Skip to main content

Cellular and Tissue Markers in Solid Tumors

  • Chapter
Principles of Molecular Oncology

Abstract

The preceding two chapters have provided the groundwork discussion on the prognostic value and potential clinical utility of markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perkins A, Stern D. Molecular biology of cancer. Oncogenes. In: Cancer: Principles & Practice of Oncology, 5th edit. ( DeVita V, Heilman S, Rosenberg S, eds.), Lippincott-Raven, Philadelphia, 1997, pp. 79–102.

    Google Scholar 

  2. Kastan M. Molecular biology of cancer: the cell cycle. In: Cancer: Principles & Practice of Oncology, 5th edit. ( DeVita V, Heilman S, Rosenberg S, eds.), Lippincott-Raven, Philadelphia, 1997, pp. 121–34.

    Google Scholar 

  3. Landberg G, Roos G. The cell cycle in breast cancer. APMIS. 1197; 105: 575–89.

    Article  Google Scholar 

  4. Catellino R. Imaging techniques in cancer management. Section 1, overview. In: Cancer: Principles & Practice of Oncology, 5th edit. ( DeVita V, Hellman S, Rosenberg S, eds.), Lippincott-Raven, Philadelphia, 1997, pp. 633–43.

    Google Scholar 

  5. Nystrom L, Rutqvist LE, Wall S, et al. Breast cancer screening with mammography: overview of Swedish randomised trials. Lancet. 1993; 341: 973–8.

    Article  PubMed  CAS  Google Scholar 

  6. Early Breast Cancer Trialists’ Collaborative Group. Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. Lancet. 1992; 339: 1–15.

    Google Scholar 

  7. Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet. 1998; 352: 930–42.

    Google Scholar 

  8. Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet. 1998; 351: 1451–67.

    Google Scholar 

  9. NIH consensus conference. Adjuvant therapy for patients with colon and rectal cancer. JAMA. 1990; 264: 1444–55.

    Article  Google Scholar 

  10. Redding W, Coombes R, Monaghan P, et al. Detection of micrometastases in patients with primary breast cancer. Lancet. 1983; 2: 1271–4.

    Article  PubMed  CAS  Google Scholar 

  11. Ridell B, Landys K. Incidence and histopathology of metastases of mammary carcinoma in biopsies from the posterior iliac crest. Cancer. 1979; 44: 1872–8.

    Article  Google Scholar 

  12. Diel I, Kaufmann M, Costa S, et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst. 1996; 88: 1652–68.

    Article  PubMed  CAS  Google Scholar 

  13. Bergh J. Determination and use of p53 in the management of cancer patients with special focus on breast cancer—a review. In: Prognostic and Predictive value of p53. ( Klijn J, ed.), Elsevier, Amsterdam, 1997, pp. 35–50.

    Google Scholar 

  14. Bonadonna G, Rossi A, Valagussa P, et al. The CMF program for operable breast cancer with positive axillary nodes. Cancer. 1977; 39: 2904–15.

    Article  PubMed  CAS  Google Scholar 

  15. Early Breast Cancer Trialists’ Collaborative Group. Effects of adjuvant tamoxifen and of cytotoxic therapy on mortality in early breast cancer. An overview of 61 randomized trials among 28,896 women. N Engl J Med. 1988; 319; 1681–92.

    Google Scholar 

  16. Eisenhut CL, King DE, Nelson WA, Olson LC, Wall RW, Glant MD. Fine-needle biopsy of pediatric lesions: a three-year study in an outpatient biopsy clinic. Diagn Cytopathol. 1996; 14: 43–50.

    Article  PubMed  CAS  Google Scholar 

  17. Collins F, Patrinos A, Jordan E, et al. New goals for the US Human Genome Project: 1998–2003. Science. 1998; 282: 682–9.

    Article  PubMed  CAS  Google Scholar 

  18. van Ommen G. The human genome project and the role of genetics in health care. Clin. Chem Lab Med. 1998; 36: 515–7.

    Article  PubMed  CAS  Google Scholar 

  19. Roodi N, Bailey L, Kao W, et al. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J Natl CancerInst. 1995; 87: 446–51.

    Article  CAS  Google Scholar 

  20. Cole K, Krizman DB, Emmert-Buck MR. The genetics of cancer—a 3D model. Nat Genet. 1999; 21: 38–41.

    Article  PubMed  CAS  Google Scholar 

  21. Debouck C, Goodfellow P. DNA microarrays in drug discovery and development. Nat Genet. 1999; 21: 48–50.

    Article  PubMed  CAS  Google Scholar 

  22. Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi OP. Genome screening by comparative genomic hybridization. Trends Genet. 1997; 13: 405–9.

    Article  PubMed  CAS  Google Scholar 

  23. Hacia J. Resequencing and mutational analysis using oligonucleotide microarrays. Nat Genet. 1999; 21: 42–7.

    Article  PubMed  CAS  Google Scholar 

  24. Bernardino M. Automated biopsy devices: significance and safety. Radiology. 1990; 176: 615–6.

    PubMed  CAS  Google Scholar 

  25. Burbank F, Kaye K, Belville J, et al. Image-guided automated core biopsies of the breast, chest, abdomen, and pelvis. Radiology. 1994; 191: 165–71.

    PubMed  CAS  Google Scholar 

  26. Ciray I, Astroöm G, Sundstroöm C, Hagberg H, Ahlstrom H. Assessment of suspected bone metastases. CT with and without clinical information compared to CT-guided bone biopsy. Acta Radiol. 1997; 38: 890–5.

    PubMed  CAS  Google Scholar 

  27. Elvin A, Andersson T, Jaremko G, et al. Significance of operator experience in diagnostic accuracy of biopsy gun biopsies. Eur Radiol. 1994; 4: 430–3.

    Article  Google Scholar 

  28. Fraser-Hill MA, Renfrew DL, Hilsenrath PE. Percutaneous needle biopsy of musculoskeletal lesions. 1. Effective accuracy and diagnostic utility. Am J Roentgenol. 1992; 158:809– 12.

    Google Scholar 

  29. Moulton JS, Moore PT. Coaxial percutaneous biopsy technique with automated biopsy devices. Value in improving accuracy and negative predictive value. Radiology 1993; 186: 515–22.

    PubMed  CAS  Google Scholar 

  30. Parker S, Hopper K, Yakes W, et al. Image-directed percutaneous biopsies with a biopsy gun. Radiology. 1989; 171: 663–9.

    PubMed  CAS  Google Scholar 

  31. Tikkakoski T, Paivansalo M, Siniluoto T, et al. Percutaneous ultrasound-guided biopsy. Fine needle biopsy, cutting needle biopsy, or both? Acta Radiol. 1993; 34: 30–4.

    PubMed  CAS  Google Scholar 

  32. Welch T, Sheedy P, Johnson C, et al. CT-guided biopsy: prospective analysis of 1,000 procedures. Radiology. 1989; 171: 493–6.

    PubMed  CAS  Google Scholar 

  33. Astroöm KG, Sundstroöm JC, Lindgren PG, Ahlstrom KH. Automatic biopsy instruments used through a coaxial bone biopsy system with an eccentric drill Eip. Acta Radiol. 1995; 36: 237–42.

    Article  Google Scholar 

  34. Brock CS, Meikle SR, Price MP. Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumours benefit oncology? Eur J Nucl Med. 1997; 24: 691–705.

    PubMed  CAS  Google Scholar 

  35. Timothy AR, Cook GJ. PET scanning in clinical oncology. Ann Oncol. 1998; 9: 353–5.

    Article  PubMed  CAS  Google Scholar 

  36. Gurney H. Dose calculation of anticancer drugs: a review of the current practice and introduction of an alternative. J Clin Oncol. 1996; 14: 2590–611.

    PubMed  CAS  Google Scholar 

  37. Gurney H, Ackland S, Gebski V, et al. Factors affecting epirubicin pharmacokinetics and toxicity: evidence against using body-surface area for dose calculation. J Clin Oncol. 1998; 16: 2299–304.

    PubMed  CAS  Google Scholar 

  38. Karlsson MO, Molnar V, Bergh J, Freijs A, Larsson R. A general model for timedissociated pharmacokinetic-pharmacodynamic relationship exemplified by paclitaxel myelosuppression. Clin Pharmacol Ther. 1998; 63: 11–25.

    Article  PubMed  CAS  Google Scholar 

  39. Sandstroöm M, Freijs A, Larsson R, et al. Lack of relationship between systemic exposure for the component drugs of the fluorouracil, epirubicin, and 4hydroxycyclophosphamide regimen in breast cancer patients. J Clin Oncol. 1996; 14: 1581–8.

    Google Scholar 

  40. Bergh J. Tailored chemotherapy to equal toxicity—is it possible? In: Adjuvant Therapy of Primary Breast Cancer. ( Senn HJ, Gelber R, Goldhirsch A, Thurlimann B, eds.), Springer-Verlag, Berlin, 1998, pp. 328–40.

    Chapter  Google Scholar 

  41. Bergh J, Wikllund T, Erikstein B, et al. Dosage of adjuvant G-CSF (filgrastim)-supported FEC polychemotherapy based on equivalent haematological toxicity to high-risk breast cancer patients. Ann Oncol. 1998; 9: 403–11.

    Article  PubMed  CAS  Google Scholar 

  42. Revillion F, Bonneterre J, Peyrat J. ERBB2 oncogene in human breast cancer and its clinical significance. Eur J Cancer. 1998; 34: 791–808.

    Article  PubMed  CAS  Google Scholar 

  43. Press MF, Hung G, Godolphin W, Slamon DJ. Sensitivity of HER-2/neu antibodies in archival tissue samples. Potential source of error in immunohistochemical studies of oncogene expression. Cancer Res. 1994; 54: 2771–7.

    PubMed  CAS  Google Scholar 

  44. Sjoögren S, Inganas M, Lindgren A, Holmberg L, Bergh J. The prognostic and predictive value of c-erbB-2 overexpression in primary breast cancer, alone and in combination with other prognostic markers. J Clin Oncol. 1998; 16: 462–9.

    Google Scholar 

  45. Barbareschi M, Leonardi E, Mauri FA, Sergio G, Dalla Palma P. p53 and c-erbB-2 protein expression in breast carcinoma. An immunohistochemical study including correlations with receptor status, proliferation markers, and clinical stage in human breast cancer. Am J Clin Pathol. 1992; 98: 408–18.

    PubMed  CAS  Google Scholar 

  46. Berns EM, Klijn JG, van Staveren IL, Portengen H, Noordegraaf E, Foekens JA. Prevalence of amplification of the oncogenes c-myc, HER2/neu, and int-2 in one thousand human breast tumours: correlation with steroid receptors. Eur J Cancer. 1992; 28: 697–700.

    Article  PubMed  CAS  Google Scholar 

  47. Carlomagno C, Perrone F, Gallo C, et al. c-erbB2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol. 1996; 14: 2702–8.

    PubMed  CAS  Google Scholar 

  48. Gusterson BA, Gelber RD, Goldhirsch A, et al. Prognostic importance of c-erbB-2 expression in breast cancer. J Clin Oncol. 1992; 10: 1049–56.

    PubMed  CAS  Google Scholar 

  49. Hartmann LC, Ingle JN, Wold LE, et al. Prognostic value of c-erbB2 overexpression in axillary lymph node positive breast cancer. Results from a randomized adjuvant treatment protocol. Cancer. 1994; 74: 2956–63.

    Article  PubMed  CAS  Google Scholar 

  50. Lipponen HJ, Aaltomaa S, Syrjanen S, Syrjanen K. c-erbB-2 oncogene related to p53 expression, cell proliferation and prognosis in breast cancer. Anticancer Res. 1993; 13: 1147–52.

    PubMed  CAS  Google Scholar 

  51. Marx D, Schauer A, Reiche C, et al. c-erbB2 expression in correlation to other biological parameters of breast cancer. J Cancer Res Clin Oncol. 1990; 116: 15–20.

    Article  PubMed  CAS  Google Scholar 

  52. Takahashi S, Narimatsu E, Asanuma H, et al. Immunohistochemical detection of estrogen receptor in invasive human breast cancer: correlation with heat shock proteins, pS2 and oncogene products. Oncology. 1995; 52: 371–5.

    Article  PubMed  CAS  Google Scholar 

  53. Tang R, Kacinski B, Validire P, et al. Oncogene amplification correlates with dense lymphocyte infiltration in human breast cancers: a role for hematopoietic growth factor release by tumor cells? J Cell Biochem. 1990; 44: 189–98.

    Article  PubMed  CAS  Google Scholar 

  54. Borg A, Baldetorp B, Fernoö M, et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 1994; 81: 137–44.

    Article  PubMed  CAS  Google Scholar 

  55. Leitzel K, Teramoto Y, Konrad K, et al. Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J Clin Oncol. 1995; 13:1129– 35.

    Google Scholar 

  56. Wright C, Nicholson S, Angus B, et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992; 65: 118–21.

    Article  PubMed  CAS  Google Scholar 

  57. Yamauchi H, O’Neill A, Gelman R, et al. Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol. 1997; 15: 2518–25.

    PubMed  CAS  Google Scholar 

  58. Elledge R, Green S, Ciocca D, et al. HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a Southwest Oncology Group Study. Clin Cancer Res. 1998; 4: 7–12.

    PubMed  CAS  Google Scholar 

  59. Benz CC, Scott GK, Sarup JC, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1993; 24: 85–95.

    Article  CAS  Google Scholar 

  60. Paik S, Bryant J, Park C, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst. 1998; 90: 1361–70.

    Article  PubMed  CAS  Google Scholar 

  61. Thor AD, Berry DA, Budman DR, et al. erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J Natl Cancer Inst. 1998; 90: 1346–60.

    Article  PubMed  CAS  Google Scholar 

  62. Clahsen PC, van de Velde CJ, Duval C, et al. p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J Clin Oncol. 1998; 16: 470–9.

    PubMed  CAS  Google Scholar 

  63. Niskanen E, Blomqvist C, Franssila K, Hietanen P, Wasenius VM. Predictive value of cerbB-2, p53, cathepsin-D and histology of the primary tumour in metastatic breast cancer. Br J Cancer. 1997; 76: 917–22.

    Article  PubMed  CAS  Google Scholar 

  64. Rozan S, Vincent-Salomon A, Zafrani B, et al. No significant predictive value of c-erbB2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer. Int J Cancer. 1998; 79: 27–33.

    Article  PubMed  CAS  Google Scholar 

  65. Cobleigh M, Vogel C, Tripathy D, et al. Efficacy and safety of HerceptinTM (humanized anti-HER2 antibody) as a single agent in 222 women with HER2 overexpression who relapsed following chemotherapy for metastatic breast cancer. Proc Am Soc Clin Oncol. 1998; 17: 97a (abstr 376).

    Google Scholar 

  66. Slamon D, Leyland-Jones B, Shak S, et al. Addition of HerceptinTM (humanized antiHER2 antibody) to first line chemotherapy for HER2 overexpressing metastatic breast cancer (HER2+MBC) markedly increases anticancer activity: a randomized, multinational controlled phase III trial. Proc Am Soc Clin Oncol. 1998; 17: 98a (abstr 377).

    Google Scholar 

  67. Harris C. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst. 1996; 88: 1442–55.

    Article  PubMed  CAS  Google Scholar 

  68. Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996; 274: 948–53.

    Article  PubMed  CAS  Google Scholar 

  69. Finlay C, Hinds P, Tan TH, et al. Activating mutations for transformation by p53 produce a gene product that forms an hsc70 –p53 complex with an altered half-life. Mol Cell Biol. 1988; 8: 531–9.

    PubMed  CAS  Google Scholar 

  70. Hinds PW, Finlay CA, Quartin RS, et al. Mutant p53 cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Different. 1990; 1: 571–80.

    CAS  Google Scholar 

  71. Iggo R, Gatter K, Bartek J, Lane D, Harris AL. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet. 1990; 335: 675–9.

    Article  PubMed  CAS  Google Scholar 

  72. Reich N, Levine A. Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature 1984; 308: 199–201.

    Article  PubMed  CAS  Google Scholar 

  73. Gronostajski R, Goldberg A, Pardee A. Energy requirement for degradation of tumor-associated protein p53. Mol Cell Biol. 1984; 4: 442–8.

    PubMed  CAS  Google Scholar 

  74. Sjoögren S, Inganas M, Norberg T, et al. The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. J Natl Cancer Inst. 1996; 88: 173–82.

    Google Scholar 

  75. Silvestrini R, Benini E, Daidone MC, et al. p53 as an independent prognostic marker in lymph node-negative breast cancer patients. J Natl Cancer Inst. 1993; 85: 965–70.

    Article  PubMed  CAS  Google Scholar 

  76. Silvestrini R, Rao S, Benini E, Daidone MG, Pilotti S. Immunohistochemical detection of p53 in clinical breast cancers: a look at methodologic approaches. J Natl Cancer Inst. 1995; 87: 1020.

    Article  PubMed  CAS  Google Scholar 

  77. Horne GM, Anderson JJ, Tiniakos DG, et al. p53 protein as a prognostic indicator in breast carcinoma: a comparison of four antibodies for immunohistochemistry. Br J Cancer. 1996; 73: 29–35.

    Article  PubMed  CAS  Google Scholar 

  78. Baas IO, Mulder JW, Offerhaus GJ, Vogelstein B, Hamilton SR. An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasmas. J Pathol. 1994; 172: 5–12.

    Article  PubMed  CAS  Google Scholar 

  79. Kraggerud SM, Jacobsen KD, Berner A, et al. A comparison of different modes for the detection of p53 protein accumulation. Pathol Res Pract. 1997; 193: 471–8.

    Article  PubMed  CAS  Google Scholar 

  80. Sjoögren S. Prognostic factors with predictive potential in breast cancer. Special focus on the tumour suppressor p53. Acta Universitatis Upsahensis, Uppsala. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, No 722, 1997.

    Google Scholar 

  81. Norberg T, Lennerstrand J, Inganas M, Bergh J. Comparison between p53 protein measurement using the luminometric immunoassay and immunohistochemistry 24 with detection of p53 gene mutations using cDNA sequencing in human breast tumours. Int J Cancer. 1998; 79: 376–83.

    Article  PubMed  CAS  Google Scholar 

  82. Williams C, Norberg T, Ahmadian A, et al. Assessment of sequence-based p53 gene analysis in human breast cancer: messenger RNA in comparison with genomic DNA targets. Clin Chem. 1998; 44: 455–62.

    PubMed  CAS  Google Scholar 

  83. Hayashi K, Yandell DW. How sensitive is PCR-SSCP? Hum Mutat. 1993; 2: 338–46.

    Article  PubMed  CAS  Google Scholar 

  84. Sarkar G, Yoon HS, Sommer SS. Dideoxy fingerprinting (ddF): a rapid and efficient screen for the presence of mutations. Genomics. 1992; 13: 441–3.

    Article  PubMed  CAS  Google Scholar 

  85. Borresen AL, Hovig E, Smith-Sorensen B, et al. Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc Natl Acad Sci USA. 1991; 88: 8405–9.

    Article  PubMed  CAS  Google Scholar 

  86. Fischer S, Lerman L, DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA. 1983: 80: 1579–83.

    Article  PubMed  CAS  Google Scholar 

  87. Borresen-Dale A. Subgroups of p53 mutations may predict the clinical behaviour of cancers in the breast and colon and contribute to therapy response. In: Prognostic and Predictive Value of p53. ( Klijn J, ed.), Elsevier, Amsterdam, 1997, pp. 23–33.

    Google Scholar 

  88. Andersen TI, Holm R, Nesland JM, Heimdal KR, Ottestad L, Borresen AL. Prognostic significance of TP53 alterations in breast carcinoma. Br J Cancer. 1993; 68: 540–8.

    Article  PubMed  CAS  Google Scholar 

  89. Bergh J, Norberg T, Sjoögren S, Lindgren A, Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995; 1: 1029–34.

    Article  PubMed  CAS  Google Scholar 

  90. Borg A, Lennerstrand J, Stenmark-Askmalm M, et al. Prognostic significance of p53 overexpression in primary breast cancer; a novel luminometric immunoassay applicable on steroid receptor cytosols. Br J Cancer. 1995; 71: 1013–17.

    Article  PubMed  CAS  Google Scholar 

  91. Bosari S, Viale G, Radaelli U, Bossi P, Bonoldi E, Coggi G. p53 accumulation in ovarian carcinomas and its prognostic implications. Hum Pathol. 1993; 24: 1175–79.

    Article  PubMed  CAS  Google Scholar 

  92. Borresen AL, Andersen TI, Eyfjoörd JE, et al. TP53 mutations and breast cancer prognosis: particularly poor survival rates for cases with mutations in the zinc-binding domains. Genes Chromosom Cancer. 1995; 14: 71–5.

    Article  PubMed  CAS  Google Scholar 

  93. Chang F, Syrjanen S, Syrjanen K. Implications of the p53 tumor-suppressor gene in clinical oncology. J Clin Oncol. 1995; 13: 1009–22.

    PubMed  CAS  Google Scholar 

  94. Drobnjak M, Latres E, Pollack D, et al. Prognostic implications of p53 nuclear overexpression and high proliferation index of Ki-67 and adult soft-tissue sarcomas. J Natl Cancer Inst. 1994; 86: 549–54.

    Article  PubMed  CAS  Google Scholar 

  95. Elledge RM, Clark GM, Fuqua SA, Yu YY, Allred DC. p53 protein accumulation detected by five different antibodies: relationship to prognosis and heat shock protein 70 in breast cancer. Cancer Res. 1994; 54: 3752–57.

    PubMed  CAS  Google Scholar 

  96. Ellege RM, Fuqua SA, Clark GM, Pujol P, Allred DC, McGuire WL. Prognostic significance of p53 gene alterations in node-negative breast cancer. Br Cancer Res Treat. 1993; 26: 225–35.

    Article  Google Scholar 

  97. Martin HM, Filipe MI, Morris RW, Lane DP, Silvestre F. p53 expression and prognosis in gastric carcinoma. Int J Cancer. 1992; 50: 859–62.

    Article  PubMed  CAS  Google Scholar 

  98. Mitsudomi T, Oyama T, Kusano T, et al. Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-cell lung cancer. J Natl Cancer Inst. 1993; 85: 2018–23.

    Article  PubMed  CAS  Google Scholar 

  99. Remvikos Y, Tominaga O, Hammel P, et al. Increased p53 protein content of colorectal tumours correlates with poor survival. Br J Cancer. 1992; 66: 758–64.

    Article  PubMed  CAS  Google Scholar 

  100. Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J Natl Cancer Inst. 1993; 85: 53–9.

    Article  PubMed  CAS  Google Scholar 

  101. Starzynska T, Bromley M, Ghosh A, Stern PL. Prognostic significance of p53 overexpression in gastric and colorectal carcinoma. Br J Cancer. 1992; 66: 558–62.

    Article  PubMed  CAS  Google Scholar 

  102. Thor A, Moore DH, Edgerton SM, et al. Accumulation of p53 tumor suppressor gene protein: an independent marker of prognosis in breast cancers. J Natl Cancer Inst. 1992; 84: 845–55.

    Article  PubMed  CAS  Google Scholar 

  103. Thorlacius S, Borresen A, Eyfjörd J. Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. Cancer Res. 1993; 53: 1637–41.

    PubMed  CAS  Google Scholar 

  104. Visakorpi T, Kallioniemi OP, Heikkinen A, Koivula T, Isola J. Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. JNatl Cancer Inst. 1992; 84: 883–7.

    Article  CAS  Google Scholar 

  105. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994; 54: 4855–78.

    PubMed  CAS  Google Scholar 

  106. Velculescu VE, El-Deiry WS. Biological and clinical importance of the p53 tumor suppressor gene. Clin Chem. 1996; 42: 858–68.

    PubMed  CAS  Google Scholar 

  107. Jones DR, Davidson AG, Summers CL, Murray GF, Quinlan DC. Potential application of p53 as an intermediate biomarker in Barrett’s esophagus. Ann Thorac Surg. 1994; 57: 598–603.

    Article  PubMed  CAS  Google Scholar 

  108. Nuorva K, Soini Y, Kamel D, et al. Concurrent p53 expression in bronchial dysplasias and squamous cell lung carcinomas. Am J Pathol. 1993; 142: 725–32.

    PubMed  CAS  Google Scholar 

  109. Sozzi G, Miozzo M, Donghi R, et al. Deletions of 17p and p53 mutations in preneoplastic lesions of the lung. Cancer Res. 1992; 52: 6079–82.

    PubMed  CAS  Google Scholar 

  110. Wang LD, Hong JY, Qiu S, Gao H, Yang CS. Accumulation of p53 protein in human esophageal precancerous lesions: a possible early biomarker for carcinogenesis. Cancer Res. 1993; 53: 1873–77.

    Google Scholar 

  111. Ahuja H, Bar-Eli M, Arlin Z, et al. The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia. J Clin Invest. 1991; 87: 2042–47.

    Article  PubMed  CAS  Google Scholar 

  112. Crook T, Vousden KH. Properties of p53 mutations detected in primary and secondary cervical cancers suggest mechanisms of metastasis and involvement of environmental carcinogens. EMBO J. 1992; 11: 3935–40.

    PubMed  CAS  Google Scholar 

  113. Crook T, Wrede D, Tidy J, et al. Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus-negative tumours. Lancet. 1992; 339: 1070–3.

    Article  PubMed  CAS  Google Scholar 

  114. Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti MA. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest. 1993; 91: 1753–60.

    Article  PubMed  CAS  Google Scholar 

  115. Foti A, Ahuja HG, Allen SL, et al. Correlation between molecular and clinical events in the evolution of chronic myelocytic leukemia to blast crisis. Blood. 1991; 77: 2441–44.

    PubMed  CAS  Google Scholar 

  116. Haapasalo H, Isola J, Sallinen P, Kalimo H, Helin H, Rantala I. Aberrant p53 expression in astrocytic neoplasms of the brain: association with proliferation. Am J Pathol. 1993; 142: 1347–51.

    PubMed  CAS  Google Scholar 

  117. Ito T, Seyama T, Mizuno T, et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 1992; 52: 1369–71.

    PubMed  CAS  Google Scholar 

  118. Kakeji Y, Korenaga D, Tsujitani S, et al. Gastric cancer with p53 overexpression has high potential for metastasising to lymph nodes. Br J Cancer. 1993; 67: 589–93.

    Article  PubMed  CAS  Google Scholar 

  119. Sidransky D, Mikkelsen T, Schwachheirner K, Rosenblum ML, Cavanee W, Vogelstein B. Clonal expansion of p53 mutant cells associated with brain tumour progression. Nature. 1992; 355: 846–7.

    Article  PubMed  CAS  Google Scholar 

  120. Wada H, Asada M, Nakazawa S, et al. Clonal expansion of p53 mutant cells in leukemia progression in vitro. Leukemia. 1994; 8: 53–9.

    PubMed  CAS  Google Scholar 

  121. Kresser U, Inganas M, Byding S, et al. Prognostic value of p53 genetic changes in colorectal cancer. J Clin Oncol. 1999; 17: 593–9.

    Google Scholar 

  122. Berns EM, Klijn JG, van Putten WL, et al. p53 protein accumulation predicts poor response to tamoxifen therapy of patients with recurrent breast cancer. J Clin Oncol. 1998; 16: 121–7.

    PubMed  CAS  Google Scholar 

  123. Archer SG, Eliopoulos A, Spandidos D, et al. Expression of ras, p21, p53 and c-erbB-2 in advanced breast cancer and response to first line hormonal therapy. Br J Cancer. 1995; 72: 1259–66.

    Article  PubMed  CAS  Google Scholar 

  124. Bergh J. Clinical studies of p53 in treatment and benefit of breast cancer patients. 1999, in press.

    Google Scholar 

  125. Aas T, Borresen AL, Geisler S, et al. Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996; 2: 811–14.

    Article  PubMed  CAS  Google Scholar 

  126. Larsson L, Carlsson G, Sjögren S, et al. Mutations in the p53 gene predict the outcome of adjuvant therapy in node-positive patients with breast cancer. Proc Am Soc Clin Oncol. 1999, 18: 610a (abstract 2356).

    Google Scholar 

  127. Linn SC, Pinedo HM, van Ark-Otte J, et al. Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer. 1997; 71: 787–95.

    Article  PubMed  CAS  Google Scholar 

  128. Al-Azraqi A, Chapman C, Challen C, et al. p53 mutations in primary human ovarian cancer as a determinant of resistance to carboplatin. Proc Am Assoc Cancer Res. 1995; 36: 228 (abstr 1356).

    Google Scholar 

  129. Diccianni MB, Yu J, Hsiao M, Mukherjee S, Shao LE, Yu AL. Clinical significance of p53 mutations in relapsed T cell acute lymphoblastic leukemia. Blood. 1994; 84: 3105–12.

    PubMed  CAS  Google Scholar 

  130. Ichikawa A, Kinoshita T, Watanabe T, et al. Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma. N Engl J Med. 1997; 337: 529–34.

    Article  PubMed  CAS  Google Scholar 

  131. Smith-Sorensen B, Kaern J, Holm R, et al. Therapy effect of either paclitaxel or cyclophos-phamide combination treatment in patients with epithelial ovarian cancer and relation to TP53 gene status. Br J Cancer. 1998; 78: 375–81.

    Article  PubMed  CAS  Google Scholar 

  132. Wattel E, Preudhomme C, Hacquet B, et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood. 1994; 84: 3148–57.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindahl, T., Norberg, T., Åström, G., Sjögren, S., Bergh, C.J. (2000). Cellular and Tissue Markers in Solid Tumors. In: Bronchud, M.H., Foote, M.A., Peters, W.P., Robinson, M.O. (eds) Principles of Molecular Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-222-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-222-7_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6274-7

  • Online ISBN: 978-1-59259-222-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics