Skip to main content

Progesterone Receptors in Normal and Neoplastic Breast

  • Chapter
Book cover Endocrine Oncology

Abstract

The ovarian steroid hormone, progesterone (P), being fat-soluble, gains access to the intracellular compartment by diffusion through the lipid bilayer cell membrane. In target tissues such as the breast, it interacts with a specific receptor protein, progesterone receptor (PR), and induces formation of receptor dimers, which bind to palindromic hormone response elements in DNA and affect gene transcription (1,2). By these means, P plays a fundamental role in the development and function of the normal breast, and, in this process, PR is a critical intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895.

    Article  PubMed  CAS  Google Scholar 

  2. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  3. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995; 9: 2266–2278.

    Article  PubMed  CAS  Google Scholar 

  4. Humphreys RC, Lydon J, O’Malley BW, Rosen JM. Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol Endocrinol 1997; 11: 801–810.

    Article  PubMed  CAS  Google Scholar 

  5. Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. Paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci USA 1998; 95: 5076–5081.

    Article  PubMed  CAS  Google Scholar 

  6. Longacre TA, Bartow SA. A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am J Surg Pathol 1986; 10: 382–393.

    Article  PubMed  CAS  Google Scholar 

  7. McGuire WL, Chamness GC, Fuqua SAW. Estrogen receptor variants in clinical breast cancer. Mol Endocrinol 1991; 5: 1571–1577.

    Article  PubMed  CAS  Google Scholar 

  8. Clark GM, Osborne CK, McGuire WL. Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol 1984; 2: 1102–1109.

    PubMed  CAS  Google Scholar 

  9. Thorpe SM, Rose C. Oestrogen and progesterone receptor determinations in breast cancer: technology and biology. Cancer Sury 1986; 5: 505–525.

    CAS  Google Scholar 

  10. Wenger CR, Beardslee S, Owens MA, Pounds G, Oldaker T, Vendely P, et al. DNA ploidy, S-phase, and steroid receptors in more than 127,000 breast cancer patients. Breast Cancer Res Treat 1993; 28: 9–26.

    Article  PubMed  CAS  Google Scholar 

  11. Clarke CL. Ovarian steroid hormone receptors and their mechanisms of action. In: Rice GE, Brennecke SP, eds. Molecular Aspects of Placental and Fetal Membrane Autocoids, CRC, Boca Raton, 1993, pp. 27–54.

    Google Scholar 

  12. Mattei M-G, Krust A, Stropp U, Mattei J-F, Chambon P. Assignment of the human progesterone receptor to the q22 band of chromosome 11. Hum Genet 1988; 78: 96, 97.

    Google Scholar 

  13. Misrahi M, Venencie P-Y, Saugier-Veber P, Sar S, Dessen P, Milgrom E. Structure of the human progesterone receptor gene. Biochem Biophys Acta 1993; 1216: 289–292.

    Article  PubMed  CAS  Google Scholar 

  14. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor isoforms. EMBO J 1990; 9: 1603–1614.

    PubMed  CAS  Google Scholar 

  15. Graham JD, Roman SD, McGowan E, Sutherland RL, Clarke CL. Preferential stimulation of human progesterone receptor B expression by estrogen in T-47D human breast cancer cells. J Biol Chem 1995; 270:30, 693–30, 700.

    Google Scholar 

  16. Wei LL, Miner R. Evidence for the existence of a third progesterone receptor protein in human breast cancer cell line T47D. Cancer Res 1994; 54: 340–343.

    PubMed  CAS  Google Scholar 

  17. Wei LL, Hawkins P, Baker C, Norris B, Sheridan PL, Quinn PG. An amino-terminal truncated progesterone receptor isoform, PRc, enhances progestin-induced transcriptional activity. Mol Endocr 1996; 10: 1379–1387.

    Article  CAS  Google Scholar 

  18. Wei LL, Norris BM, Baker CJ. An N-terminal truncated third progesterone receptor forms heterodimers with PR B but interferes in PR B-DNA binding. J Steroid Biochem Mol Biol 1997; 62: 287–297.

    Article  PubMed  CAS  Google Scholar 

  19. Graham JD, Yeates C, Balleine RL, Harvey SS, Milliken JS, Bilous AM, Clarke CL. Characterization of progesterone receptor A and B expression in human breast cancer. Cancer Res 1995; 55: 5063–5068.

    PubMed  CAS  Google Scholar 

  20. Leygue E, Dotzlaw H, Watson PH, Murphy LC. Identification of novel exon-deleted progesterone receptor variant mRNAs in human breast cancer. Biochem Biophys Res Commun 1996; 228: 63–68.

    Article  PubMed  CAS  Google Scholar 

  21. Richer JK, Lange CA, Wierman AM, Brooks KM, Tung L, Takimoto GS, Horwitz KB. Progesterone receptor variants found in breast cells repress transcription by wild-type receptors. Breast Cancer Res Treat 1998; 48: 231–241.

    Article  PubMed  CAS  Google Scholar 

  22. Yeates C, Hunt SMN, Balleine RL, Clarke CL. Characterization of a truncated progesterone receptor protein in breast tumours. J Clin Endocrinol Metab 1998; 83: 460–467.

    Article  PubMed  CAS  Google Scholar 

  23. Wen DX, Xu YF, Mais DE, Goldman ME, McDonnell DP. The A and B forms of the human progesterone receptor operate through distinct signalling pathways within target cells. Mol Cell Biol 1994; 14: 8356–8364.

    PubMed  CAS  Google Scholar 

  24. Giangrande PH, Pollio G, McDonnell DP. Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J Biol Chem 1997;272:32, 889–32, 900.

    Google Scholar 

  25. Tung L, Mohamed MK, Hoeffler JP, Takimoto GS, Horwitz KB. Antagonist-occupied human progesterone receptor B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A receptors. Mol Endocrinol 1993; 7: 1256–1265.

    Article  PubMed  CAS  Google Scholar 

  26. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O’Malley BW, McDonnell DP. Human progesterone receptor A form is a cell-and promotor-specific repressor of human progesterone receptor B function. Mol Endocrinol 1993; 7: 1244–1255.

    Article  PubMed  CAS  Google Scholar 

  27. McDonnell DP, Shahbaz MM, Vegeto E, Goldman ME. The human progesterone receptor A-form functions as a transcriptional modulator of mineralocorticoid receptor transcriptional activity. J Steroid Biochem Mol Biol 1994; 48: 425–432.

    Article  PubMed  CAS  Google Scholar 

  28. Kraus WL, Weis KE, Katzenellenbogen BS. Inhibitory cross-talk between steroid hormone receptors: differential targeting of estrogen receptor in the repression of its transcriptional activity by agonist-and antagonist-occupied progestin receptors. Mol Cell Biol 1995; 15: 1847–1857.

    PubMed  CAS  Google Scholar 

  29. Sartorius CA, Melville MY, Hovland AR, Tung L, Takimoto GS, Horwitz KB. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol 1994; 8: 1347–1360.

    Article  PubMed  CAS  Google Scholar 

  30. Rudie Hovland A, Powell RL, Takimoto GS, Tung L, Horwitz KB. N-terminal inhibitory function, IF, suppresses transcription by the A-isoform but not the B-isoform of human progesterone receptors. J Biol Chem 1998; 273: 5545–5560.

    Article  Google Scholar 

  31. Kazmi SMI, Visconti V, Plante RK, Ishaque A, Lau C. Differential regulation of human progesterone receptor A and B form-mediated transactivation by phosphorylation. Endocrinology 1993; 133: 1230–1238.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Y, Beck CA, Poletti A, Edwards DP, Weigel NL. Identification of phosphorylation sites unique to the B form of human progesterone receptor. J Biol Chem 1994;49:31, 034–31, 040.

    Google Scholar 

  33. Zhang Y, Beck CA, Poletti A, Clement JP IV, Prendergast P, Yip T-T, et al. Phosphorylation of human progesterone receptor by cyclin-dependent kinase 2 on three sites that are authentic basal phosphorylation sites in vivo. Mol Endocrinol 1997; 11: 823–832.

    Article  PubMed  CAS  Google Scholar 

  34. Wagner BL, Norris JD, Knotts TA, Weigel NL, McDonnell DP. The nuclear corepressors NCor and SMRT are key regulators of both ligand-and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol Cell Biol 1998; 18: 1369–1378.

    PubMed  CAS  Google Scholar 

  35. Wong C-W, Privalsky ML. Transcriptional repression by the SMRT-mSin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol Cell Biol 1998; 18: 5500–5510.

    PubMed  CAS  Google Scholar 

  36. Onate SA, Tsai SY, Tsai M-J, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270: 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  37. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai M-J, Edwards DP, O’Malley BW. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of stroid receptors. J Biol Chem 1998;273:12, 101–12, 108.

    Google Scholar 

  38. Yao T-P, Ku G, Zhou N, Scully R, Livingston DM. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA 1996;93:10, 626–10, 631.

    Google Scholar 

  39. Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, et al. Activation of the Src/p21Ú°S/ERK pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 1998; 17: 2008–2018.

    Article  PubMed  CAS  Google Scholar 

  40. Battersby S, Robertson BJ, Anderson TJ, King RJB, McPherson K. Influence of menstrual cycle, parity and oral contraceptive use on steroid hormone receptors in normal breast. Br J Cancer 1992; 65: 601–607.

    Article  PubMed  CAS  Google Scholar 

  41. Smith GH. A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Science 1988; 89: 173–183.

    Google Scholar 

  42. Shyamala G. Roles of estrogen and progesterone in normal mammary gland development. Trends Endocrinol Metab 1997; 8: 34–39.

    Article  PubMed  CAS  Google Scholar 

  43. Joyeux C, Chalbos D, Rochefort H. Effects of progestins and menstrual cycle on fatty acid synthetase and progesterone receptor in human mammary glands. J Clin Endocrinol Metab 1990; 70: 1438–1444.

    Article  PubMed  CAS  Google Scholar 

  44. Soderqvist G, Von Schoultz B, Tani E, Skoog L. Estrogen and progesterone receptor content in breast epithelial cells from healthy women during the menstrual cycle. Am J Obstet Gynecol 1993; 168: 874–879.

    PubMed  CAS  Google Scholar 

  45. Williams G, Anderson E, Howell A, Watson R, Coyne J, Roberts SA, Potten CS. Oral contraceptive (OCP) use increases proliferation and decreases oestrogen receptor content of epithelial cells in the normal human breast. Int J Cancer 1991; 48: 206–210.

    Article  PubMed  CAS  Google Scholar 

  46. Jacquemier JD, Hassoun J, Torrente M, Martin P-M. Distribution of estrogen and progesterone receptors in healthy tissue adjacent to breast lesions at various stages: immunohistochemical study of 107 cases. Breast Cancer Res Treat 1990; 15: 109–117.

    Article  PubMed  CAS  Google Scholar 

  47. Zeimet AG, Muller-Holzner E, Marth C, Daxenbichler G. Immunocytochemical versus biochemical receptor determination in normal and tumorous tissues of the female reproductive tract and the breast. J Steroid Biochem Mol Biol 1994; 49: 365–372.

    Article  PubMed  CAS  Google Scholar 

  48. Calef G, Alvarado MV, Bonney GE, Amfoh KK, Russo J. Influence of lobular development on breast epithelial cell proliferation and steroid hormone receptor content. Int J Oncol 1995; 7: 1285–1288.

    Google Scholar 

  49. Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 1997; 57: 4987–4991.

    PubMed  CAS  Google Scholar 

  50. Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ 1996; 7: 945–952.

    PubMed  CAS  Google Scholar 

  51. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev 1997; 18: 502–519.

    Article  PubMed  CAS  Google Scholar 

  52. Kester HA, van der Leede BM, van der Saag PT, van der Burg B. Novel progesterone target genes identified by an improved differential display technique suggest that progestin-induced growth inhibition of breast cancer cells coincides with enhanced differentiation. J Biol Chem 1997;272:16, 637–16, 643.

    Google Scholar 

  53. Going JJ, Anderseon TJ, Battersby S, Maclntyre CCA. Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am J Pathol 1988; 130: 193–204.

    PubMed  CAS  Google Scholar 

  54. Ferguson DJP, Anderson TJ. Morphological evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Br J Cancer 1981; 44: 177–181.

    Article  PubMed  CAS  Google Scholar 

  55. Anderson TJ, Battersby S, King RJB, McPherson K, Going J. Oral contraceptive use influences resting breast proliferation. Hum Pathol 1989; 20: 1139–1144.

    Article  PubMed  CAS  Google Scholar 

  56. Haslam SZ. Progesterone effects on deoxyribonucleic acid synthesis in normal mouse mammary glands. Endocrinology 1988; 122: 464–470.

    Article  PubMed  CAS  Google Scholar 

  57. Laidlaw IJ, Clarke RB, Howell A, Owen AW, Potten CS, Anderson E. The proliferation of normal human breast tissue implanted into athymic nude mice is stimulated by estrogen but not progesterone. Endocrinology 1995; 136: 164–171.

    Article  PubMed  CAS  Google Scholar 

  58. Anderson E, Clarke RB, Howell A. Changes in the normal breast throughout the menstrual cycle: relevance to breast carcinogenesis. Endocrine-Related Cancer 1997; 4: 23–33.

    Article  CAS  Google Scholar 

  59. Clarke RB, Howell A, Anderson E. Estrogen sensitivity of normal human breast tissue in vivo and implanted into athymic nude mice: Analysis of the relationship between estrogen-induced proliferation and progesterone receptor expression. Breast Cancer Res Treat 1997; 45: 121–133.

    Article  PubMed  CAS  Google Scholar 

  60. McManus MJ, Welsch CW. Hormone-induced ductal DNA synthesis of human breast tissues maintained in the athymic nude mouse. Cancer Res 1981; 41: 3300–3305.

    PubMed  CAS  Google Scholar 

  61. McManus MJ, Welsch CW. The effect of estrogen, progesterone, thyroxine, and human placental lactogen on DNA synthesis of human breast ductal epithelium maintained in athymic nude mice. Cancer 1984; 54: 1920–1927.

    Article  PubMed  CAS  Google Scholar 

  62. Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 1994; 134: 84–90.

    Article  PubMed  CAS  Google Scholar 

  63. Musgrove EA, Lee CSL, Sutherland RL. Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor a, epidermal growth factor receptor, c-fos and c-myc genes. Mol Cell Biol 1991; 11: 5032–5043.

    PubMed  CAS  Google Scholar 

  64. Musgrove EA, Swarbrick A, Lee CSL, Cornish AL, Sutherland RL. Mechanisms of cyclin-dependent kinase inactivation by progestins. Mol Cell Biol 1998; 18: 1812–1825.

    PubMed  CAS  Google Scholar 

  65. Groshong SD, Owen GI, Grimison B, Schauer IE, Todd MC, Langan TA, et al. Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27Kip 1. Mol Endocrinol 1997; 11: 1593–1607.

    Article  PubMed  CAS  Google Scholar 

  66. Allred DC, O’Connell P, Fuqua SAW, Osborne CK. Immunohistochemical studies of early breast cancer. Breast Cancer Res Treat 1994; 32: 13–18.

    Article  PubMed  CAS  Google Scholar 

  67. O’Connell P, Pekkel V, Fuqua SAW, Osborne CK, Clark GM, Allred DC. Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Nat’ Cancer Inst 1998; 90: 697–703.

    Article  PubMed  Google Scholar 

  68. Jacquemier JD, Rolland PH, Vague D, Lieutaud R, Spitalier JM, Martin PM. Relationships between steroid receptor and epithelial cell proliferation in benign fibrocystic disease of the breast. Cancer 1982; 49: 2534–2536.

    Article  PubMed  CAS  Google Scholar 

  69. Luqmani YA, Campbell T, Soomro S, Shousha S, Rio MC, Coombes RC. Immunohistochemical localisation of pS2 protein in ductal carcinoma in situ and benign lesions of the breast. Br J Cancer 1993; 67: 749–753.

    Article  PubMed  CAS  Google Scholar 

  70. Pichon MF, Broet P, Magdelenat H, Delarue JC, Spyratos F, Basuyan JP, et al. Prognostic value of steroid receptors after long term follow-up of 2257 operable breast cancers. Br J Cancer 1996; 73: 1545–1551.

    Article  PubMed  CAS  Google Scholar 

  71. Pujol P, Daures J-P, Thezenas S, Guilleux F, Rouanet P, Grenier J. Changing estrogen and progesterone receptor patterns in breast carcinoma during the menstrual cycle and menopause. Cancer 1998; 83: 698–705.

    Article  PubMed  CAS  Google Scholar 

  72. Romain S, Laine Bidron C, Martin PM, Magdelenat H. EORTC Receptor Study Group Report: steroid receptor distribution in 47 892 breast cancers. A collaborative study of 7 European laboratories. Eur J Cancer 1995; 31A: 411–417.

    Article  Google Scholar 

  73. Graham JD, Yeates C, Balleine RL, Harvey SS, Milliken JS, Bilous AM, Clarke CL. Progesterone receptor A and B protein expression in human breast cancer. J Steroid Biochem Mol Biol 1996; 56: 93–98.

    Article  PubMed  CAS  Google Scholar 

  74. Kamby C, Andersen J, Ejlertsen B, Birkler NE, Rytter L, Zedeler K, et al. Histological grade and steroid receptor content of primary breast cancer: impact on prognosis and possible modes of action. Br J Cancer 1988; 58: 480–486.

    Article  PubMed  CAS  Google Scholar 

  75. Millis RR, Bobrow LG, Barnes DM. Immunohistochemical evaluation of biological markers in mammary carcinoma in situ: correlation with morphological features and recently proposed schemes for histological classification. Breast 1996; 5: 113–122.

    Article  Google Scholar 

  76. Querzoli P, Albonico G, Ferretti S, Rinaldi R, Beccati D, Corcione S, Indelli M, Nenci I. Modulation of biomarkers in minimal breast carcinoma. A model for human breast carcinoma progression. Cancer 1998; 83: 89–97.

    Article  PubMed  CAS  Google Scholar 

  77. Horwitz KB, McGuire WL, Pearson OH, Segaloff A. Predicting response to endocrine therapy in human breast cancer: a hypothesis. Science 1975; 189: 726, 727.

    Google Scholar 

  78. Ravdin PM, Green S, Dorr TM, McGuire WL, Fabian C, Pugh RP, et al. Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol 1992; 10: 1284–1291.

    PubMed  CAS  Google Scholar 

  79. Howell A, Harland RNL, Barnes DM, Baildam DM, Wilkinson MJS, Hayward E, Swindell R, Sellwood RA. Endocrine therapy for advanced carcinoma of the breast: relationship between the effect of tamoxifen upon concentrations of progesterone receptor and subsequent response to treatment. Cancer Res 1987; 47: 300–304.

    PubMed  CAS  Google Scholar 

  80. Murray PA, Gomm J, Ricketts D, Powels T, Coombes RC. The effect of endocrine therapy on the levels of oestrogen and progesterone receptor and transforming growth factor-b1 in metastatic human breast cancer: an immunocytochemical study. Eur J Cancer 1994; 30A: 1218–1222.

    Article  Google Scholar 

  81. Horwitz KB. The molecular biology of RU486. Is there a role for antiprogestins in the treatment of breast cancer? Endocr Rev 1992; 13: 146–163.

    PubMed  CAS  Google Scholar 

  82. Kommoss F, Pfisterer J, Idris T, Giese E, Sauerbrei W, Schafer W, Thome M, Pfleiderer A. Steroid receptors in carcinoma of the breast. Results of immunocytochemical and biochemical determination and their effects on short-term prognosis. Anal Quant Cytol Histol 1994; 16: 203–210.

    PubMed  CAS  Google Scholar 

  83. Balleine RL, Earl MJ, Greenberg ML, Clarke CL. Absence of progesterone receptor associated with secondary breast cancer in postmenopausal women. Br J Cancer, 1998; in press.

    Google Scholar 

  84. Jakesz R, Dittrich CH, Hanusch J, Kolb R, Lenzhofer R, Moser K, et al. Simultaneous and sequential determinations of steroid hormone receptors in human breast cancer. Ann Surg 1984; 201: 305–310.

    Article  Google Scholar 

  85. Gross GE, Clark GM, Chamness GC, McGuire WL. Multiple progesterone receptor assays in human breast cancer. Cancer Res 1984; 44: 836–840.

    PubMed  CAS  Google Scholar 

  86. Allegra JC, Barlock A, Huff K, Lippman ME. Changes in multiple or sequential estrogen receptor determinations in breast cancer. Cancer 1980; 45: 792–794.

    Article  PubMed  CAS  Google Scholar 

  87. Paridaens R, Sylvester RJ, Ferrazzi E, Legros N, Leclercq G, Heuson JC. Clinical significance of the quantitative assessment of estrogen receptors in advanced breast cancer. Cancer 1980; 46: 2889–2895.

    Article  PubMed  CAS  Google Scholar 

  88. Peetz ME, Nunley DL, Moseley HS, Keenan EJ, Davenport CE, Fletcher WS. Multiple simultaneous and sequential estrogen receptor values in patients with breast cancer. Am J Surg 1982; 143: 591–594.

    Article  PubMed  CAS  Google Scholar 

  89. Hull DF III, Clark GM, Osborne CK, Chamness GC, Knight WA III, McGuire WL. Multiple estrogen receptor assays in human breast cancer. Cancer Res 1983; 43: 413–416.

    PubMed  Google Scholar 

  90. Crawford DJ, Cowan S, Fitch R, Smith DC, Leake RE. Stability of oestrogen receptor status in sequential biopsies from patients with breast cancer. Br J Cancer 1987; 56: 137–140.

    Article  PubMed  CAS  Google Scholar 

  91. Spataro V, Price K, Goldhirsch A, Cavalli F, Simoncini E, Castiglione M, et al. Sequential estrogen receptor determinations from primary breast cancer and at relapse: prognostic and therapeutic relevance. Ann Oncol 1992; 3: 733–740.

    PubMed  CAS  Google Scholar 

  92. Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 1996; 14: 2584–2589.

    PubMed  CAS  Google Scholar 

  93. Clarke CL, Sutherland RL. Progestin regulation of cellular proliferation. Endocr Rev 1990; 11: 266–301.

    Article  PubMed  CAS  Google Scholar 

  94. Said TK, Conneely OM, Medina D, O’Malley BW, Lydon JP. Progesterone, in addition to estrogen, induces cyclin D1 expression in the murine mammary epithelial cell in vivo. Endocrinology 1997; 138: 3933–3939.

    Article  PubMed  CAS  Google Scholar 

  95. Musgrove EA, Lee CSL, Cornish AL, Swarbrick A, Sutherland RL. Antiprogestin inhibition of cell cycle progression in T47D breast cancer cells is accompanied by induction of the CDK inhibitor p21. Mol Endocrinol 1997; 11: 54–66.

    Article  PubMed  CAS  Google Scholar 

  96. Bamberger AM, Thuneke I, Schulte HM. Differential regulation of the human `leukemia inhibitory factor’ (LIF) promoter in the T47D and MDA-MB 231 breast cancer cells. Breast Cancer Res Treat 1998; 47: 153–161.

    Article  PubMed  CAS  Google Scholar 

  97. Clarke RB, Howell A, Anderson E. Type I insulin-like growth factor receptor gene expression in normal human breast tissue treated with oestrogen and progesterone. Br J Cancer 1997; 75: 251–257.

    Article  PubMed  CAS  Google Scholar 

  98. Hamilton JA, Callaghan MJ, Sutherland RL, Watts CKW. Identification of PRG1, a novel progestinresponsive gene with sequence homology to 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Mol Endocr 1997; 11: 490–502.

    Article  CAS  Google Scholar 

  99. Hurd C, Khattree N, Alban P, Nag K, Jhanwar SC, Dinda S, Moudgil VK. Hormonal regulation of the p53 tumor suppressor protein in T47D human breast carcinoma cell line. J Biol Chem 1995;270: 28, 507–28, 510.

    Google Scholar 

  100. Raj an JV, Marquis ST, Perry Gardner H, Chodosh LA. Developmental expression of Brca2 colocalizes with Brcal and is associated with proliferation and differentiation in multiple tissues. Dev Biol 1997; 184: 385–401.

    Article  PubMed  CAS  Google Scholar 

  101. van den Brule F, Engel J, Stetler-Stevenson WG, Liu F-T, Sobel ME, Castronovo V. Genes involved in tumor invasion and metastasis are differentially modulated by estradiol and progestin in human breast-cancer cells. Int J Cancer 1992; 52: 653–657.

    Article  PubMed  Google Scholar 

  102. Hyder SM, Murthy L, Stancel GM. Progestin regulation of vascular endothelial growth factor in human breast cancer cells. Cancer Res 1998; 58: 392–395.

    PubMed  CAS  Google Scholar 

  103. Balbin M, Lopez-Otin C. Hormonal regulation of the human pepsinogen C gene in breast cancer cells. J Biol Chem 1996;271:15, 175–15, 181.

    Google Scholar 

  104. Miller MM, James RA, Richer JK, Gordon DF, Wood WM, Horwitz KB. Progesterone regulated expression of flavin-containing monooxygenase 5 by the B-isoform of progesterone receptors: implications for tamoxifen carcinogenicity. J Clin Endocrinol Metab 1997; 82: 2956–2961.

    Article  PubMed  CAS  Google Scholar 

  105. Zarghami N, Grass L, Diamandis EP. Steroid hormone regulation of prostate-specific antigen gene expression in breast cancer. Br J Cancer 1997; 75: 579–588.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Balleine, R.L., Mote, P.A., Hunt, S.M.N., McGowan, E.M., Clarke, C.L. (2000). Progesterone Receptors in Normal and Neoplastic Breast. In: Ethier, S.P. (eds) Endocrine Oncology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-223-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-223-4_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9700-7

  • Online ISBN: 978-1-59259-223-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics