–248.

    Article  PubMed  CAS  Google Scholar 

  10. Hunter T. Cooperation between oncogenes. Cell 1991; 64: 249–270.

    Article  PubMed  CAS  Google Scholar 

  11. Marshall CJ. Tumor suppressor genes. Cell 1991; 64: 313–326.

    Article  PubMed  CAS  Google Scholar 

  12. Harris CC. p53: at the crossroads of molecular carcinogenesis and risk assessment. Science 1993;262: 1980,1981.

    Google Scholar 

  13. Goustin AS, Leof EB, Shipley GD, Moses HL. Growth factors and cancer. Cancer Res 1986; 46: 1015–1029.

    PubMed  CAS  Google Scholar 

  14. Aaronson SA. Growth factors and cancer. Science 1991; 254: 1146–1153.

    Article  PubMed  CAS  Google Scholar 

  15. Sporn MB, Roberts AB. Autocrine secretion: 10 years later. Ann Intern Med 1992; 117: 408–414.

    PubMed  CAS  Google Scholar 

  16. Pimentel E. Hormones, Growth Factors, and Oncogenes. CRC, Boca Raton, FL, 1987.

    Google Scholar 

  17. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol/Hematol 1995; 19: 183–232.

    Article  CAS  Google Scholar 

  18. Campbell ID, Bork P. Epidermal growth factor-like modules. Curr Opin Struct Biol 1993; 3: 385–392.

    Article  CAS  Google Scholar 

  19. Perrimon N, Perkins LA. There must be 50 ways to rule the signal: the case of the Drosophila EGF receptor. Cell 1997; 89: 13–16.

    Article  PubMed  CAS  Google Scholar 

  20. Schweitzer R, Shilo B-Z. A thousand and one roles for the Drosophila EGF receptor. Trends Genet 1997; 13: 191–196.

    Article  PubMed  CAS  Google Scholar 

  21. Groenen LC, Nice EC, Burgess AW. Structure-function relationships for the EGF/TGF-a family of mitogens. Growth Factors 1994; 11: 235–257.

    Article  PubMed  CAS  Google Scholar 

  22. Alroy I, Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combanitorial ligand-receptor interactions. FEBS Lett 1997; 410: 83–86.

    Article  PubMed  CAS  Google Scholar 

  23. Riese DJ III, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bio Essays 1998; 20: 41–48.

    Google Scholar 

  24. Chang H, Riese DJ III, Gilbert W, Stern DF, McMahan UJ. Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature 1997; 387: 509–516.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, et al. Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 1997; 94: 9562–9567.

    Article  PubMed  CAS  Google Scholar 

  26. Massagué J, Pandiella A. Membrane-anchored growth factors. Ann Rev Biochem 1993; 62: 515–541.

    Article  PubMed  Google Scholar 

  27. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990; 265: 7709–7712.

    PubMed  CAS  Google Scholar 

  28. Browne CA. Epidermal growth factor and transforming growth factor a. Baillière’s Clin Endocrinol Metab 1991; 5: 553–569.

    Article  PubMed  CAS  Google Scholar 

  29. Carpenter G. EGF: new tricks for an old growth factor. Curr Opin Cell Biol 1993; 5: 261–264.

    Article  PubMed  CAS  Google Scholar 

  30. Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 1989; 243: 1074–1076.

    Article  PubMed  CAS  Google Scholar 

  31. Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M Structure of heparin-binding EGF-like growth factor. J Biol Chem 1992; 267: 6205–6212.

    PubMed  CAS  Google Scholar 

  32. Holmes WE, Sliwkowski MX, Akita RW, et al. Identification of heregulin, a specific activator of p185 erb B2 Science 1992; 256: 1205–1210.

    Article  PubMed  CAS  Google Scholar 

  33. Falls DL, Rosen KM, Corfas G, Lane WS, Fischbach GD. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the Neu ligand family. Cell 1993; 72: 801–815.

    Article  PubMed  CAS  Google Scholar 

  34. Marchionni MA, Goodearl ADJ, Chen MS, et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 1993; 362: 312–318.

    Article  PubMed  CAS  Google Scholar 

  35. Peles E, Yarden Y. Neu and its ligands: from an oncogene to neural factors. Bioessays 1993; 15: 815–824.

    Article  PubMed  CAS  Google Scholar 

  36. Shing Y, Christofori G, Hanahan D, et al. Betacellulin: a mitogen from pancreatic beta cell tumors. Science 1993; 259: 1604–1607.

    Article  PubMed  CAS  Google Scholar 

  37. Ciccodicola A, Dono R, Obici S, Simeone A, Zollo M, Persico MG. Molecular characterization of a gene of the `EGF family’ expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J 1989; 8: 1987–1991.

    PubMed  CAS  Google Scholar 

  38. Brandt R, Normanno N, Gullick WJ, Lin J-H, Harkins R, Schneider D, et al. Identification and biological characterization of an epidermal growth factor-related protein: cripto-1. J Biol Chem 1994;269: 17, 320–17, 328.

    Google Scholar 

  39. Kinoshita N, Minshull J, Kirschner MW. The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. Cell 1995; 83: 621–630.

    Article  PubMed  CAS  Google Scholar 

  40. Shen MM, Wang H, Leder P. A differential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development 1997; 124: 429–442.

    PubMed  CAS  Google Scholar 

  41. Zhang J, Talbot WS, Schier AF. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 1998; 92: 241–251.

    Article  PubMed  CAS  Google Scholar 

  42. Mason S, Gullick WJ. Type 1 growth factor receptors: an overview of recent developments. Breast 1995; 4: 11–18.

    Article  Google Scholar 

  43. Hynes N, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1994; 1198: 165–184.

    PubMed  Google Scholar 

  44. Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984; 309: 418–425.

    Article  PubMed  CAS  Google Scholar 

  45. Coussens L, Yang-Feng TL, Liao YC, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with Neu oncogene. Science 1985; 230: 1132–1139.

    Article  PubMed  CAS  Google Scholar 

  46. Plowman GD, Whitney GS, Neubauer MG, et al. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci USA 1990; 87: 4905–4909.

    Article  PubMed  CAS  Google Scholar 

  47. Kraus MH, Issing W, Miki T, Popescu NC, and Aaronson SA. Isolation and characterization of ERBB3: a third member of the ERBB/epidermal growth factor receptor family: evidence for over-expression in a subset of human mammary tumors. Proc Natl Acad Sci USA 1989; 86: 9193–9197.

    Article  PubMed  CAS  Google Scholar 

  48. Plowman GD, Culouscou J-M, and Whitney GS, et al. Ligand-specific activation of HER4/p180er’B4 a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 1993; 90: 1746–1750.

    Article  PubMed  CAS  Google Scholar 

  49. Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996; 271: 5251–5257.

    Article  PubMed  CAS  Google Scholar 

  50. Beerli RR, Hynes NE. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 1996; 271: 6071–6076.

    Article  PubMed  CAS  Google Scholar 

  51. Elenius K, Paul S, Allison G, Sun J, Klagsbrun M. Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J 1997; 16: 1268–1278.

    Article  PubMed  CAS  Google Scholar 

  52. Alimandi M, Wang L-M, Bottaro D, Lee C-C, Kuo A, Frankel M, et al. Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors. EMBO J 1997; 16: 5608–5617.

    Article  PubMed  CAS  Google Scholar 

  53. Kannan S, De Santis M, Lohmeyer M, Riese D, Hynes NE, Smith GH, et al. Cripto stimulates the tyrosine phosphorylation of Shc and activates MAP-kinase in mammary epithelial cells. J Biol Chem 1997; 272: 3330–3335.

    Article  PubMed  CAS  Google Scholar 

  54. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y. Hierarchical network of interreceptor interaction determines signal transduction by neu differentiation factor/ neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16: 5276–5287.

    PubMed  CAS  Google Scholar 

  55. Karunagaran D, Tzahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 1996; 15: 254–264.

    PubMed  CAS  Google Scholar 

  56. Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2: the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16: 1647–1655.

    Article  PubMed  CAS  Google Scholar 

  57. Ling-Mei W, Kuo Alimandi M, Veri MC, Lee C-C, Kapoor V, et al. ErbB2 expression increases the spectrum and potency of ligand-mediated signal transduction through ErbB4. Proc Natl Acad Sci USA 1998; 95: 6809–6814.

    Article  Google Scholar 

  58. Tzahar E, Pinkas-Kramarski R, Moyer JD, Klapper LN, Alroy I, Levkowitz G, et al. Bivalence of EGF like ligands drives the ErbB signaling network. EMBO J 1997; 16, 4938–4950.

    Article  PubMed  CAS  Google Scholar 

  59. Gamett DC, Pearson G, Cerione RA, and Friedberg I. Secondary dimerization between members of the epidermal growth factor receptor family. J Biol Chem 1997;272:12, 052–12, 056.

    Google Scholar 

  60. Barnard JA, Graves-Deal R, Pittelkow MR, DuBois R, Cook P, Ramsey GW, et al. Auto-and cross-induction within the mammalian epidermal growth factor-related peptide family. J Biol Chem 1994; 269:22, 817–22, 822.

    Google Scholar 

  61. Medina D, Daniel C, eds. Experimental models of development function and neoplasia. J Mammary Gland Biol Neoplasia 1996; 1: 1–135.

    Google Scholar 

  62. Dickson RB, Lippman ME. Growth factors in breast cancer. Endocr Rev 1995; 16: 559–589.

    PubMed  CAS  Google Scholar 

  63. Borellini F, Oka T. Growth control and differentiation in mammary epithelial cells. Environ Health Perspect 1989; 80: 85–99.

    Article  PubMed  CAS  Google Scholar 

  64. Oka T, Yoshimura M, Lavandero S, et al. Control of growth and differentiation of the mammary gland by growth factors. J Dairy Sci 1991; 74: 2788–2800.

    Article  PubMed  CAS  Google Scholar 

  65. Clarke R, Dickson RB, Lippman ME. Hormonal aspects of breast cancer: growth factors, drugs and stromal interactions. Crit Rev Oncol/Hematol 1992; 12: 1–23.

    Article  CAS  Google Scholar 

  66. Ethier SP. Growth factor synthesis and human breast cancer progression. J Natl Cancer Inst 1995; 87: 964–973.

    Article  PubMed  CAS  Google Scholar 

  67. Normanno N, Ciardiello F, Brandt R, Salomon DS. Epidermal growth factor-related peptides in the pathogenesis of human breast cancer. Breast Cancer Res Treat 1994; 29: 11–27.

    Article  PubMed  CAS  Google Scholar 

  68. Medina D. Mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996; 1: 5–20.

    Article  PubMed  CAS  Google Scholar 

  69. Cunha GR, Horn YK. Role of mesenchymal-epithelial interactions in mammary gland development. J Mammary Gland Biol Neoplasia 1996; 1: 21–36.

    Article  PubMed  CAS  Google Scholar 

  70. Imagawa W, Bandyopadhyay GK, Nandi S. Regulation of mammary epithelial cell growth in mice and rats. Endocr Rev 1990; 11: 494–523.

    Article  PubMed  CAS  Google Scholar 

  71. DiAugustine RP. The epidermal growth factor family in the mammary gland and other target organs for ovarian steroids. In: Lippman ME, Dickson RB, eds. Mammary Tumorigenesis and Malignant Progression. Kluwer, Boston, 1994, pp. 131–160.

    Chapter  Google Scholar 

  72. Normanno N, Ciardiello F. EGF-related peptides in the pathophysiology of the mammary gland. J Mammary Gland Biol Neoplasia 1997; 2: 143–151.

    Article  PubMed  CAS  Google Scholar 

  73. DiAugustine RP, Richards RG, Sebastian J. EGF-related peptides and their receptors in mammary gland development. J Mammary Gland Biol Neoplasia 1997; 2: 109–118.

    Article  PubMed  CAS  Google Scholar 

  74. Liscia DS, Merlo G, Ciardiello F, et al. Transforming growth factor-a messenger RNA localization in the developing adult rat and human mammary gland by in situ hybridization. Dev Biol 1990; 140: 123–131.

    Article  PubMed  CAS  Google Scholar 

  75. Snedecker SM, Brown CF, DiAugustine RP. Expression and functional properties of TGFa and EGF during mouse mammary gland ductal morphogenesis. Proc Natl Acad Sci USA 1991; 88: 276–280.

    Article  Google Scholar 

  76. Ankrapp DP, Bennett JM, Haslam SZ. Role of epidermal growth factor in the acquisition of ovarian steroid hormone responsiveness in the normal mouse mammary gland. J Cell Physiol 1998; 174: 251–260.

    Article  PubMed  CAS  Google Scholar 

  77. Yang Y, Spitzer E, Meyer D, et al. Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J Cell Biol 1995; 131: 215–226.

    Article  PubMed  CAS  Google Scholar 

  78. Schroeder JA, Lee DC. Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ 1998; 9: 451–464.

    PubMed  CAS  Google Scholar 

  79. Vonderhaar BK. Regulation of development of the normal mammary gland by hormones and growth factors. In: Lippman ME, Dickson RB, eds. Breast Cancer: Cellular and Molecular Biology. Kluwer, Boston, 1988, pp. 251–266.

    Chapter  Google Scholar 

  80. Daniel CW, Silberstein GB. Local effects of growth factors. In: Lippman M, Dickson R, eds.Regulatory Mechanisms in Breast Cancer. Kluwer, Boston, 1991, pp. 79–93.

    Chapter  Google Scholar 

  81. Kenney NJ, Smith GH, Rosenberg K, Cutler ML, Dickson RB. Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ 1996; 7: 1769–1781.

    PubMed  CAS  Google Scholar 

  82. Hilakivi-Clarke L, Cho E, Raygada M, et al. Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor a, and estrogen receptor antagonist ICI 182,780. J Cell Physiol 1997; 170: 279–289.

    Article  PubMed  CAS  Google Scholar 

  83. Jones FE, Jerry DJ, Guarino BC, et al. Heregulin induces in vivo proliferation and differentiation of mammary epithelium into secretory lobuloalveoli. Cell Growth Differ 1996; 7: 1031–1038.

    PubMed  CAS  Google Scholar 

  84. Kenney NJ, Huang R-P, Johnson GR, et al. Detection and location of amphiregulin and cripto-1 expression in the developing postnatal mouse mammary gland. Mol Reprod Dev 1995; 41: 277–286.

    Article  PubMed  CAS  Google Scholar 

  85. Kenney NJ, Smith GH, Johnson MD, et al. Cripto-1 activity in the intact and ovariectomized virgin mouse mammary gland. Pathogenesis 1997; 1: 57–71.

    CAS  Google Scholar 

  86. Xie W, Paterson AJ, Chin E, et al. Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol Endocrinol 1997; 11: 1766–1781.

    Article  PubMed  CAS  Google Scholar 

  87. Spitzer E, Zschiesche W, Binas B, et al. EGF and TGFa modulate structural and functional differentiation of the mammary gland from pregnant mice in vitro: possible role of the arachidonic acid pathway. J Cell Biochem 1995; 57: 495–508.

    Article  PubMed  CAS  Google Scholar 

  88. Merlo GR, Graus-Porta D, Cella N, et al. Growth differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur J Cell Biol 1996; 70: 97–105.

    Article  PubMed  CAS  Google Scholar 

  89. De Santis ML, Kannan S, Smith GH, et al. Cripto-1 inhibits 13-casein expression in mammary epithelial cells through a p21`as-and phosphatidylinosito1–3 kinase-dependent pathway. Cell Growth Differ 1997; 8: 1257–1266.

    PubMed  Google Scholar 

  90. Kenney NJ, Smith GH, Maroulakou IG, et al. Detection of amphiregulin and Cripto-1 in mammary tumors from transgenic mice. Mol Carcinog 1996; 15: 44–56.

    Article  PubMed  CAS  Google Scholar 

  91. Martin G, Cricco G, Davio C, et al. Epidermal growth factor in NMU-induced mammary tumors in rats. Breast Cancer Res Treat 1998; 48: 175–185.

    Article  PubMed  CAS  Google Scholar 

  92. Ethier SP, Langton BC, Dilts CA. Growth factor-independent proliferation of rat mammary carcinoma cells by autocrine secretion of neu-differentiation factor/heregulin and transforming growth factor-a. Mol Carcinog 1996; 15: 134–143.

    Article  PubMed  CAS  Google Scholar 

  93. Ciardiello F, Dono R, Kim N, Persico MG, and Salomon DS. Expression of cripto, a novel gene of the epidermal growth factor gene family, leads to in vitro transformation of a normal mouse mammary epithelial cell line. Cancer Res 1991; 51: 1051–1054.

    PubMed  CAS  Google Scholar 

  94. Ciardiello F, McGeady ML, Kim N, et al. Transforming growth factor-a expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras proto-oncogene and overexpression of the transforming growth factor-a a complementary DNA leads to transformation. Cell Growth Differ 1990; 1: 407–420.

    PubMed  CAS  Google Scholar 

  95. Davies BR, Warren JR, Schmidt G, et al. Induction of a variety of preneoplasias and tumours in the mammary glands of transgenic rats. Biochem Soc Symp 1998; 63: 167–184.

    PubMed  CAS  Google Scholar 

  96. Krane IM, Leder P. NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 1996; 12: 1781–1788.

    PubMed  CAS  Google Scholar 

  97. Smith GH, Sharp R, Kordon EC, Jhappan C, Merlino G. Transforming growth factor-a promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells. Am J Pathol 1995; 147: 1081–1096.

    PubMed  CAS  Google Scholar 

  98. Halter SA, Dempsey P, Matsui Y, et al. Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor a: characterization of mammary gland and skin proliferations Am J Pathol 1992; 140: 1131–1146.

    CAS  Google Scholar 

  99. Guy CT, Webster MA, Schaller M, et al. Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992;89:10, 578–10, 582.

    Google Scholar 

  100. Sandgren EP, Schroeder JA, Qui TH, et al. Inhibition of mammary gland involution is associated with transforming growth factor a but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 1995; 55: 3915–3927.

    PubMed  CAS  Google Scholar 

  101. Schroeder JA, Lee DC. Transgenic mice reveal roles for TGFa and EGF receptor in mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 1997; 2: 119–130.

    Article  PubMed  CAS  Google Scholar 

  102. Cardiff RD. The biology of mammary transgenes: five rules. J Mammary Gland Biol Neoplasia 1996; 1: 61–74.

    Article  PubMed  CAS  Google Scholar 

  103. Muller WJ, Arteaga CL, Muthuswamy SK, et al. Synergistic interation of the neu proto-oncogene product and transforming growth factor a in the mammary epithelium of transgenic mice. Mol Cell Biol 1996; 16: 5726–5736.

    PubMed  CAS  Google Scholar 

  104. Amundadottir LT, Johnson MD, Merlino G, et al. Synergistic interaction of transforming growth factor a and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Differ 1995; 6: 737–748.

    PubMed  CAS  Google Scholar 

  105. Amundadottir LT, Nass SJ, Berchem GJ, et al. Cooperation of TGFa and c-Myc in mouse mammary tumorigenesis: coordinated stimulation of growth and suppression of apoptosis. Oncogene 1996; 13: 757–765.

    PubMed  CAS  Google Scholar 

  106. Mincione G, Bianco C, Kannan S, et al. Enhanced expression of heregulin in c-erbB-2 and c-Ha-ras transformed mouse and human mammary epithelial cells. J Cell Biochem 1996; 60: 437–446.

    Article  PubMed  CAS  Google Scholar 

  107. Salomon DS, Ciardiello F, Valverius EM, Kim N. The role of ras gene expression and transforming growth factor a production in the etiology and progression of rodent and human breast cancer. In: Lippman M, Dickson R, eds. Regulatory Mechanisms in Breast Cancer. Kluwer, Boston, 1991, pp. 107–157.

    Chapter  Google Scholar 

  108. Ciardiello F, Kim N, Hynes NE, et al. Induction of transforming growth factor a expression in mouse mammary epithelial cells after transformation with a point mutated c-Ha-ras protooncogene. Mol Endocrinol 1988; 2: 1202–1216.

    Article  PubMed  CAS  Google Scholar 

  109. Martinez-Lacaci I, Saceda M, Plowman G, et al. Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cells. Endocrinology 1995; 136: 3983–3992.

    Article  PubMed  CAS  Google Scholar 

  110. Bates SE, Davidson N, Valverius EM, et al. Expression of transforming growth factor a and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988; 2: 543–555.

    Article  PubMed  CAS  Google Scholar 

  111. Murphy LC, Dotzlaw H. Regulation of transforming growth factor a transforming growth factor 13 messenger ribonucleic acid abundance in T-47D human breast cancer cells. Mol Endocrinol 1989; 3: 611–616.

    Article  PubMed  CAS  Google Scholar 

  112. Saeki T, Cristiano A, Lynch MJ, et al. Regulation by estrogen through the 5’-flanking region of the transforming growth factor alpha gene. Mol Endocrinol 1991; 5: 1955–1963.

    Article  PubMed  CAS  Google Scholar 

  113. El-Ashry D, Chrysogelos S, Lippman ME, et al. Estrogen induction of TGF-a is mediated by an estrogen response element composed of two imperfect palindromes. J Steroid Biochem 1996; 59: 261–269.

    Article  CAS  Google Scholar 

  114. Kenney N, Saeki T, Gottardis M, et al. Expression of transforming growth factor a (TGFa) antisense mRNA inhibits the estrogen-induced production of TGFa and estrogen-induced proliferation of estrogen-responsive human breast cancer cells. J Cell Physiol 1993; 156: 497–514.

    Article  PubMed  CAS  Google Scholar 

  115. Ignar-Trowbridge DM, Pimentel M, Teng CT, et al. Cross talk between peptide growth factor and estrogen receptor signaling systems. Environ Health Perspect 1995; 103 (Suppl): 35–38.

    PubMed  CAS  Google Scholar 

  116. Murphy LC, Dotzlaw H, Wong MSJ, et al. Epidermal growth factor: receptor and ligand expression in human breast cancer. Semin Cancer Biol 1994; 1: 305–315.

    Google Scholar 

  117. Murphy LC, Murphy L.1, Dubik D, Bell GI, Shiu RPC. Epidermal growth factor gene expression in human breast cancer cells: regulation of expression by progestins. Cancer Res 1988; 48: 4555–4560.

    PubMed  CAS  Google Scholar 

  118. Normanno N, Selvam P, Qi C-F, et al. Amphiregulin as an autocrine growth factor for c-Ha-ras and c-erbB-2-transformed human mammary epithelial cells. Proc Natl Acad Sci USA 1994; 91: 2790–2794.

    Article  PubMed  CAS  Google Scholar 

  119. Normanno N, Qi C-F, Gullick WJ, et al. Expression of amphiregulin, cripto-1, and heregulin in human breast cancer cells. Int J Oncol 1993; 2: 903–911.

    PubMed  CAS  Google Scholar 

  120. Salomon DS, Normanno N, Ciardiello F, et al. The role of amphiregulin in breast cancer. Breast Cancer Res Treat 1995; 33: 103–114.

    Article  PubMed  CAS  Google Scholar 

  121. Ram TG, Kokeny K, Dilts CA, et al. Mitogenic activity of neu differentiation factor/heregulin mimics that of epidermal growth factor and insulin-like growth factor I in human mammary epithelial cells. J Cell Physiol 1995; 163: 589–596.

    Article  PubMed  CAS  Google Scholar 

  122. Ram TG, Dilts CA, Dziubinski ML, et al. Insulin-like growth factor and epidermal growth factor independence in human mammary carcinoma cells with c-erbB-2 gene amplification and progressively elevated levels of tyrosine-phosphorylated p185erbB-2. Mol Carcinog 1996; 15: 227–238.

    Article  PubMed  CAS  Google Scholar 

  123. Normanno N, Ciardiello F. EGF-related peptides in the pathophysiology of the mammary gland. J Mammary Gland Biol Neoplasia 1997; 2: 143–152.

    Article  PubMed  CAS  Google Scholar 

  124. Dotzlaw H, Miller T, Karvelas J, Murphy LC. Epidermal growth factor gene expression in human breast cancer biopsy samples: relationship to estrogen and progesterone receptor gene expression. Cancer Res 1990; 50: 4204–4208.

    PubMed  CAS  Google Scholar 

  125. Mizukami Y, Nonomura A, Noguchi M, et al. Immunohistochemical study of oncogene product Ras p21, c-Myc and growth factor EGF in breast carcinomas. Anticancer Res 1991; 11: 1485–1494.

    PubMed  CAS  Google Scholar 

  126. Pirinen R, Lipponen P, Aaltomaa S, et al. Prognostic value of epidermal growth factor expression in breast cancer. J Cancer Res Clin Oncol 1997; 123: 63–68.

    Article  PubMed  CAS  Google Scholar 

  127. Murray PA, Barrett-Lee P, Travers M, Luqmani Y, Powles T, Coombes RC. The prognostic significance of transforming growth factors in human breast cancer. Br J Cancer 1993; 67: 1408–1412.

    Article  PubMed  CAS  Google Scholar 

  128. Ciardiello F, Kim N, Liscia DS, et al. Transforming growth factor a (TGFa) mRNA expression in human breast carcinomas and TGFa activity in the effusions of breast cancer patients. J Natl Cancer Inst 1989; 81: 1165–1171.

    Article  PubMed  CAS  Google Scholar 

  129. Murray PA, Barrett-Lee PJ, Travers MT, Lugmani Y, Powles T, Coombes RC The prognostic significance of transforming growth factors in breast cancer. Br J Cancer 1993; 67: 1408–1412.

    Article  PubMed  CAS  Google Scholar 

  130. Dublin EA, Barnes DM, Wang DY, King RJB, Levison DA. TGF alpha and TGF beta expression in mammary carcinoma. J Pathol 1993; 170: 15–22.

    Article  PubMed  CAS  Google Scholar 

  131. De Jong JS, Van Diest PJ, Van Der Valk P, et al. Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. J Pathol 1998; 184: 44–52.

    Article  PubMed  Google Scholar 

  132. Artagaveytia N, Le Penven S, Falette N, et al. Epidermal growth factor and transforming growth factor alpha mRNA expression in human breast cancer biopsies: analysis in relation to estradiol, progesterone and EGF receptor content. J Steroid Biochem Mol Biol 1997; 60: 221–228.

    Article  PubMed  CAS  Google Scholar 

  133. Auvinen PK, Lipponen PK, Kataja V, et al. Prognostic significance of TGF-a expression in breast cancer. Acta Oncol 1996; 35: 995–998.

    Article  PubMed  CAS  Google Scholar 

  134. Castellani R, Visscher DW, Wykes S, et al. Interaction of transforming growth factor-alpha and epidermal growth factor receptor in breast carcinoma. Cancer 1994; 73: 344–349.

    Article  PubMed  CAS  Google Scholar 

  135. Barrett-Lee P, Travers M, Luqmani Y, Coombes RC. Transcripts for transforming growth factors in human breast cancer: clinical correlates. Br J Cancer 1990; 61: 612–617.

    Article  PubMed  CAS  Google Scholar 

  136. Qi C, Liscia DS, Normanno N, Merlo G, et al. Expression of transforming growth factor alpha, amphiregulin, and cripto-1 in human breast carcinomas. Br J Cancer 1994; 69: 903–910.

    Article  PubMed  CAS  Google Scholar 

  137. Umekita Y, Enokizono N, Sagara Y, et al. Immunohistochemical studies on oncogene products (EGFR, c-erbB-2) and growth factors (EGF, TGF-a) in human breast cancer: their relationship to oestrogen receptor status, histological grade, mitotic index and nodal status. Virchows Archiv A Pathol Anat Histopathol 1992; 420: 345–351.

    Article  CAS  Google Scholar 

  138. Perroteau I, Salomon DS, Debortoli M, et al. Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cells. Breast Cancer Res Treat 1986; 7: 201–210.

    Article  PubMed  CAS  Google Scholar 

  139. Parkam DH, Jankowski J. Transforming growth factor a in epithelial proliferative diseases of the breast. J Clin Pathol 1992; 45: 513–516.

    Article  Google Scholar 

  140. Macias A, Perez R, Hagerstrom T, Skoog L. Transforming growth factor a in human mammary carcinomas and their metastases. Anticancer Res 1989; 9: 177–182.

    PubMed  CAS  Google Scholar 

  141. Lundy J, Scuss A, Stanick D, McCormack ES, Kramer S, Sorvillo JM. Expression of neu protein, EGF and TGFa in breast cancer. Am J Pathol 1991; 138: 1527–1534.

    PubMed  CAS  Google Scholar 

  142. Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H. Down-regulation of transforming growth factor-a by tamoxifen in human breast cancer. Cancer 1993;4096:18, 428–18, 432.

    Google Scholar 

  143. Gregory H, Thomas CE, Willshire TR, et al. Epidermal growth factor and transforming growth factor a in patients with breast tumors. Br J Cancer 1989; 59: 605–609.

    Article  PubMed  CAS  Google Scholar 

  144. Arteaga CL, Hanauske AR, Clark GM, et al. Immunoreactive a transforming growth factor activity in effusions from cancer patients as a marker of tumor burden and patients prognosis. Cancer Res 1988; 48: 5023–5028.

    PubMed  CAS  Google Scholar 

  145. Kenney N, Johnson GR, Selvan MP, et al. Transforming growth factor alpha (TGFot) and amphiregulin (AR) as autocrine growth factors in nontransformed, immortalized 184A 1 N4 human mammary epithelial cells. Mol Cell Differ 1993; 1: 163–184.

    CAS  Google Scholar 

  146. Normanno N, Selvan MP, Qi C, et al. Amphiregulin as an autocrine growth factor for c-Ha-ras and c-erb B-2 transformed human mammary epithelial cells. Proc Natl Acad Sci USA 1994; 91: 2790–2794.

    Article  PubMed  CAS  Google Scholar 

  147. Li S, Plowman GD, Buckley SD, Shipley GD. Heparin inhibition of autonomous growth implicates amphiregulin as an autocrine growth factor for normal human mammary epithelial cells. J Cell Physiol 1992; 153: 103–111.

    Article  PubMed  CAS  Google Scholar 

  148. Li W, Park JW, Nuijens A, et al. Heregulin is rapidly translocated to the nucelus and its transport is correlated with c-myc induction in breast cancer cells. Oncogene 1996; 12: 2473–2477.

    PubMed  CAS  Google Scholar 

  149. LeJeune S, Leek R, Horak E, Plowman GD, Greenall M, Harris AL. Amphiregulin, epidermal growth factor receptor, and estrogen receptor expression in human primary breast cancer. Cancer Res 1993; 53: 3597–3602.

    PubMed  CAS  Google Scholar 

  150. Visscher D, Sarkar FH, Kasunic TC, et al. Clinicopathologic analysis of amphiregulin and heregulin immunostaining in breast neoplasia. Breast Cancer Res Treat 1997; 45: 75–80.

    Article  PubMed  CAS  Google Scholar 

  151. Peles E, Bacus SS, Koski RA, et al. Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 1992; 69: 205–216.

    Article  PubMed  CAS  Google Scholar 

  152. Holmes WE, Sliwkowski MX, Akita RW, et al. Identification of heregulin, a specific activator of p185 erb B-2. Science 1992; 256: 1205–1210.

    Article  PubMed  CAS  Google Scholar 

  153. Bacus SS, Gudkov AV, Zelnick CR, et al. Neu differentiation factor (heregulin) induces expression of intercellular adhesion molecule 1: implications for mammary tumors. Cancer Res 1993; 53: 5251–5261.

    PubMed  CAS  Google Scholar 

  154. Bacus SS, Zelnick CR, Plowman G, et al. Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Am J Clin Pathol 1994; 102 (Suppl 1): S13 - S24.

    PubMed  CAS  Google Scholar 

  155. Normanno N, Kim N, Wen D, et al. Expression of messenger RNA for amphiregulin, heregulin and cripto-1, three new members of the epidermal growth factor family, in human breast carcinomas. Breast Cancer Res Treat 1995; 35: 293–297.

    Article  PubMed  CAS  Google Scholar 

  156. Tang CK, Perez C, Grunt T, et al. Involvement of heregulin-B2 in the acquisition of the hormone-independent phenotype of breast cancer cells. Cancer Res 1996; 56: 3350–3358.

    PubMed  CAS  Google Scholar 

  157. Mueller H, Kueng W, Schoumacher F, et al. Selective regulation of steroid receptor expression in MCF-7 breast cancer cells by a novel member of the heregulin family. Biochem Biophys Res Commun 1995; 26: 1271–1278.

    Article  Google Scholar 

  158. Pietras RJ, Arboleda J, Reese DM, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 1995; 10: 2435–2447.

    PubMed  CAS  Google Scholar 

  159. Grunt TW, Saceda M, Martin MB, et al. Bidirectional interactions between the estrogen receptor and the cerbB-2 signaling pathways: heregulin inhibits estrogenic effects in breast cancer cells. IntJ Cancer 1995; 63: 560–567.

    Article  CAS  Google Scholar 

  160. Daly JM, Jannot CB, Beerli RR, et al. Neu differentiation factor induces ErbB2 down-regulation and apoptosis of ErbB2-overexpressing breast tumor cells. Cancer Res 1997; 57: 3804–3811.

    PubMed  CAS  Google Scholar 

  161. Dublin EA, Bobrow LG, Barnes DM, et al. Amphiregulin and cripto overexpression in breast cancer: relationship with prognosis and clinical and molecular variables. Int J Oncol 1995; 7: 617–622.

    PubMed  CAS  Google Scholar 

  162. Panico L, D’Antonio A, Salvatore G, et al. Differential immunohistochemical detection of transforming growth factor a, amphiregulin and cripto in normal and malignant breast tissues. Int J Cancer 1996; 65: 51–56.

    Article  PubMed  CAS  Google Scholar 

  163. Fox SB, Harris Adrian L. The epidermal growth factor receptor in breast cancer. J Mammary Gland Biol Neoplasia 1997; 2: 131–142.

    Article  PubMed  CAS  Google Scholar 

  164. Davidson NE, Gelmann EP, Lippman ME, Dickson RB. Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1987; 1: 216–223.

    Article  PubMed  CAS  Google Scholar 

  165. Valverius EM, Velu T, Shankar V, Ciardiello F, Kim N, Salomon DS. Over-expression of the epidermal growth factor receptor in human breast cancer cells fails to induce an estrogen-independent phenotype. Int J Cancer 1990; 46: 712–718.

    Article  PubMed  CAS  Google Scholar 

  166. Klijn JGM, Berns PMJJ, Schmitz PIM, Foekens JA. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5,232 patients. Endocr Rev 1992; 13: 3–17.

    PubMed  CAS  Google Scholar 

  167. Harris AL, Nicholson S. Epidermal growth factor receptors in human breast cancer. In: Lippman ME, Dickson RB, eds. Breast Cancer: Cellular and Molecular Biology. Kluwer, Boston, 1987, pp. 93–118.

    Google Scholar 

  168. Moscatello DK, Holdago-Madruga M, Godwin A, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 1995; 55: 5536–5539.

    PubMed  CAS  Google Scholar 

  169. Sainsbury JRC, Farndon JR, Needham GK, Malcolm AJ, Harris AL. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1987; 1: 1398–1402.

    PubMed  CAS  Google Scholar 

  170. Nicholson S, Richard J, Sainsbury C, et al. Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br J Cancer 1991; 63: 146–150.

    Article  PubMed  CAS  Google Scholar 

  171. Koenders PG, Beex LVAM, Kienhuis CBM, Kloppenborg PWC, Benraad TJ. Epidermal growth factor receptor and prognosis in human breast cancer: a prospective study. Breast Cancer Res Treat 1993; 25: 21–27.

    Article  PubMed  CAS  Google Scholar 

  172. Harlozinska A, Bar JK, Wenderski R, et al. Relationship between c-erbB-2 oncoprotein, epidermal growth factor receptor, and estrogen receptor expression in patients with ductal breast carcinoma: association with tumor phenotypes. In Vivo 1996; 10: 217–222.

    PubMed  CAS  Google Scholar 

  173. Nicholson S, Halcrow P, Sainsbury JRC, et al. Epidermal growth factor receptor (EGFr) status associated with failure of primary endocrine therapy in elderly postmenopausal patients with breast cancer. Br J Cancer 1988; 58: 810–814.

    Article  PubMed  CAS  Google Scholar 

  174. Nicholson RI, Gee JMW, Jones H, et al. erb B signalling and endocrine sensitivity of human breast cancer. In: Hurbin RN, et al., eds. EGF Receptor in Tumor Growth and Progression. Einstein-Schering Foundation Workshop, Springer-Verlag, Boston, 1997.

    Google Scholar 

  175. Nicholson S, Sainsbury JRC, Halcrow P, Chambers P, Farndon JR, Harris AL. Expression of epidermal growth factor receptors associated with lack of response to endocrine therapy in recurrent breast cancer. Lancet 1989; 1: 182–186.

    Article  PubMed  CAS  Google Scholar 

  176. Gullick WJ. The role of the epidermal growth factor receptor and the c-erbB-2 protein in breast cancer. Int J Cancer 1990; 5 (Suppl): 55–61.

    Article  CAS  Google Scholar 

  177. Bargmann CI, Weinberg RA. Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J 1988; 7: 2043–2052.

    PubMed  CAS  Google Scholar 

  178. DiFiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 1987; 237: 178–182.

    Article  CAS  Google Scholar 

  179. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185xER2 causes transformation and tumourigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA 1987; 84: 7159–7163.

    Article  PubMed  CAS  Google Scholar 

  180. Lemoine NR, Staddon S, Dickson C, Barnes DM, Gullick WJ. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 1989; 5: 237–239.

    Google Scholar 

  181. Rilke F, Colnaghi MI, Cascinelli N, et al. Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int J Cancer 1991; 49: 44–49.

    Article  PubMed  CAS  Google Scholar 

  182. Revillion F, Bonneterre J, Peyrat JP. ERBB2 oncogene in human breast cancer and its clinical significance. Eur J Cancer 1998; 34: 791–808.

    Article  PubMed  CAS  Google Scholar 

  183. Bacus SS, Chin D, Yarden Y, et al. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors. Am J Pathol 1996; 148: 549–558.

    PubMed  CAS  Google Scholar 

  184. DiGiovanna MP, Carter D, Flynn SD, et al. Functional assay for HER-2/neu demonstrates active signalling in a minority of HER-2/neu-overexpressing invasive human breast tumours. Br J Cancer 1996; 74: 802–806.

    Article  PubMed  CAS  Google Scholar 

  185. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  PubMed  CAS  Google Scholar 

  186. Antoniotti S, Maggioar P, Dati C, et al. Tamoxifen up-regulates c-erbB-2 expression in oestrogen-responsive breast cancer cells in vitro. Eur J Cancer 1992; 28: 318–321.

    Article  PubMed  CAS  Google Scholar 

  187. Yu D, Liu B, Jing T, et al. Overexpression of both p c-erbB2 and p 170md-1 renders breast cancer cells highly resistant to taxol. Oncogene 1998; 16: 2087–2094.

    Article  PubMed  CAS  Google Scholar 

  188. Gusterson BA, Machin LG, Gullick WJ, et al. c-erbB-2 expression in benign and malignant breast disease. Br J Cancer 1988; 58: 453–457.

    Article  PubMed  CAS  Google Scholar 

  189. Tsutsumi Y, Naber SP, DeLellis RA, et al. neu oncogene protein and epidermal growth factor receptor are independently expressed in benign and malignant breast tissues. Hum Pathol 1990; 21: 750–758.

    Article  PubMed  CAS  Google Scholar 

  190. Van De Vijer MJ, Peterse JL, Mooi WJ, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 1988; 319: 1239–1242.

    Article  Google Scholar 

  191. Barnes DM, Bartkova J, Camplejohn RS, Gullick WJ, Smith PJ, Millis RR. Overexpression of the c-erbB-2 oncoprotein: why does this occur more frequently in ductal carcinoma in situ than in invasive mammary carcinoma and is this of prognostic significance? Eur J Cancer 1992; 28: 644–648.

    Article  PubMed  CAS  Google Scholar 

  192. Guerin M, Gabillot M, Mathieu M-C, et al. Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer 1989; 43: 201–208.

    Article  PubMed  CAS  Google Scholar 

  193. Garcia I, Dietrich P-Y, Aapro M, Vauthier G, Vadas L, Engel E. Genetic alterations of c-myc c-erbB-2 and c-Ha-ras proto-oncogenes and clinical associations in human breast carcinomas. Cancer Res 1989; 49: 6675–6679.

    PubMed  CAS  Google Scholar 

  194. Dati C, Antoniotti S, Taverna D, Perroteau I, De Bortoli M. Inhibition of c-erbB-2 oncogene expression by estrogens in human breast cancer cells. Oncogene 1990; 5: 1001–1006.

    PubMed  CAS  Google Scholar 

  195. Gullick WJ, Love SB, Wright C, et al. c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes. Br J Cancer 1992; 63: 434–438.

    Article  Google Scholar 

  196. Richter King C, Kraus MH, DiFiore PP, Paik S, Kasprzyk PG. Implications of erbB-2 overexpression for basic science and clinical medicine. Semin Cancer Biol 1990; 1: 329–337.

    Google Scholar 

  197. Harris AL, Nicholson S, Sainsbury JRC, Farndon J, Wright C. Epidermal growth factor receptors in breast cancer: association with early relapse and death, poor response to hormones and interactions with neu. J Steroid Biochem 1989; 34: 123–131.

    Article  PubMed  CAS  Google Scholar 

  198. Osaki A, Toi M, Yamada H, Kawami H, Kuroi K, Toge T. Prognostic significance of co-expression of c-erbB-2 oncoprotein and epidermal growth factor receptor in breast cancer patients. Am J Surg 1992; 164: 323–326.

    Article  PubMed  CAS  Google Scholar 

  199. Prigent SA, Lemoine NR, Hughes CM, Plowman GD, Selden C, Gullick WJ. Expression of the c-erb B-3 protein in normal human adult and fetal tissues. Oncogene 1992; 7: 1273–1278.

    PubMed  CAS  Google Scholar 

  200. Kraus MH, Issing W, Mild T, Popescu NC, Aaronson SA. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 1989; 86: 9193–9197.

    Article  PubMed  CAS  Google Scholar 

  201. Lemoine NR, Barnes DM, Hollywood DP, et al. Expression of the ERBB3 gene product in breast cancer. Br J Cancer 1992; 66: 1116–1121.

    Article  PubMed  CAS  Google Scholar 

  202. Gasparini G, Gullick WJ, Maluta S, et al. c-erbB-3 and c-erbB-2 protein expression in node-negative breast carcinoma: an immunocytochemical study. Eur. J Cancer 1994; 30A: 16–22.

    Article  Google Scholar 

  203. Quinn CM, Ostrowski JL, Lane SA, et al. c-erbB-3 protein expression in human breast cancer: comparison with other tumour variables and survival. Histopathology 1994; 25: 247–252.

    Article  PubMed  CAS  Google Scholar 

  204. Travis A, Pinder SE, Robertson JFR, Bell JA, Wencyk P, Gullick WJ, et al. C-erbB-3 in human breast carcinoma: expression and relation to prognosis and established prognostic indicators. Br J Cancer 1996; 74: 229–233.

    Article  PubMed  CAS  Google Scholar 

  205. Carter HB, Coffey D. Magnitude of the problem in the United States. In: Coffey D, Resnick M, Dorr F, eds. A Multidisciplinary Analysis of Controversies in the Management of Prostate Cancer. Plenum, New York, 1988, pp. 1–9.

    Google Scholar 

  206. Carter HB, Piantadosi S, Isaacs JT. Clinical evidence for and implications of the multistep development of prostate cancer. J Urol 1990; 143: 742–746.

    PubMed  CAS  Google Scholar 

  207. Russell PJ, Bennett S, Stricker P. Growth factor involvement in progression of prostate cancer. Clin Chem 1998; 44: 705–723.

    PubMed  CAS  Google Scholar 

  208. Sherwood ER, Lee C. Epidermal growth factor-related peptides and the epidermal growth factor receptor in normal and malignant prostate. World J Urol 1995; 13: 290–296.

    Article  PubMed  CAS  Google Scholar 

  209. Culig Z, Hobisch A, Cronauer MV. Regulation of prostatic growth and function by peptide growth factors. Prostate 1996; 28: 392–405.

    Article  PubMed  CAS  Google Scholar 

  210. Ching KZ, Ramsey E, Pettigrew N, et al. Expression of mRNA for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines. Mol Cell Biochem 1993; 126: 151–158.

    Article  PubMed  CAS  Google Scholar 

  211. Myers RB, Kudlow JE, Grizzle WE. Expression of transforming growth factor-a, epidermal growth factor and epidermal growth factor receptor in adenocarcinoma of the prostate and benign prostatic hyperplasia. Modern Pathol 1993; 6: 733–737.

    CAS  Google Scholar 

  212. Leav I, McNeal JE, Ziar J, et al. The localization of transforming growth factor alpha and epidermal growth factor receptor in stromal and epithelial compartments of developing human prostate and hyperplastic, dysplastic, and carcinomatous lesions. Hum Pathol 1998; 29: 668–675.

    Article  PubMed  CAS  Google Scholar 

  213. Hiramatsu M, Kashimata M, Minami N, et al. Androgenic regulation of epidermal growth factor in the mouse ventral prostate. Biochem Int 1988; 17: 311–317.

    PubMed  CAS  Google Scholar 

  214. Connolly JM, Rose DP. Production of epidermal growth factor and transforming growth factor a by the adrenogen-responsive LNCaP human prostate cancer cell line. Prostate 1990; 16: 209–218.

    Article  PubMed  CAS  Google Scholar 

  215. McKeehan WL, Adams PS, Rosser MP. Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cjoleratoxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res 1984; 44: 4998–5010.

    Google Scholar 

  216. Peehl DM, Stamey TA. Serum-free growth of adult human prostatic carcinoma. In Vitro Cell Dev Biol 1986; 22: 82–90.

    Article  PubMed  CAS  Google Scholar 

  217. Schuurmans ALG, Bolt J, Mulder E. Androgens and transforming growth factor modulate the growth response to epidermal growth factor in human prostatic tumor cells. Mol Cell Endocrinol 1988; 60: 101–104.

    Article  PubMed  CAS  Google Scholar 

  218. Nishi N, Oya H, Matsumoto K, et al. Changes in gene expression of growth factors and their receptors during castration-induced involution and androgen-induced regrowth of rat prostates. The Prostate 1996; 28: 139–152.

    Article  PubMed  CAS  Google Scholar 

  219. Sehgal I, Bailey J, Hitzemann K, et al. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells. Mol Biol Cell 1994; 5: 339–347.

    PubMed  CAS  Google Scholar 

  220. Liu X-H, Wiley HS, Meikle AW. Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-a (TGF-a) and epidermal growth factor (EGF)/TGFa receptor. J Clin Endocrinol Metab 1993; 77: 1472–1478.

    Article  PubMed  CAS  Google Scholar 

  221. Morris GL, Dodd JG. Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines. J Urol 1990; 143: 1272–1274.

    PubMed  CAS  Google Scholar 

  222. Wilding GE, Valverius C, Knabbe C, et al. Role of transforming growth factor-alpha in human prostate cancer cell growth. Prostate 1989; 15: 1–12.

    Article  PubMed  CAS  Google Scholar 

  223. Hofer DR, Sherwood ER, Bromberg WD, et al. Autonomous growth of androgen-independent human prostatic carcinoma cells: role of transforming growth factor a. Cancer Res 1991; 51: 2780–2785.

    PubMed  CAS  Google Scholar 

  224. Rubenstein M, Mirochnik Y, Chou P, et al. Antisense oligonucleotide intralesional therapy for human PC-3 prostate tumors carried in athymic nude mice. J Surg Oncol 1996; 62: 194–200.

    Article  PubMed  CAS  Google Scholar 

  225. Schuurmans AL, Bolt J, Veldscholte J, et al. Regulation of growth of LNCaP human prostate tumor cells by growth factors and steroid hormones. J Steroid Biochem Mol Biol 1991; 40: 193–197.

    Article  PubMed  CAS  Google Scholar 

  226. Grasso AW, Wen D, Miller CM, et al. ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene 1997; 15: 2705–2716.

    Article  PubMed  CAS  Google Scholar 

  227. Knabbe C, Kellner U, Schmahl M, et al. Growth factors in human prostate cancer cells: implications for an improved treatment of prostate cancer. J Steroid Biochem Mol Biol 1991; 40: 185–192.

    Article  PubMed  CAS  Google Scholar 

  228. Kim JH, Sherwood ER, Sutkowski DM, et al. Inhibition of prostatic tumor cell proliferation by suramin: alterations in TGF alpha-mediated autocrine growth regulation and cell cycle distribution. J Urol 1991; 146: 171–176.

    PubMed  CAS  Google Scholar 

  229. Yang Y, Chisholm GD, Habib FK. Epidermal growth factor and transforming growth factor a concentrations in BPH and cancer of the prostate: their relationships with tissue androgene levels. Br J Cancer 1993; 67: 152–155.

    Article  PubMed  CAS  Google Scholar 

  230. Leav I, McNeal JE, Ziar J, et al. The localization of transforming growth factor alpha and epidermal growth factor receptor in stromal and epithelial compartments of developing human prostate and hyperplastic, dysplastic, and carcinomatous lesions. Human Pathol 1998; 29: 668–675.

    Article  CAS  Google Scholar 

  231. Leung HY, Weston J, Gullick WJ, et al. A potential autocrine loop between heregulin-alpha and erbB3 receptor in human prostatic adenocarcinoma. Br J Urol 1997; 79: 212–216.

    Article  PubMed  CAS  Google Scholar 

  232. Myers RB, Srivastava S, Oelschlager DK, et al. Expression of p160erbn-3 and p185erbg-2 in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. J Natl Cancer Inst 1994; 86: 1140–1145.

    Article  PubMed  CAS  Google Scholar 

  233. Lyne JC, Melhern MF, Finley GG, et al. Tissue expression of neu differentiation factor/heregulin and its receptor complex in prostate cancer and its biologic effects on prostate cancer cells in vitro. Cancer J Sci Am 1997; 3: 21–30.

    PubMed  CAS  Google Scholar 

  234. Harper ME, Goddard L, Glynne-Jones E, et al. Epidermal growth factor receptor expression by northern analysis and immunohistochemistry in benign and malignant prostatic tumours. Eur J Cancer 1995; 31A: 1492–1497.

    Article  Google Scholar 

  235. Davies P, Eaton C, France C, et al. Growth factor receptors and oncogene expression in prostate cells. Am J Clin Oncol 1988; 11: 1–6.

    Article  Google Scholar 

  236. Davies P, Eaton CL. Binding of epidermal growth factor by human normal, hypertrophie and carcinomatous prostate. Prostate 1989; 14: 123–132.

    Article  PubMed  CAS  Google Scholar 

  237. Ibrahim GK, Kerns BM, MacDonald JA, et al. Differential immunoreactivity of epidermal growth factor receptor in benign, dysplastic and malignant prostatic tissues. J Urol 1993; 149: 170–173.

    PubMed  CAS  Google Scholar 

  238. McCann A, Dervan PA, Gullick WJ, et al. c-erbB-2 oncoprotein expression in malignant and nonmalignant tissues. Proc Am Assoc Cancer Res 1989; 30: 914 (Abstract).

    Google Scholar 

  239. Ware JL, Maygarden SJ, Koontz WW, et al. Differential reactivity with anti-erb-B2 antiserum among human malignant and benign prostatic tissue. Proc Am Assoc Cancer Res 1989; 30: 1737 (Abstract).

    Google Scholar 

  240. Zhau HE, Wan DS, Zhou J, et al. Expression of e-erb B-2/neu proto-oncogene in human prostatic cancer tissues and cell lines. Mol Carcinog 1992; 5: 320–327.

    Article  PubMed  CAS  Google Scholar 

  241. Kuhn EJ, Kurnot RA, Sesterhenn IA, Chang EH, Moul JW. Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. J Urol 1993; 150: 1427–1433.

    PubMed  CAS  Google Scholar 

  242. Schwartz S, Caceres C, Morote J, et al. Over-expression of epidermal growth factor receptor and cerbB2/neu but not of int-2 genes in benign prostatic hyperplasia by means of semi-quantitative PCR. Int J Cancer 1998; 76: 464–467.

    Article  PubMed  CAS  Google Scholar 

  243. Ross JS, Sheehan C, Hayner-Buchan AM, et al. HER-2/neu gene amplification status in prostate cancer by fluorescence in situ hybridization. Hum Pathol 1997; 28: 827–833.

    Article  PubMed  CAS  Google Scholar 

  244. Ross JS, Sheehan CE, Hayner-Buchan AM, et al. Prognostic significance of HER-2/neu gene amplification status by fluorescence in situ hybridization of prostate carcinoma. Cancer 1997; 79: 2162–2170.

    Article  PubMed  CAS  Google Scholar 

  245. Gullick WJ. Inhibitors of growth factor receptors. In: Carney D, Sikora K, eds. Genes and Cancer. Wiley, New York, 1990, pp. 263–273.

    Google Scholar 

  246. Powis G, Kozikowski A. Growth factor and oncogene signalling pathways as targets for rational anticancer drug development. Clin Biochem 1991; 24: 385–397.

    Article  PubMed  CAS  Google Scholar 

  247. Garner A. Therapeutic potential of growth factors and their antagonists. Yale J Biol Med 1992; 65: 715–723.

    PubMed  CAS  Google Scholar 

  248. Shepard HM, Lewis GD, Sarup JC, et al. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol 1991; 11: 117–127.

    Article  PubMed  CAS  Google Scholar 

  249. Stancovski I, Peles E, Ben Levy R, et al. Signal transduction by the neu/erbB-2 receptor: a potential target for anti-tumor therapy. J Steroid Biochem Mol Biol 1992; 43: 95–103.

    Article  PubMed  CAS  Google Scholar 

  250. Hynes NE. Amplification and overexpression of the erbB-2 gene in human tumors: its involvement in tumor development, significance as a prognostic factor, and potential as a target for cancer therapy. Semin Cancer Biol 1993; 4: 19–26.

    PubMed  CAS  Google Scholar 

  251. Baselga J, Mendelsohn J. Type I receptor tyrosine kinase as target for therapy in breast cancer. J Mammary Gland Biol Neoplasia 1997; 2: 165–174.

    Article  PubMed  CAS  Google Scholar 

  252. Yang D, Wang S. Small molecule antagonsists targeting growth factors/receptors. Curr Pharm Design 1997; 3: 335–354.

    CAS  Google Scholar 

  253. Rusch V, Mendelsohn J, Dmitrovsky E. The epidermal growth factor receptor and its ligands as therapeutic targets in human tumors. Cytokine Growth Factor Revs 1996; 7: 133–141.

    Article  CAS  Google Scholar 

  254. O’Rourke DM, Greene MI. Immunologic approaches to inhibiting cell-surface-residing oncoproteins in human tumors. Immunol Res 1998; 17: 179–189.

    Article  PubMed  Google Scholar 

  255. Mori S, Mori Y, Mukaiyama T, et al. In vitro and in vivo release of soluble erbB-2 protein from human carcinoma cells. Jpn J Cancer Res 1990; 81: 489–494.

    Article  PubMed  CAS  Google Scholar 

  256. Carney WP, Hamer PJ, Petit D, et al. Detection and quantitation of the human neu oncoprotein. J Tumor Marker Oncol 1991; 6: 53–72.

    Google Scholar 

  257. Breuer B, Luo J-C, DeVivo I, et al. Detection of elevated c-erbB-2 oncoprotein in the serum and tissue in breast cancer. Med Sci Res 1993; 21: 383, 384.

    Google Scholar 

  258. Fleisher M. Prognostic markers other than hormone receptors in breast cancer. J Clin Ligand Assay 1998; 21: 41–46.

    Google Scholar 

  259. Brandt-Rauf PW. The c-erbB transmembrane growth factor receptors as serum biomarkers in human cancer studies. Mutation Res 1995; 333: 203–208.

    Article  PubMed  CAS  Google Scholar 

  260. Müller-Newen G, Köhne C, Heinrich PC. Soluble receptors for cytokines and growth factors. Int Arch Allergy Immunol 1996; 111: 99–106.

    Article  PubMed  Google Scholar 

  261. Arai Y, Yoshiki T, Yoshida O. c-erbB-2 oncoprotein: a potential biomarker of advanced prostate cancer. Prostate 1997; 1530: 195–201.

    Article  Google Scholar 

  262. Myers RB, Brown D, Oelschlager DK, et al. Elevated serum levels of p105 (erbB-2) in patients with advanced-stage prostatic adenocarcinoma. Int J Cancer 1996; 69: 398–402.

    Article  PubMed  CAS  Google Scholar 

  263. Mehta RR, McDermott JH, Hieken TJ, et al. Plasma c-erbB-2 levels in breast cancer patients: prognostic significance in predicting response to chemotherapy. J Clin Oncol 1998; 16: 2409–2416.

    PubMed  CAS  Google Scholar 

  264. Torrisi R, Zanardi S, Pensa F, et al. Epidermal growth factor content of breast cyst fluids from women with breast cancer or proliferative disease of the breast. Breast Cancer Res Treat 1995; 33: 219–224.

    Article  PubMed  CAS  Google Scholar 

  265. Gann P, Chatterton R, Vogelsong K, et al. Mitogenic growth factors in breast fluid obtained from healthy women: evaluation of biological and extraneous sources of variability. Cancer Epidemiol Bio-markers Prey 1997; 6: 421–428.

    CAS  Google Scholar 

  266. Fabian CJ, Zalles C, Kamel S, et al. Breast cytology and biomarkers obtained by random fine needle aspiration: use in risk assessment and early chemoprevention trials. J Cell Biochem 1997;28/29(Suppl): 101–110.

    Google Scholar 

  267. Baselga J, Tripathy J, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu overexpressing metastatic breast cancer. J Clin Oncol 1996; 14: 737–744.

    PubMed  CAS  Google Scholar 

  268. Schroeder W, Biesterfeld S, Zillessenm S, et al. Epidermal growth factor receptor-immunohistochemical detection and clinical significance for treatment of primary breast cancer. Anticancer Res 1997; 17: 2799–2802.

    PubMed  CAS  Google Scholar 

  269. Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRv III are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995; 55: 3140–3148.

    PubMed  CAS  Google Scholar 

  270. Viloria Petit AM, Rak J, Hung M-C, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo. Am J Pathol 1997; 151: 1523–1530.

    Google Scholar 

  271. Di Massimo AM, Di Loreto M, Pacilli A, et al. Immunoconjugates made of an anti-EGF receptor monoclonal antibody and type 1 ribosome-inactivating proteins from Saponaria ocymoides or Vaccaria pyramidata. Br. J Cancer 1997; 75: 822–828.

    Article  PubMed  Google Scholar 

  272. McNeil C. Herceptin raises its sights beyond advanced breast cancer. J Natl Cancer Inst 1998; 90: 882, 883.

    Google Scholar 

  273. Hancock MC, Langton BC, Chan T. A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res 1991; 51: 4575–4580.

    PubMed  CAS  Google Scholar 

  274. Lan I, Baselga J, Masui H, and Mendelsohn J. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 1993; 53: 4637–4642.

    Google Scholar 

  275. Baselga J, Norton L, Masui H, et al. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 1998; 85: 1327–1333.

    Article  Google Scholar 

  276. Baselga J, Norton L, Albanell J, et al. Recombinant humanized anti-HER2 antibody (HerceptinTM) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998; 58: 2825–2831.

    PubMed  CAS  Google Scholar 

  277. Lofts FJ, Hurst HC, Sternberg MJE, Gullick WJ. Specific short transmembrane sequences can inhibit transformation by the mutant neu growth factor receptor in vitro and in vivo. Oncogene 1993; 8: 2813–2820.

    PubMed  CAS  Google Scholar 

  278. Theuer CP, Pastan I. Immunotoxin and recombinant toxins in the treatment of solid carcinomas. Am J Surg 1993; 166: 284–288.

    Article  PubMed  CAS  Google Scholar 

  279. Jeschke M, Wels W, Dengler W, et al. Targeted inhibition of tumor-cell growth by recombinant heregulin-toxin fusion proteins. Int. J Cancer 1995; 60: 730–739.

    Article  PubMed  CAS  Google Scholar 

  280. Fiddes RJ, Janes PW, Sanderson GM, et al. Heregulin (HRG)-induced mitogenic signaling and cytotoxic activity of a HRG/PE40 ligand toxin in human breast cancer cells. Cell Growth Differ 1995; 6: 1567–1577.

    PubMed  CAS  Google Scholar 

  281. Groner B, Wick B, Jeschke M, et al. Intra-tumoral application of a heregulin-exotoxin-a fusion protein causes rapid tumor regression without adverse systemic or local effects. Int J Cancer 1997; 70: 682–687.

    Article  PubMed  CAS  Google Scholar 

  282. Fominaya J, Uherek C, Wels W. A chimeric fusion protein containing transforming growth factor-alpha mediates gene transfer via binding to the EGF receptor. Gene Ther 1998; 5: 521–530.

    Article  PubMed  CAS  Google Scholar 

  283. Yang D, Kuan C-T, Payne J. Recombinant heregulin-pseudomonas exotoxin fusion proteins: interactions with the heregulin receptors and antitumor activity in vivo. Clin Cancer Res 1998; 4: 993–1004.

    PubMed  CAS  Google Scholar 

  284. Osherov N, Gazit A, Gilon C, Levitzki A. Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J Biol Chem 1993;268:11, 134–11, 142.

    Google Scholar 

  285. Fry DW, Nelson JM, Slintak V, et al. Biochemical and antiproliferative properties of 4- [ar(alk)ylamino] pyridopyrimidines, a new chemical class of potent and specific epidermal growth factor receptor tyrosine kinase inhibitor. Biochem Pharmacol 1997; 54: 877–887.

    Article  PubMed  CAS  Google Scholar 

  286. Kelloff GJ, Fay JR, Steele VE, et al. Epidermal growth factor receptor tyrosine kinase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prey 1996; 5: 657–666.

    CAS  Google Scholar 

  287. Bos M, Mendelsohn J, Kim Y-M, et al. PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res 1997; 3: 2099–2106.

    PubMed  CAS  Google Scholar 

  288. Lydon NB, Mett H, Mueller M, et al. A potent protein-tyrosine kinase inhibitor which selectively blocks proliferation of epidermal growth factor receptor-expressing tumor cells in vitro and in vivo. Int J Cancer 1998; 76: 154–163.

    Article  PubMed  CAS  Google Scholar 

  289. Sizeland AM, Burgess AW. Anti-sense transforming growth factor a oligonucleotides inhibit autocrine stimulated proliferation of a colon carcinoma cell line. Mol Biol Cell 1992; 3: 1235–1243.

    PubMed  CAS  Google Scholar 

  290. Moroni MC, Willingham MC, Beguinot L. EGF-R antisense RNA blocks expression of the epidermal growth factor receptor and suppresses the transforming phenotype of a human carcinoma cell line. J Biol Chem 1992; 267: 2714–2722.

    PubMed  CAS  Google Scholar 

  291. Trojan J, Blossey BK, Johnson TR, et al. Loss of tumorigenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of insulin-like growth factor I. Proc Natl Acad Sci USA 1992; 89: 4874–4878.

    Article  PubMed  CAS  Google Scholar 

  292. Shaw Y-T, Chang S-H, Chiou S-T, Chang W-C, Lai M-D. Partial reversion of transformed phenotype of B104 cancer cells by antisense nucleic acids. Cancer Lett 1993; 69: 27–32.

    Article  PubMed  CAS  Google Scholar 

  293. Rubenstein M, Mirochnik Y, Ray V, et al. Lack of toxicity associated with the systemic administration of antisense oligonucleotides for treatment of rats bearing LNCaP prostate tumors. Med Oncol 1997; 14: 131–136.

    Article  PubMed  CAS  Google Scholar 

  294. Dixit M, Yang J-L, Poirier MC, et al. Abrogation of cisplatin-induced programmed cell death in human breast cancer cells by epidermal growth factor antisense RNA. J Natl Cancer Inst 1997; 89: 365–373.

    Article  PubMed  CAS  Google Scholar 

  295. Sacco MG, Barbieri O, Piccini D, et al. In vitro and in vivo antisense-mediated growth inhibition of a mammary adenocarcinoma from MMTV-neu transgenic mice. Gene Ther 1998; 5: 388–393.

    Article  PubMed  CAS  Google Scholar 

  296. Yamazaki H, Kijima H, Ohnishi Y, et al. Inhibition of tumor growth by ribozyme-mediated suppression of aberrant epidermal growth factor receptor gene expression. J Natl Cancer Inst 1998; 90: 581–587.

    Article  PubMed  CAS  Google Scholar 

  297. Asano T, Kleinerman ES. Liposome-encapsulated MTP-PE: a novel biologic agent for cancer therapy. J Immunother 1993; 14: 286–292.

    Article  CAS  Google Scholar 

  298. Moscatello DK, Ramirez G, Wong AJ. A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors. Cancer Res 1997; 57: 1419–1424.

    PubMed  CAS  Google Scholar 

  299. Travis J. Novel anticancer agents move closer to reality. Science 1993; 260: 1877, 1878.

    Google Scholar 

  300. Kohl NE, Mosser SD, deSolms SJ, et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934–1936.

    Article  PubMed  CAS  Google Scholar 

  301. James GL, Goldstein JL, Brown MS, et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 1993; 260: 1937–1942.

    Article  PubMed  CAS  Google Scholar 

  302. Kelloff GJ, Lubet RA, Fay JR, et al. Farnesyl protein transferase inhibitors as potential cancer chemopreventives. Cancer Epidermiol Biomarkers Prey 1997; 6: 267–282.

    CAS  Google Scholar 

  303. Gibbs JB, Oliff A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Ann Rev Pharmacol Toxicol 1997; 37: 143–166.

    Article  CAS  Google Scholar 

  304. Mangues R, Corral T, Kohl NE, et al. Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Cancer Res 1998; 58: 1253–1259.

    PubMed  CAS  Google Scholar 

  305. Li N, Batzer A, Daly R, et al. Guanine-nucleotide-releasing factor hSosl binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 1993; 363: 15–16.

    Article  Google Scholar 

  306. Cannistra SA, Niloff JM. Cancer of the uterine cervix. N Engl J Med 1996; 334: 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  307. Mosny DS, Herholtz J, Degan W, Bender HG. Immunhistochemical investigations of steroid receptors in normal and neoplastic squamous epithelium of the uterine cervix. Gynecol Oncol 1989; 35: 373–377.

    Article  PubMed  CAS  Google Scholar 

  308. Ciocca DR, Roig LM. Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocr Rev 1995; 16: 35–62.

    PubMed  CAS  Google Scholar 

  309. Soutter WP, Pegoraro RJ, Green-Thompson RW, Naidoo DV, Joubert SM, Philpott RM. Nuclear and cytoplasmatic oestrogen receptors in squamous carcinoma of the cervix. Br J Cancer 1981; 44: 154–159.

    Article  PubMed  CAS  Google Scholar 

  310. Martin JD, Hahnel R, McCartney AJ, Woodings T. Prognostic value of estrogen receptors in cancer of the uterine cervix. New Engl J Med 1982; 306: 485.

    PubMed  CAS  Google Scholar 

  311. Martin JD, Hahnel R, McCartney AJ, DeKlerk N. The influence of estrogen and progesterone receptors on survival in patients with carcinoma of the uterine cervix. Gynecol Oncol 1986; 23: 329–335.

    Article  PubMed  CAS  Google Scholar 

  312. Darne J, Soutter WP, Ginsberg R, Sharp F. Nuclear and “cytoplasmatic” estrogen and progsterone receptors in squamous cell carcinoma of the cervix. Gynecol Oncol 1990; 38: 216–219.

    Article  PubMed  CAS  Google Scholar 

  313. Hunter RE, Longcope C, Keough P. Steroid hormone receptors in carcinoma of the cervix. Cancer 1987; 60: 392–396.

    Article  PubMed  CAS  Google Scholar 

  314. Harding M, McIntosh J, Paul J, Symonds RP, Reed N, Habeshaw T, Stewart M, Leake RE. Oestrogen and progesterone receptors in carcinoma of the cervix. Clin Oncol 1990; 2: 313–317.

    Article  CAS  Google Scholar 

  315. Syrjala P, Kontula K, Janne O, Kuppila A, Vihko R. Steroid receptors in normal and neoplastic human uterine tissue. In: Brush MG, King RJB, Taylor R, eds. Endometrial Cancer. Bailliere Tindall, London, 1978, pp. 242–260.

    Google Scholar 

  316. Leake R. Cervical cancer: hormones growth factors and cytokines. In: Langdon SP, Miller WR, Berchuck A, eds. Biology of Female Cancer. CRC, Boca Raton, FL, 1997, pp. 245–250.

    Google Scholar 

  317. Gao YL, Twiggs LB, Leung BS, Yu WCY, Potish RA, Okagaki T, Adcock LL, Prem KA. Cytoplasmatic estrogen and progesterone receptors in primary cercival carcinoma: clinical and histopathologic correlates. Am J Obstet Gynecol 1983; 146: 299–306.

    PubMed  CAS  Google Scholar 

  318. Ghandour FA, Attanoos R, Nahar K, Gee JW, Brigrigg A, Ismail SM. Immunocytochemical localization of oestrogen and progesterone receptors in primary adenocarcinoma of the cervix. Histopathology 1994; 24: 49–55.

    Article  PubMed  CAS  Google Scholar 

  319. Bhattacharya D, Redkar A, Mittra I, Sutaria U, MacRae KD. Oestrogen increases S-phase fraction and oestrogen and progesterone receptors in human cervical cancer in vitro. Br J Cancer 1997; 75: 554–558.

    Article  PubMed  CAS  Google Scholar 

  320. Twiggs LB, Potish RA, Leung BS, Carson LF, Adcock LL, Savage JE, Prem JE. Cytosolic estrogen and progesterone receptors as prognostic parameters in stage IB cervical carcinoma. Gynecol Oncol 1987; 28: 156–160.

    Article  PubMed  CAS  Google Scholar 

  321. Fujimoto J, Fujita H, Hosoda S, Okada H, Tamaya T. Prognosis of cervical cancers with reference to steroid receptors. Nippon Gan Chiryo Gakkai Shi 1989; 24: 21–31.

    PubMed  CAS  Google Scholar 

  322. Bates SE, Davidson NE, Valverius EM, Freter CE, Dickson RB, Tam JP, et al. Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988; 2: 543–555.

    Article  PubMed  CAS  Google Scholar 

  323. Salomon DS, Kidwell WR, Kim N, Ciardiello F, Bates SE, Valverius E, et al. Modulation by estrogen and growth factors of transforming growth factor-alpha and epidermal growth factor receptor expression in normal and malignant human mammary epithelial cells. Recent Res Cancer Res 1989; 113: 57–69.

    Article  CAS  Google Scholar 

  324. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19: 83–232.

    Article  Google Scholar 

  325. Martinez-Lacaci I, Saceda M, Plowman GD, Johnson GR, Normanno N, Salomon DS, Dickson RB. Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cell lines. Endocrinology 1995; 136: 3983–3992.

    Article  PubMed  CAS  Google Scholar 

  326. Rorke EA. Antisense human papillomavirus (HPV) E6/E7 expression, reduced stability of epidermal growth factor, and diminished growth of HPV-positive tumor cells. J Natl Cancer Inst 1997; 89: 1243–1246.

    Article  PubMed  CAS  Google Scholar 

  327. Arends MJ, Buckley CH, Wells M. Aetiology, pathogenesis, and pathology of cervical neoplasia. J Clin Pathol 1998; 51: 96–103.

    Article  PubMed  CAS  Google Scholar 

  328. Stöppler H, Conrad Stöppler M, Schlegel R. Transforming proteins of the papilloma viruses. Inter-virology 1994; 37: 168–179.

    Google Scholar 

  329. Kubbutat MHG, Vousden KH. Role of E6 and E7 oncoproteins in HPV-induced anogenital malignancies. Semin Virol 1996; 7: 295–304.

    Article  CAS  Google Scholar 

  330. Galloway DA, McDougall JK. The disruption of cell cycle checkpoints by papillomavirus oncoproteins contributes to anogenital neoplasia. Semin Cancer Biol 1996; 7: 309–315.

    Article  PubMed  CAS  Google Scholar 

  331. Jones DL, Munger K. Interactions of the human papillomavirus E7 protein with cell cycle regulators. Semin Cancer Biol 1996; 7: 327–337.

    Article  PubMed  CAS  Google Scholar 

  332. Huibregtse JM, Beaudenon SL. Mechanism of HPV E6 proteins in cellular transformation. Semin Cancer Biol 1996; 7: 317–326.

    Article  PubMed  CAS  Google Scholar 

  333. Leechanachai P, Banks L, Moreau F, Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 1992; 7: 19–25.

    PubMed  CAS  Google Scholar 

  334. Straight SW, Hinkle PM, Jewers RJ, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 1993; 67: 4521–4532.

    PubMed  CAS  Google Scholar 

  335. Maruo T, Yamasaki M, Ladines-Llave CA, Mochizuki M. Immunohistochemical demonstration of elevated expression of epidermal growth factor receptor in the neoplastic changes of cervical squamous epithelium. Cancer 1992; 69: 1182–1187.

    Article  PubMed  CAS  Google Scholar 

  336. Berchuck A, Rodriguez G, Kamel A, Soper JT, Clark-Pearson DL, Bast RC. Expression of epidermal growth factor receptor and ErbB-2 in normal and neoplastic cervix, vulva and vagina. Obstet Gynecol 1990; 76: 381–387.

    PubMed  CAS  Google Scholar 

  337. Berchuck A, Rodriguez G, Kinney RB, Soper JT, Dodge RK, Clarke-Pearson DL, Bast RC Jr. Over-expression of HER-2/neu in endometrial cancer is associated with advanced stage disease. Am J Obstet Gynecol 1991; 164: 15–21.

    PubMed  CAS  Google Scholar 

  338. Gullick WJ, Marsden JJ, Whittle N, Ward B, Bobrow L, Waterfield M. Expression of epidermal growth factor receptors on human cervical, ovarian and vulvar carcinomas. Cancer Res 1986; 46: 285–292.

    PubMed  CAS  Google Scholar 

  339. Tervahauta A, Syrjanen S, Syrjanen K. Epidermal growth factor receptor, c-berbB-2 proto-oncogene and estrogen receptor expression in human pillomavirus lesions of the uterine cervix. Int J Gynecol Pathol 1994; 13: 234–240.

    Article  PubMed  CAS  Google Scholar 

  340. Doeberitz M, Gissmann L, Zur Hausen H. Growth-regulating functions of human papillomavirus early gene products in cervical cancer cells acting dominant over enhanced epidermal growth factor receptor expression. Cancer Res 1990; 50: 3730–3736.

    Google Scholar 

  341. Woodworth CD, McMullin E, Iglesias M, Plowman GD. Interleukin la and tumor necrosis factor a stimulate autocrine amphiregulin expression and proliferation of human papillomavirus-immortalized and carcinoma-derived cervical epithelial cells. Proc Natl Acad Sci USA 1995; 92: 2840–2844.

    Article  PubMed  CAS  Google Scholar 

  342. Hu G, Liu W, Mendelsohn J, Ellis LM, Radinsky R, Andreeff M, Deisseroth AB. Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J Natl Cancer Inst 1997; 89: 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  343. Von Knebel-Doeberitz M, Rittmuller C, zur Hausen H, Durst M. Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6/E7 antisense RNA. Int J Cancer 1992;51:51, 831–51, 834.

    Google Scholar 

  344. Hamada K, Sakaue M, Alemany R, Zhang WW, Horio Y, Roth JA, et al. Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol Oncol 1996; 63: 219–227.

    Article  PubMed  CAS  Google Scholar 

  345. Rusch V, Mendelsohn J, Dmitrovsky E. The epidermal growth factor receptor and its ligands as therapeutic targets in human tumors. Cytokine Growth Factor Rev 1996; 7: 133–141.

    Article  PubMed  CAS  Google Scholar 

  346. Brunton VG, Carlin S, Workman P. Alterations in EGF-dependent proliferative and phosphorylation events in squamous cell carcinoma cell lines by a tyrosine kinase inhibitor. Anticancer Drug Des 1994; 9: 311–329.

    PubMed  CAS  Google Scholar 

  347. Peto M, Tolle-Ersu I, Krysch HG, Klock G. Epidermal growth factor induction of human papillomavirus type 16 E6/E7 mRNA in tumor cells involves two AP-1 binding sites in the viral enhancer. J Gen Virol 1995; 76: 1945–1958.

    Article  PubMed  CAS  Google Scholar 

  348. Pfeiffer D, Spranger J, Al-Deiri M, Kimmig R, Fisseler-Eckhoff A, Scheidel P, Schatz H, Jensen A, Pfeiffer A. mRNA expression of ligands of the epidermal-growth-factor-receptor in the uterus. Int J Cancer 1997; 72: 581–586.

    Article  PubMed  CAS  Google Scholar 

  349. Konishi I, Ishikawa Y, Wang S-Y, Wang D-P, Koshiyama M, Mandai M, Komatsu T, Yamamoto S, Mori T. Expression of transforming growth factor-a in the normal cervix and in benign and malignant lesions of the uterine cervix. Br. J Obstet Gynaecol 1994; 101: 325–329.

    Article  PubMed  CAS  Google Scholar 

  350. Hembree JR, Agarwal C, Eckert RL. Epidermal growth factor suppresses insulin-like growth factor binding protein 3 level in human papillomavirus type 16-immortalized cervical epithelial cells and thereby potentiates the effects of insulin-like growth factor-1. Cancer Res 1994; 54: 3160–3166.

    PubMed  CAS  Google Scholar 

  351. Ueda M, Ueki M, Yamada T, Okamoto Y, Maeda T, Sugimoto O, OtsukiY. Scatchard analysis of EGF receptor and effects of EGF on growth and TA-4 production of newly established uterine cervical cancer cell line (OMC-1). Hum Cell 1989; 2: 401–410.

    PubMed  CAS  Google Scholar 

  352. Steller MA, Delgado CH, Zou Z. Insulin-like growth factor II mediates epidermal growth factor-induced mitogenesis in cervical cancer cells. Proc Natl Acad Sci USA 1995;92:11, 970–11, 974.

    Google Scholar 

  353. Steller MA, Delgado CH, Bartels CJ, Woodworth CD, Zou Z. Overexpression of the insuline-like growth factor-1 receptor and autocrine stimulation in human cervical cancer cells. Cancer Res 1996; 56: 1761–1765.

    PubMed  CAS  Google Scholar 

  354. Tonkin KS, Berger M, Ormerod M. Epidermal growth factor status in four carcinoma of the cervix cell lines. Int J Gynecol Cancer 1991; 1: 185–192.

    Article  Google Scholar 

  355. Donato NJ, Gallick GE, Steck PA, Rosenblum MG. Tumor necrosis factor modulates epidermal growth factor receptor phosphorylation and kinase activity in human tumor cells. Correlation with cytotoxicity. J Biol Chem 1989;264:20, 474–20, 481.

    Google Scholar 

  356. Nishikawa K, Rosenblum MG, Newman RA, Pandita TK, Hittelman WN, Donato NJ. Resistance of human cervical carcinoma cells to tumor necrosis factor correlates with their increased sensitivity to cisplatin: evidence of a role for DNA repair and epidermal growth factor receptor. Cancer Res 1992; 52: 4758–4765.

    PubMed  CAS  Google Scholar 

  357. Donato NJ, Yan DH, Hung MC, Rosenblum MG. Epidermal growth factor receptor expression and function control cytotoxic responsiveness to tumor necrosis factor in ME-180 squamous carcinoma cells. Cell Growth Differ 1993; 4: 411–419.

    PubMed  CAS  Google Scholar 

  358. Zheng ZS, Goldsmith LA. Modulation of epidermal growth factor receptors by retinoic acid in ME 180. Cancer Res 1990; 50: 1201–1205.

    PubMed  CAS  Google Scholar 

  359. Ueda M, Ueki M, Terai Y, Morimoto A, Fujii H, Yoshizawa K, Yanagihara T. Stimulatory effects of EGF and TGF-a on invasive activity and 5-deoxy-5-fluorouridine sensitivity in uterine cervical-carcinoma SKG-IIIB cells. Int J Cancer 1997; 72: 1027–1033.

    Article  PubMed  CAS  Google Scholar 

  360. Ueda M, Ueki M, Sugimoto O. Characterization of epidermal growth factor (EGF) receptor and biological effect of EGF on human uterine cervical adenocarcinoma cell line OMC-4. Hum Cell 1993; 6: 218–225.

    PubMed  CAS  Google Scholar 

  361. Ozanne B, Richards CS, Hendler F, Burns D, Gusterson B. Overexpression of the EGF receptor is a hall mark of squamous cell carcinomas. J Pathol 1986; 149: 9–14.

    Article  PubMed  CAS  Google Scholar 

  362. Pfeiffer D, Stellwag B, Pfeiffer A, Borlinghaus P, Meier W, Scheidel P. Clinical implications of the epidermal growth factor receptor in the squamous cell carcinoma of the uterine cervix. Gynecol Oncol 1989; 33: 146–150.

    Article  PubMed  CAS  Google Scholar 

  363. Kimmig R, Pfeiffer D, Landsmann H, Hepp H. Quantitative determination of the epidermal growth factor receptor in cervical cancer and normal cervical epithelium by 2-color flow cytometry: evidence for downregulation in cervical cancer. Int J Cancer 1997; 74: 365–373.

    Article  PubMed  CAS  Google Scholar 

  364. Stellwag B, Scheidel P, Pfeiffer D, Hepp H. EGF receptor and EGF-like activity as prognostic factors in cervix cancer. Geburtsh Frauenheilkd 1993; 53: 177–181.

    Article  CAS  Google Scholar 

  365. Pfeiffer D, Kimmig R, Herrmann J, Ruge M, Fisseler-Eckhoff A, Scheidel P, et al. Epidermal growth factor receptor correlates negatively with cell density in cervical squamous epithelium and is down-regulated in cancers of the uterus. Int J Cancer 1998; 79: 49–55.

    Article  PubMed  CAS  Google Scholar 

  366. Hale RJ, Buckley CH, Fox H, Williams J. Prognostic value of c-erbB-2 expression in uterine cervical carcinoma. J Clin Pathol 1992; 45: 594–596.

    Article  PubMed  CAS  Google Scholar 

  367. Hale RJ, Buckley CH, Gullick WJ, Fox H, Williams J, Wilcox FL. Prognostic value of epidermal growth factor expression in cervical carcinoma. J Clin Pathol 1993; 46: 149–153.

    Article  PubMed  CAS  Google Scholar 

  368. Hayashi Y, Hachisuga T, Iwasaka T, Fukada K, Okuma Y, Yokoyama M, Sugimori H. Expression of ras oncogene product and EGF receptor in cervical lymph node involvement. Gynecol Oncol 1991; 40: 147–151.

    Article  PubMed  CAS  Google Scholar 

  369. Pateisky N, Schatten C, Vavra N, Ehrebock P, Angelberger P, Barrada M, Epenetos A. Lymphoscintigraphy using epidermal growth factor as tumour-seeking agent in uterine cervical cancer. Wien Klin Wochenschr 1991; 103: 654–656.

    PubMed  CAS  Google Scholar 

  370. Goeppinger A, Wittmaack FM, Wintzer HO, Ikenberg H, Bauknecht T. Localization of human epidermal growth factor receptor in cervical intraepithelial neoplasias. J Cancer Res Clin Oncol 1989; 115: 259–263.

    Article  Google Scholar 

  371. Kim JW, Kim YT, Kim DK, Song CH, Lee JW. Expression of epidermal growth factor receptor in carcinoma of the cervix. Gynecol Oncol 1996; 60: 283–287.

    Article  PubMed  CAS  Google Scholar 

  372. Costa MJ, Walls J, Trelford JD. c-erbB-2 oncoprotein overexpression in uterine cervix carcinoma with glandular differentiation. A frequent event but not an independent prognostic marker because it occurs late in the disease. Am J Clin Pathol 1995; 104: 634–642.

    PubMed  CAS  Google Scholar 

  373. Langlois NE, Skinner L, Miller ID. C-erbB-2 in cervical carcinoma. Am J Clin Pathol 1996; 106: 556, 557.

    Google Scholar 

  374. Mitra AB, Murty VV, Pratap M, Sodhani P, Chaganti RS. ErbB2 (HER2/neu) oncogene is frequently amplified in squamous cell carcinoma of the uterine cervix. Cancer Res 1994; 54: 637–639.

    PubMed  CAS  Google Scholar 

  375. Kihana T, Tsuda H, Teshima S, Nomoto K, Tsugane S, Sonoda T, Matsuura S, Hirohashi S. Prognostic significance of the overexpression of c-erbB-2 protein in adenocarcinoma of uterine cervix. Cancer 1994; 73: 148–153.

    Article  PubMed  CAS  Google Scholar 

  376. Brumm C, Riviere A, Wilckens C, Loning T. Immunohistochemical investigation and northern blot analysis of c-erbB-2 expression in normal, premalignant and malignant tissues of the corpus and cervix uteri. Virchows Arch A Pathol Anat Histopathol 1990; 417: 477–484.

    Article  PubMed  CAS  Google Scholar 

  377. Ndubisi B, Sanz S, Lu L, Podczaski E, Benrubi G, Masood S. The prognostic value of HER-2/neu oncogene in cervical cancer. Ann Clin Lab Sci 1997; 27: 396–401.

    PubMed  CAS  Google Scholar 

  378. Lakshmi S, Balaraman Nair M, Jayaprakash PG, Rajalekshmy TN, Krishnan Nair M, Radhakrishna Pillai M. c-erbB-2 oncoprotein and epidermal growth factor receptor in cervical lesions. Pathobiology 1997; 65: 163–168.

    Article  PubMed  CAS  Google Scholar 

  379. Altavilla G, Castellan L, Wabersich J, Marchetti M, Onnis A. Prognostic significance of epidermal growth factor receptor (EGFR) and c-erbB-2 protein, overexpression in adenocarcinoma of the uterine cervix. Eur J Gynaecol Oncol 1996; XVII: 267–270.

    Google Scholar 

  380. Kristensen GB, Holm R, Abeler VM, Trope CG. Evaluation of the prognostic significance of cathepsin D epidermal growth factor receptor, and c-erbB-2 in early cervical squamous cell carcinoma. Cancer 1996; 78: 433–440.

    Article  PubMed  CAS  Google Scholar 

  381. Nakano T, Oka K, Ishikawa A, Morita S. Correlation of cervical carcinoma c-erbB-2 oncogene with cell proliferation parameters in patients treated with radiation therapy for cervical carcinoma. Cancer 1997; 79: 513–520.

    Article  PubMed  CAS  Google Scholar 

  382. DiSaia PJ, Creasman WT. Clinical Gynecologic Oncology. Mosby, St. Louis, 1997.

    Google Scholar 

  383. Nelson KG, Takahashi T, Bossert NL, Walmer DK, McLachlan JA. Epidermal growth factor replaces estrogen in the stimulation of female genital tract growth and differentiation. Proc Natl Acad Sci USA 1991; 88: 21–25.

    Article  PubMed  CAS  Google Scholar 

  384. Horowitz GM, Scott RT, Drews MR, Mavot D, Hofmann GE. Immunohistochemical localization of transforming growth factor a in human endometrium, decidua, and trophoblast. J Clin Endocrinol Metab 1993; 76: 786–792.

    Article  PubMed  CAS  Google Scholar 

  385. Konopka B, Sasko E, Kluska A, Goluda M, Janiec-Jankowska A, Paszko Z, Ujec M. Changes in the concentrations of receptors of insuline-like growth factor-1, epithelial growth factor, oestrogens and progestagens in adenomyosis foci, endometrium and myometrium of women during menstrual cycle. Eur J Gynaecol Oncol 1998; 19: 93–97.

    PubMed  CAS  Google Scholar 

  386. Horn YK, Young P, Wiesen JF, Miettinen PJ, Derynck R, Werb Z, Cunha GR. Uterine and vaginal organ growth requires epidermal growth factor receptor signaling from stroma. Endocrinology 1998; 139: 913–921.

    Article  Google Scholar 

  387. Miturski R, Semczuk A, Jakowicki JA. C-erbB-2 expression in human proliferative and hyperplastic endometrium. Int J Gynecol Obstet 1998; 61: 73, 74.

    Google Scholar 

  388. Rasty G, Murray R, Lu L, Kubilis P, Benrubi G, Masood S. Expression of HER-2/neu oncogene in normal, hyperplastic and malignant endometrium. Ann Clin Lab Science 1998; 28: 138–143.

    CAS  Google Scholar 

  389. Pearl ML, Talavera F, Gretz HF, Roberts JA, Menon KM. Mitogenic activity of growth factors in the human endometrial adenocarcinoma cell lines HEC-1-A and KLE. Gynecol Oncol 1993; 49: 325–332.

    Article  PubMed  CAS  Google Scholar 

  390. Lelle RJ, Talavera F, Gretz H, Roberts JA, Menon KM. Epidermal growth factor receptor expression in three different human endometrial cancer cell lines. Cancer 1993; 72: 519–525.

    Article  PubMed  CAS  Google Scholar 

  391. Watson H, Franks S, Bonney RC. The epidermal growth factor receptor in the human endometrial adenocarcinoma cell line HEC-1-B. J Steroid Biochem Mol Biol 1994; 51: 41–45.

    Article  PubMed  CAS  Google Scholar 

  392. Connor P, Talavera F, Kang JS, Burke J, Roberts J, Menon KM. Epidermal growth factor activates protein kinase C in the human endometrial cancer cell line HEC-1A. Gynecol Oncol 1997; 67: 46–50.

    Article  PubMed  CAS  Google Scholar 

  393. Gretz HF, Talavera F, Connor P, Pearl M, Lelle RJ, Roberts JA, Menon KM. Protein kinase C-dependent and -independent pathways mediate epidermal growth factor (EGF) effects in human endometrial adenocarcinoma cell line KLE. Gynecol Oncol 1994; 53: 228–233.

    Article  PubMed  CAS  Google Scholar 

  394. Krasilnikov MA, Shatskaya VA, Kuzmina ZV, Barinov VV, Letyagin VP, Bassalyk LS. Regulation of phospholipid turnover by steroid hormones in endometrial carcinoma and breast cancer cells. Acta Endocrinol 1993; 128: 543–548.

    CAS  Google Scholar 

  395. Gershtein ES, Shatskaya VA, Kostyleva OI, Ermilova VD, Kushlinsky NE, Krasilnikov MA. Comparative analysis of the sensitivity of endometrial cancer cells to epidermal growth factor and steroid hormones. Cancer 1995; 76: 2524–2529.

    Article  PubMed  CAS  Google Scholar 

  396. Ueda M, Fujii H, Yoshizawa K, Abe F, Ueki M. Effects of sex steroids and growth factors on migration and invasion of endometrial adenocarcinoma SNG-M cells in vitro. Jpn J Cancer Res 1996; 87: 524–533.

    Article  PubMed  CAS  Google Scholar 

  397. Somkuti SG, Yuan L, Fritz MA, Lessey BA. Epidermal growth factor and sex steroids dynamically regulate a marker of endometrial receptivity in Ishikawa cells. J Clin Endocrinol Metab 1997; 82: 2192–2197.

    Article  PubMed  CAS  Google Scholar 

  398. Burke JJ, Talavera F, Menon KM. Regulation of PTP 1 D mRNA by peptide growth factors in the human endometrial cell line HEC-1-A. J Soc Gynecol Investig 1997; 4: 310–315.

    Article  PubMed  CAS  Google Scholar 

  399. Bolufer P, Lluch A, Molina R, Alberola V, Vazquez C, Padilla J, et al. Epidermal growth factor in human breast cancer, endometrial carcinoma and lung cancer. Its rela-tionship to epidermal growth factor receptor estradiol receptor, and tumor TNM. Clin Chim Acta 1993; 215: 51–61.

    Article  PubMed  CAS  Google Scholar 

  400. Bauknecht T, Kohler M, Janz I, Pfleiderer A. The occurrence of epidermal growth factor receptors and the characterization of EGF-like factors in human ovarian endometrial, cervical and breast cancer. EGF receptors and factors in gynecological carcinomas. J Cancer Res Clin Oncol 1989; 115: 193–199.

    Article  PubMed  CAS  Google Scholar 

  401. Adachi K, Kurachi H, Homma H, Adachi H, Imai T, Sakata M, et al. Estrogen induces epidermal growth factor (EGF) receptor and its ligands in human Fallopian tube: involvement of EGF but not transforming growth factor-a in estrogen-induced tubal cell growth in vitro. Endocrinology 1995; 136: 2110–2119.

    Article  PubMed  CAS  Google Scholar 

  402. Adachi K, Kurachi H, Adachi H, Imai T, Sakata M, Homma H, et al. Menstrual cycle specific expression of epidermal growth factor receptors in human fallopian tube epithelium. J Endocrinol 1995; 147: 553–563.

    Article  PubMed  CAS  Google Scholar 

  403. Niikura H, Sasano N, Kaga K, Sato S, Yajima A. Expression of epidermal growth factor family proteins and epidermal growth factor receptor in human endometrium. Hum Pathol 1996; 27: 282–289.

    Article  PubMed  CAS  Google Scholar 

  404. Jasonni VM, Amadori A, Santini D, Ceccarelli C, Naldi S, Flamigni C. Epidermal growth factor receptor (EGF-R) and transforming growth factor alpha (TGFA) expression in different endometrial cancers. Anticancer Res 1995; 15: 1327–1332.

    PubMed  CAS  Google Scholar 

  405. Reinartz JJ, George E, Lindgren BR, Niehans GA. Expression of p53, transforming growth factor alpha, epidermal growth factor receptor, and c-erbB-2 in endometrial carcinoma and correlation with survival and known predictors of survival. Hum Pathol 1994; 25: 1075–1083.

    Article  PubMed  CAS  Google Scholar 

  406. Nyholm HC, Nielsen AL, Ottesen B. Expression of epidermal growth factor receptors in human endometrial carcinomas. Int J Gynecol Pathol 1993; 12: 241–245.

    Article  PubMed  CAS  Google Scholar 

  407. Jasonni VM, Santini D, Amadori A, Ceccarelli C, Naldi S. Epidermal growth factor receptor expression and endometrial cancer histotypes. Ann NY Acad Sci 1994; 734: 298–305.

    Article  PubMed  CAS  Google Scholar 

  408. Lamharzi N, Halmos G, Armatis P, Schally AV. Expression of mRNA for luteinizing hormone-releasing hormone receptors and epidermal growth factor receptors in human cancer cell lines. Int J Oncol 1998; 12: 671–675.

    PubMed  CAS  Google Scholar 

  409. Emons G, Muller V, Ortmann O, Schultz KD. Effects of LHRH-analogues on mitogenic signal transduction in cancer cells. J Steroid Biochem Mol Biol 1998; 65: 199–206.

    Article  PubMed  CAS  Google Scholar 

  410. Reynolds RK, Owens CA, Roberts JA. Cultured endometrial cancer cells exhibit autocrine growth factor stimulation that is not observed in cultured normal endometrial cells. Gynecol Oncol 1996; 60: 380–386.

    Article  PubMed  CAS  Google Scholar 

  411. Haining RE, Cameron IT, van Papendorp C, Davenport AP, Prentice A, Thomas EJ, Smith SK. Epidermal growth factor in human endometrium: proliferative effects in culture and immunocytochemical localization in normal and endometriotic tissues. Hum Reprod 1991; 6: 1200–1205.

    PubMed  CAS  Google Scholar 

  412. Fujimoto J, Ichigo S, Hori M, Morishita S, Tamaya T. Estrogen induces c-Ha-ras expression via activation of tyrosine kinase in uterine endometrial fibroblasts and cancer cells. J Steroid Biochem Mol Biol 1995; 55: 25–33.

    Article  PubMed  CAS  Google Scholar 

  413. Kato K, Ueoka Y, Kato K, Tamura T, Nishida J, Wake N. Oncogenic Ras modulates epidermal growth factor responsiveness in endometrial carcinomas. Eur J Cancer 1998; 34: 737–744.

    Article  PubMed  CAS  Google Scholar 

  414. Sallot M, Ordener C, Lascombe I, Propper A, Adessi GL, Jouvenot M. Differential EGF action on nuclear proto-oncogenes in human endometrial carcinoma RL95–2 cells. Anticancer Res 1996; 16: 401–406.

    PubMed  CAS  Google Scholar 

  415. Anzai Y, Gong Y, Holinka CF, Murphy LJ, Murphy LC, Kuramoto H, Gurpide E. Effects of transforming growth factors and regulation of their mRNA levels in two human endometrial adenocarcinoma cell lines. J Steroid Biochem Mol Biol 1992; 42: 449–455.

    Article  PubMed  CAS  Google Scholar 

  416. Yokoyama Y, Takahashi Y, Hashimoto M, Morishita S, Tamaya T. Immunhistochemical study of estradiol, epidermal growth factor, transforming growth factor alpha and epidermal growth factor receptor in endometrial neoplasia. Jpn J Clin Oncol 1996; 26: 411–416.

    Article  PubMed  CAS  Google Scholar 

  417. Murphy LC, Dotzlaw H, Alkhalaf M, Coutts A, Miller T, Wong MS, Gong Y, Murphy LJ. Mechanisms of growth inhibition by antiestrogens and progestins in human breast and endometrial cancer cells. J Steroid Biochem Mol Biol 1992; 43: 117–121.

    Article  PubMed  CAS  Google Scholar 

  418. Murphy LJ, Gong Y, Murphy LC. Regulation of transforming growth factor gene expression in human endometrial adenocarcinoma cells. J Steroid Biochem Mol Biol 1992; 41: 309–314.

    Article  PubMed  CAS  Google Scholar 

  419. Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS. Coupling of dual signalingpathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA 1992; 89: 4658–4662.

    Article  PubMed  CAS  Google Scholar 

  420. Ignar-Trowbridge DM, Pimentel M, Teng CT, Korach KS, McLachlan JA. Cross talk between peptide growth factor and estrogen receptor signaling systems. Environ Health Perspect 1995; 103 (Suppl 7): 35–38.

    Article  PubMed  CAS  Google Scholar 

  421. Ignar-Trowbridge DM, Pimentel M, Parker MG, McLachlan JA, Korach KS. Peptide growth factor cross-talk with the estrogen receptor requires the A/B domain and occurs independently of protein kinase C or estradiol. Endocrinology 1996; 137: 1735–1744.

    Article  PubMed  CAS  Google Scholar 

  422. Gong Y, Anzai Y, Murphy LC, Ballejo G, Holinka CF, Gurpide E, Murphy LJ. Transforming growth factor gene expression in human endometrial adenocarcinoma cells: regulation by progestins. Cancer Res 1991; 51: 5476–5481.

    PubMed  CAS  Google Scholar 

  423. Xynos FP, Klos DJ, Hamilton PD, Schuette V, Fernandez-Pol JA. Expression of transforming growth factor alpha mRNA in benign and malignant tissues derived from gynecologic patients with various proliferative conditions. Anticancer Res 1992; 12: 1115–1120.

    PubMed  CAS  Google Scholar 

  424. Van Dam PA, Lowe G, Watson JV, James M, Chard T, Hudson CN, Shepherd JH. Multiparameter flowcytometric quantitation of epidermal growth factor receptor and c-erbB-2 oncoprotein in normal and neoplastic tissues of the female genital tract. Gynecol Oncol 1991; 42: 256–264.

    Article  PubMed  Google Scholar 

  425. Esteller M, Garcia A, Martinez I, Palones JM, Cabero A, Reventos J. Detection of c-erbB-2/neu and fibroblast growth factor-3/INT-2 but not epidermal growth factor gene amplification in endometrial cancer by differential polymerase chain reaction. Cancer 1995; 75: 2139–2146.

    Article  PubMed  CAS  Google Scholar 

  426. Costa MJ, Walls J. Epidermal growth factor receptor and c-erbB-2 oncoprotein expression in female genital tract carcinosarcomas (malignant mixed mullerian tumors). Clinicopathologic study of 82 cases. Cancer 1995; 77: 533–542.

    Article  Google Scholar 

  427. Hetzel DJ, Wilson TO, Keeney GL, Roche PC, Cha SS, Podratz KC. HER-2/neu expression: a major prognostic factor in endometrial cancer. Gynecol Oncol 1992; 47: 179–185.

    Article  PubMed  CAS  Google Scholar 

  428. Kohlberger P, Loesch A, Koelbl H, Breitenecker G, Kainz C, Gitsch G. Prognostic value of immunohistochemically detected HER-2/neu oncoprotein in endometrial cancer. Cancer Lett 1996; 98: 151–155.

    PubMed  CAS  Google Scholar 

  429. Seki A, Nakamura K, Kodama J, Miyagi Y, Yoshinouchi M, Kudo T. A close correlation between cerbB-2 gene amplification and local progression in endometrial adenocarcinoma. Eur J Gynaecol Oncol 1998; 19: 90–92.

    PubMed  CAS  Google Scholar 

  430. Ayhan A, Tuncer ZS, Ruacan S, Ayhan A, Yasui W, Tahara E. Abnormal expression of cripto and p53 protein in endometrial carcinoma and its precursor lesions. Eur J Gynaecol Oncol 1998; 19: 316–318.

    PubMed  CAS  Google Scholar 

  431. Berchuck A, Kohler MF, Bast RC. Oncogenes in ovarian cancer. Hematol Oncol Clin North Am 1992; 6: 813–827.

    PubMed  CAS  Google Scholar 

  432. Bauknecht T, Janz I, Kohler M, Pfleiderer A. Human ovarian carcinomas: correlation of malignancy and survival with the expression of epidermal growth factor receptors (EGF-R) and EGF-like faktors (EGF-F). Med Oncol Tumor Pharmacother 1989; 6: 121–127.

    PubMed  CAS  Google Scholar 

  433. Bauknecht T, Angel P, Kohler M, Kommoss F, Birmelin G, Pfleiderer A, Wagner E. Gene structure and expression analysis of the epidermal growth factor receptor, transforming growth factor-alpha, myc, jun, and metallothionein in human ovarian carcinomas. Classification of malignant phenotypes. Cancer 1993; 71: 419–429.

    Article  PubMed  CAS  Google Scholar 

  434. Bauknecht T, Birmelin G, Kommoss F. Clinical significance of oncogenes and growth factors in ovarian carcinomas. J Steroid Biochem Mol Biol 1990; 37: 855–862.

    Article  PubMed  CAS  Google Scholar 

  435. Bauknecht T, Kommoss F, Birmelin G, von Kleist S, Kohler M, Pfleiderer A. Expression analysis of EGF-R and TGF-a in human ovarian carcinomas. Anticancer Res 1991; 11: 1523–1528.

    PubMed  CAS  Google Scholar 

  436. Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990; 50: 4087–4091.

    PubMed  CAS  Google Scholar 

  437. Berchuck A, Olt GJ, Everitt L, Soisson AP, Bast RC, Boyer CM. Role of peptide growth factors in epithelial ovarian cancer. Obstet Gynecol 1990; 75: 255–262.

    PubMed  CAS  Google Scholar 

  438. Westermann AM, Beijnen JH, Moolenaar WH, Rodenhuis S. Growth factors in human ovarian cancer. Cancer Treat Rev 1997; 23: 113–131.

    Article  PubMed  CAS  Google Scholar 

  439. Niikura H, Sasano H, Sato S, Yajima A. Expression of epidermal growth factor-related proteins and epidermal growth factor receptor in common epithelial ovarian tumors. Int J Gynecol Pathol 1997; 16: 60–68.

    Article  PubMed  CAS  Google Scholar 

  440. Morishige K, Kurachi H, Amemiya K, Adachi H, Inoue M, Miyake A, Tanizawa O, Sakoyama Y. Involvement of transforming growth factor alpha/epidermal growth factor receptor autocrine growth mechanism in an ovarian cancer cell line in vitro. Cancer Res 1991; 51: 5951–5955.

    PubMed  CAS  Google Scholar 

  441. Stromberg K, Johnson GR, O’Connor DM, Sorensen CM, Gullick WJ, Kannan B. Frequent immunohistochemical detection of EGF supergene family members in ovarians carcinogenesis. Int J Gynecol Pathol 1994; 13: 342–347.

    Article  PubMed  CAS  Google Scholar 

  442. Crew AJ, Langdon SP, Miller EP, Miller WR. Mitogenic effects of epidermal growth factor and transforming growth factor-alpha on EGF-receptor positive human ovarian carcinoma cell lines. Eur J Cancer 1992; 28: 337–341.

    Article  PubMed  CAS  Google Scholar 

  443. Shoyab M, McDonald VL, Bradley JG, Todaro GJ. Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 1988; 85: 6528–6532.

    Article  PubMed  CAS  Google Scholar 

  444. Zhou L, Leung BS. Growth regulation of ovarian cancer cells by epidermal growth factor and transforming growth factors alpha and beta 1. Biochim Biophys Acta 1992; 1180: 130–136.

    Article  PubMed  CAS  Google Scholar 

  445. Morishige K, Kurachi H, Amemiya K, Fujita Y, Yamamoto T, Miyake A, Tanizawa O. Evidence for the involvement of transforming growth factor alpha and epidermal growth factor receptor autocrine growth mechanism in primary human ovarian cancers in vitro. Cancer Res 1991; 51: 5322–5328.

    PubMed  CAS  Google Scholar 

  446. Kurachi H, Morishige K, Amemiya K, Adachi H, Hirota K, Miyake A, Tanizawa O. Importance of transforming growth factor alpha/epidermal growth factor receptor autocrine growth mechanism in an ovarian cancer cell line in vivo. Cancer Res 1991; 51: 5956–5959.

    PubMed  CAS  Google Scholar 

  447. Kurachi H, Morishige K, Adachi H, Adachi K, Tasaka K, Sawada M, Miyake A. Implantation and growth of epidermal growth factor (EGF) receptor expressing human ovarian xenografts in nude mice is dependent on EGF. Cancer 1994; 74: 2984–2990.

    Article  PubMed  CAS  Google Scholar 

  448. Gordon AW, Pegues JC, Johnson GR, Kannan B, Auersperg N, Stromberg K. mRNA phenotyping of the major ligands and receptors of the EGF supergene family in human ovarian epithelial cells. Cancer Lett 1995; 89: 63–71.

    PubMed  CAS  Google Scholar 

  449. Owens OJ, Stewart C, Leake RE. Growth factors in ovarian cancer. Br J Cancer 1991; 64: 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  450. Marth C, Lang T, Cronauer MV, Doppler W, Zeimet AG, Bachmair F, Ullrich A, Daxenbichler G. Epidermal growth factor reduces HER-2 protein level in human ovarian carcinoma cells. Int J Cancer 1992; 52: 311–316.

    Article  PubMed  CAS  Google Scholar 

  451. Kacinski BM, Mayer AG, King BL, Carter D, Chambers SK. NEU protein overexpression in benign, borderline, and malignant ovarian neoplasms. Gynecol Oncol 1992; 44: 245–253.

    Article  PubMed  CAS  Google Scholar 

  452. Tamura M, Sasano H, Suzuki T, Fukaya T, Funayama Y, Takayama K, Takaya R, Yajima A. Expression of epidermal growth factors and epidermal growth factor receptor in normal cycling human ovaries. Hum Reprod 1995; 10: 1891–1896.

    PubMed  CAS  Google Scholar 

  453. Kommoss F, Bauknecht T, Birmelin G, Kohler M, Tesch H, Pfleiderer A. Oncogene and growth factor expression in ovarian cancer. Acta Obstet Gynecol Scand 1992; 155: 19–24.

    CAS  Google Scholar 

  454. Kommoss F, Wintzer HO, von Kleist S, Kohler M, Walker R, Langdon B, van Tran K, Pfleiderer A. In situ distribution of transforming growth factor alpha in normal tissues and malignant tumours of the ovary. J Pathol 1992; 162: 223–228.

    Article  Google Scholar 

  455. Kohler M, Bauknecht T, Grimm M, Birmelin G, Kommoss F, Wagner E. Epidermal growth factor receptor and transforming growth factor alpha expression in human ovarian carcinomas. Eur J Cancer 1992; 28A: 1432–1437.

    Article  Google Scholar 

  456. Owens OJ, Leake RE. Growth factor content in normal and benign ovarian tumours. Eur J Obstet Gynecol Reprod Biol 1992; 47: 223–228.

    Article  PubMed  CAS  Google Scholar 

  457. Bartlett JM, Langdon SP, Simpson BJ, Stewart M, Katsaros D, Sismondi P, et al. Prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996; 73: 301–306.

    Article  PubMed  CAS  Google Scholar 

  458. Yeh J, Yeh YC. Transforming growth factor-alpha and human cancer. Biomed Pharmacother 1989; 43: 651–659.

    Article  PubMed  CAS  Google Scholar 

  459. Ferrandina G, Scambia G, Benedetti-Pancini P, Bonanno G, De Vincenzo R, Rumi C, et al. Effects of dexamethasone on the growth and epidermal growth factor expression of the OVCA 433 ovarian cancer cells. Mol Cell Endocrinol 1992; 83: 183–193.

    Article  PubMed  CAS  Google Scholar 

  460. Lewis GD, Lofgren JA, McMurtrey AE, Nuijens A, Fendly BM, Bauer KD, Sliwkowski MX. Growth regulation of human breast and ovarian tumor cells by heregulin: evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res 1996; 56: 1457–1465.

    PubMed  CAS  Google Scholar 

  461. Simpson BJ, Langdon SP, Rabiasz GJ, Macleod KG, Hirst GL, Bartlett JM, et al. Estrogen regulation of transforming growth factor-alpha in ovarian cancer. J Steroid Biochem Mol Biol 1998; 64: 137–145.

    Article  PubMed  CAS  Google Scholar 

  462. Ridderheim M, Stendahl U, Backstrom T. Progesterone and estradiol stimulate release of epidermal growth factor/transforming growth factor alpha by ovarian tumours in vitro. Anticancer Res 1994; 14: 2763–2768.

    PubMed  CAS  Google Scholar 

  463. Wimalasena J, Dostal R, Meehan D. Gonadotropins, estradiol, and growth factors regulate epithelial ovarian cancer cell growth. Gynecol Oncol 1992; 46: 345–350.

    Article  PubMed  CAS  Google Scholar 

  464. Wimalasena J, Meehan D, Dostal R, Foster JS, Cameron M, Smith M. Growth factors interact with estradiol and gonadotropins in the regulation of ovarian cancer cell growth and growth factor receptors. Oncol Res 1993; 5: 325–337.

    PubMed  CAS  Google Scholar 

  465. Ridderheim M, Cajander S, Tavelin B, Stendahl U, Bachstrom T. EGF/TGF-alpha and progesterone in urine of ovarian cancer patients. Anticancer Res 1994; 14: 2119–2123.

    PubMed  CAS  Google Scholar 

  466. Feldkamper M, Enderle-Schmitt U, Hackenberg R, Schulz KD. Urinary excretion of growth factors in patients with ovarian cancer. Eur J Cancer 1994; 30A: 1851–1858.

    Article  Google Scholar 

  467. Shah NG, Bhatavdekar JM, Doctor SS, Suthar TP, Balar DB, Dave RS. Circulating epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) in patients with epithelial ovarian carcinoma. Neoplasma 1994; 41: 241–243.

    PubMed  CAS  Google Scholar 

  468. Kurachi H, Adachi H, Morishige K, Adachi K, Takeda T, Homma H, Yamamoto T, Miyake A. Transforming growth factor-alpha promotes tumor markers secretion from human ovarian cancers in vitro. Cancer 1996; 78: 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  469. Brader KR, Wolf JK, Chakrabarty S, Price JE. Epidermal growth factor receptor (EGFR) antisense transfection reduces the expression of EGFR and suppresses the malignant phenotype of a human ovarian cancer cell line. Oncol Rep 1998; 5: 1269–1274.

    PubMed  CAS  Google Scholar 

  470. Rodriguez GC, Berchuck A, Whitaker RS, Schlossman D, Clarke-Pearson DL, Bast RC. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. II. Relationship between receptor expression and response to epidermal growth factor. Am J Obstet Gynecol 1991; 164: 745–750.

    PubMed  CAS  Google Scholar 

  471. Ottensmeier C, Swanson L, Strobel T, Druker B, Niloff J, Cannistra SA. Absence of constitutive EGF receptor activation in ovarian cancer cell lines. Br J Cancer 1996; 74: 446–452.

    Article  PubMed  CAS  Google Scholar 

  472. Lang T, Daxenbichler G, Merth C. Effects of cytostatic agents on the expression of epidermal growth factor receptor in ovarian cancer cells. Anticancer Res 1994; 14: 1871–1874.

    PubMed  CAS  Google Scholar 

  473. Christen RD, Horn DK, Porter DC, Andrews PA, MacLeod CL, Hafstrom L, Howell SB. Epidermal growth factor regulates the in vitro sensitivity of human ovarian carcinoma cells to cisplatin. J Clin Invest 1990; 86: 1632–1640.

    Article  PubMed  CAS  Google Scholar 

  474. Kohler M, Janz I, Wintzer HO, Wagner E, Bauknecht T. The expression of EGF receptors, EGF-like factors and c-myc in ovarian and cervical carcinomas and their potential clinical significance. Anticancer Res 1989; 9: 1537–1547.

    PubMed  CAS  Google Scholar 

  475. Berns EM, Klijn JG, Henzen-Logmans SC, Rodenburg CJ, van der Burg ME, Foekens JA. Receptors for hormones and growth factors and (onco)-gene amplification in human ovarian cancer. Int J Cancer 1992; 52: 218–224.

    Article  PubMed  CAS  Google Scholar 

  476. Henzen-Logmans SC, van der Burg ME, Foekens JA, Berns PM, Brussee R, Fieret JH, et al. Occurrence of epidermal growth factor receptors in benign and malignant ovarian tumors and normal ovarian tissues: an immunohistochemical study. J Cancer Res Clin Oncol 1992; 118: 303–307.

    Article  PubMed  CAS  Google Scholar 

  477. Scambia G, Benedetti-Panici P, Battaglia F, Ferrandin G, Baiocchi G, Greggi S, De Vincenzo R, Mancuso S. Significance of epidermal growth factor receptor in advanced ovarian cancer. J Clin Oncol 1992; 10: 529–535.

    PubMed  CAS  Google Scholar 

  478. Stewart CJ, Owens OJ, Richmond JA, McNicol AM. Expression of epidermal growth factor receptor in normal ovary and in ovarian tumors. Int J Gynecol Pathol 1992; 11: 266–272.

    Article  PubMed  CAS  Google Scholar 

  479. Van der Burg ME, Henzen-Logmans SC, Foekens JA, Berns EM, Rodenburg CJ, van Putten WL, Klijn JG. The prognostic value of epidermal growth factor receptors, determined by both immunohistochemistry and ligand binding assays, in primary epi thelial ovarian cancer: a pilot study. Eur J Cancer 1993; 29A: 1951–1957.

    Article  Google Scholar 

  480. Simpson BJ, Phillips HA, Lessells AM, Lamgdon SP, Miller WR. C-erbB growth-factor-receptor proteins in ovarian tumours. Int J Cancer 1995; 64: 202–206.

    Article  PubMed  CAS  Google Scholar 

  481. Minguillon C, Schönborn I, Reles A, Bartel U, Lichtenegger W. EGF-R and PCNA expression in ovarian carcinomas: correlation with classic prognostic factors. Gen Diagn Pathol 1996; 141: 197–201.

    PubMed  CAS  Google Scholar 

  482. Janinis J, Nakopoulou L, Panagos G, Davaris P. Immunohistochemical expression of EGF-R in malignant surface epithelial ovarian neoplasms (SEON). Eur J Gynaecol Oncol 1994; 15: 19–23.

    PubMed  CAS  Google Scholar 

  483. Meden H, Marx D, Raab T, Kron M, Schauer A, Kuhn W. EGF-R and overexpression of the oncogene c-erbB-2 in ovarian cancer: immunohistochemical findings and prognostic value. J Obstet Gynecol 1995; 21: 167–178.

    CAS  Google Scholar 

  484. Brandt B, Vogt U, Schlotter CM, Jakisch C, Werkmeister R, Thomas M, et al. Prognostic relevance of abberations in the c-erbB oncogenes from breast, ovarian, oral and lung cancers: double-differential polymerase chain reaction (ddPCR) for clinical diagnosis. Gene 1995; 159: 35–42.

    Article  PubMed  CAS  Google Scholar 

  485. Scoccia B, Lee YM, Niederberger C, Ilekis JV. Expression of the ErbB family of receptors in ovarian cancer. J Soc Gynecol Invest 1998; 5: 161–165.

    Article  CAS  Google Scholar 

  486. Ilekis JV, Connor JP, Prins GS, Ferrer K, Niederberger C, Scoccia B. Expression of epidermal growth factor and androgen receptors in ovarian cancer. Gynecol Oncol 1997; 66: 250–254.

    Article  PubMed  CAS  Google Scholar 

  487. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  PubMed  CAS  Google Scholar 

  488. Meden H, Kuhn W. Overexpression of the oncogene c-erbB-2 (HER2/neu) in ovarian cancer: a new prognostic factor. Eur J Obstet Gynecol Reprod Biol 1997; 71: 173–179.

    Article  PubMed  CAS  Google Scholar 

  489. Mileo AM, Fanuele M, Battaglia F, Scambia G, Benedetti-Panici C, Mattei E, Mancuso S, Delpino A. Preliminary evaluation of HER-2/neu oncogene and epidermal growth factor receptor expression in normal and neoplastic human ovaries. Int J Biol Markers 1992; 7: 114–118.

    PubMed  CAS  Google Scholar 

  490. Rubin SC, Finstad CL, Wong GY, Almadrones L, Plante M, Lloyd KO. Prognostic significance of HER-2/neu expression in advanced epithelial ovarian cancer: a multivariate analysis. Am J Obstet Gynecol 1993; 168: 162–169.

    PubMed  CAS  Google Scholar 

  491. Rubin SC, Finstad CL, Federici MG, Scheiner L, Lloyd KO, Hoskins WJ. Prevalence and significance of HER-2/neu expression in early epithelial ovarian cancer. Cancer 1994; 73: 1456–1459.

    Article  PubMed  CAS  Google Scholar 

  492. Haldane JS, Hird V, Hughes CM, Gullick WJ. C-erbB-2 oncogene expression in ovarian cancer. J Pathol 1990; 162: 231–237.

    Article  PubMed  CAS  Google Scholar 

  493. Singleton TP, Perrone T, Oakley G, Niehans GA, Carson L, Cha SS, Strickler JG. Activation of c-erbB2 and prognosis in ovarian carcinoma. Cancer 1994; 73: 1460–1466.

    Article  PubMed  CAS  Google Scholar 

  494. Felip E, Del Campo JM, Rubio D, Vidal MT, Colomer R, Bermejo B. Overexpression of c-erbB-2 in epithelial ovarian cancer. Cancer 1995; 75: 2147–2152.

    Article  PubMed  CAS  Google Scholar 

  495. Seidman JD, Frisman DM, Norris HJ. Expression of the HER-2/neu proto-oncogene in serous ovarian neoplasms. Cancer 1992; 70: 2857–2860.

    Article  PubMed  CAS  Google Scholar 

  496. Harlozinska A, Bar JK, Sobanska E, Goluda M. Epidermal growth factor receptor and c-erbB-2 oncoproteins in tissue and tumor effusion cells of histopathologically different ovarian neoplasms. Tumor Biol 1998; 19: 364–373.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Salomon, D.S., Bianco, C., De Santis, M., Martinez-Lacaci, I., Wechselberger, C., Ebert, A.D. (2000). Epidermal Growth Factor-Related Peptides in Endocrine Neoplasias. In: Ethier, S.P. (eds) Endocrine Oncology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-223-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-223-4_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9700-7

  • Online ISBN: 978-1-59259-223-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics