Skip to main content

SF-1 and DAX-1

A Dynamic Duo in Endocrine Development

  • Chapter
Gene Engineering in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 22))

  • 102 Accesses

Abstract

The cloning of the first steroid/hormone nuclear receptor a decade ago has led to the identification of a multigene family with well over 60 members (1). Nuclear receptors are known to affect a wide array of important physiological effects in growth, development, and homeostasis and are key regulators of complex endocrine pathways. The field of reproductive endocrinology has been given a molecular boost by the discovery of two important members of the nuclear receptor gene family: steroidogenic factor-1 (SF-1) and DAX-1(dosage-sensitive sex-reversal adrenal hypoplasia congenita critical region of the X chromosome 1). The striking phenotypes displayed in the loss-of-function (LOF) SF-1 and DAX-1 mutants, either in mice or in men, respectively, have brought both of these gene products to the forefront of developmental endocrinology. We now appreciate that both SF-1 and DAX-1 are critical for the development of the hypothalamic-pituitary-gonadal axis and the adrenal gland. Here we explore the individual and coordinate roles of SF-1 and Dax-1 in reproductive endocrine organ development delineated from expression and genetic analyses. Additionally, we present the current understanding of the physical and functional interactions between these two nuclear receptors. Finally, we highlight the major unresolved questions that have emerged for those wishing to understand the molecular and genetic nature of the SF-1 and Dax-1 partnership.

SF-1 and Dax-1: divergent members of a supergene family. (A) Schematic representation of mouse SF-1 and mDax-1, with corresponding amino acids is shown. The classic DBD consisting of two Cys2-Cys2 zinc finger motifs, a hinge region, and a putative LBD of SF-1 is shown. Two regions important for transactivation function are also shown, AF-1 and AF-2. Arrows indicate the three and half cysteine-alanine-glycine-rich repeats and solid black bars indicate the approximate location of the silencing domains. Putative LBD regions for both SF-1 and Dax-1 are shown based on sequence identity with other steroid/hormone nuclear receptors. Based on high-resolution structural analyses of other nuclear receptors, the LBD of SF-1 might begin at residue 221. (B) Classic nuclear receptors bind discrete DNA response elements in a homo- or heterodimeric fashion and can affect transcription in a ligand- (triangle) dependent manner. SF-1 binds DNA as a monomer to stimulate transcription in the absence of ligand; however, an unknown ligand may modulate SF-1 activity (?). Dax-1 is unable to bind to classic nuclear hormone receptor response elements, but has been shown to bind DNA hairpin loops (31). Similar to SF-1, a ligand for Dax-1 has not been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evan RM. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  2. Lala DS, Syka PM, Lazarchik SB, Mangelsdorf DJ, Parker KL, Heyman RA. Activation of the orphan nuclear receptor steroidogenic factor 1 by oxysterols. Proc Natl Acad Sci USA 1997; 94: 4895–4900.

    Article  PubMed  CAS  Google Scholar 

  3. Mellon SH, Bair SR. 25-Hydroxycholesterol is not a ligand for the orphan nuclear receptor steroidogenic factor-1 (SF-1). Endocrinol 1998; 139: 3026–3028.

    Article  CAS  Google Scholar 

  4. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 1996; 3: 206.

    Article  PubMed  CAS  Google Scholar 

  5. Parker KL, Schimmer BP. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 1997; 18: 361–377.

    Article  PubMed  CAS  Google Scholar 

  6. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994; 77: 481–490.

    Article  PubMed  CAS  Google Scholar 

  7. Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? 1995; 83: 859–869.

    CAS  Google Scholar 

  8. Ingraham HA, Lala DS, Ikeda Y, Luo X, Shen WH, Nachtigal MW, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 1994; 8: 2302–2312.

    Article  PubMed  CAS  Google Scholar 

  9. Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA, Tourtellotte LM, Simburger K, Milbrandt J. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci USA 1995; 92:10, 939–10, 943.

    Google Scholar 

  10. Shinoda K, Lei H, Yoshii H, Nomura M, Nagano M, Shiba H, Sasaki H, Osawa Y, Ninomiya Y, Niwa O, et al. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-Fl disrupted mice. Dev Dyn 1995; 204: 22–29.

    Article  PubMed  CAS  Google Scholar 

  11. Muscatelli F, Strom TM, Walker AP, Zanaria E, Récan D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W, Schwarz HP, Kaplan J-C, Camerino G, Meitinger T, Monaco AP. Mutations in the DAX1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 1994; 372: 672–676.

    Article  PubMed  CAS  Google Scholar 

  12. Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER, Meitinger T, Monaco AP, Sassone-Corsi P, Camerino G. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994; 372: 635–641.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang YH, Guo W, Wagner L, Huang BL, McCabe L, Vilain E, Burris TP, Anyane-Yeboa K, Burghes AH, Chitayat D, Chudley AE, Genel M, Gertner JM, Klingensmith GJ, Levine SN, Nakamoto J, New MI, Pagon RA, Pappas JG, Quigley CA, Rosenthal IM, Baxter JD, Fletterick RJ, McCabe ER. DAX1 mutations map to putative structural domains in a deduced three-dimensional model. Am J Hum Genetics 1998; 62: 855–864.

    Article  CAS  Google Scholar 

  14. Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G, Ferrante E, Chiumello G, McCabe ER, Fraccaro M, Zuffardi O, Camerino G. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genetics 1994; 7: 497–501.

    Article  CAS  Google Scholar 

  15. Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R. Daxl antagonizes Sry action in mammalian sex determination. Nature 1998; 391: 761–777.

    Article  PubMed  CAS  Google Scholar 

  16. Foster JW, Brennan FE, Hampikian GK, Goodfellow PN, Sinclair AH, Lovell-Badge R, Selwood L, Renfree MB, Cooper DW, Graves JA. Evolution of sex determination and the Y chromosome SRYrelated sequences in marsupials. Nature 1992; 359: 531–533.

    Article  PubMed  CAS  Google Scholar 

  17. Pask A, Toder R, Wilcox SA, Camerino G, Graves JA. The candidate sex-reversing DAX1 gene is autosomal in marsupials: implications for the evolution of sex determination in mammals. Genomics 1997; 41: 422–426.

    Article  PubMed  CAS  Google Scholar 

  18. Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genetics 1996; 12: 404–409.

    Article  CAS  Google Scholar 

  19. Ikeda Y, Swain A, Weber TJ, Hentges KE, Zanaria E, Lalli E, Tamai KT, Sassone-Corsi P, Lovell-Badge R, Camerino G, Parker KL. Steroidogenic factor 1 and Dax-1 colocalize in multiple cell lineages: potential links in endocrine development. Mol Endocrinol 1996; 10: 1261–1272.

    Article  PubMed  CAS  Google Scholar 

  20. Ikeda Y, Luo X, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 1995; 9: 478–486.

    Article  PubMed  CAS  Google Scholar 

  21. Burris TP, Guo W, Le T, McCabe ER. Identification of a putative steroidogenic factor-1 response element in the DAX-1 promoter. Biochem Biophys Res Commun 1995; 214: 576–581.

    Article  PubMed  CAS  Google Scholar 

  22. Vilain E, Guo W, Zhang YH, McCabe ER. DAX1 gene expression upregulated by steroidogenic factor 1 in an adrenocortical carcinoma cell line. Biochem Mol Med 1997; 61: 1–8.

    Article  PubMed  CAS  Google Scholar 

  23. Woodson KG, Crawford PA, Sadovsky Y, Milbrandt J. Characterization of the promoter of SF-1, an orphan nuclear receptor required for adrenal and gonadal development. Mol Endocrinol 1997; 11: 117126.

    Google Scholar 

  24. Yu RN, Ito M, Jameson JL. The murine Dax-1 promoter is stimulated by SF-1 (Steroidogenic factor-1) and inhibited by COUP-TF (Chicken Ovalbumin Upstream Promoter-Mol Endocrinol/Transcription Factor) via a composite nuclear receptor-regulatory element 1998; 12: 1010–1022.

    CAS  Google Scholar 

  25. Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, Morohashi K. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 1994; 120: 2787–2797.

    PubMed  CAS  Google Scholar 

  26. Shen WH, Moore CC, Ikeda Y, Parker KL, Ingraham HA. Nuclear receptor steroidogenic factor 1 regulates the müllerian inhibiting substance gene: a link to the sex determination cascade. Cell 1994; 77: 651–661.

    Article  PubMed  Google Scholar 

  27. Ikeda Y, Shen WH, Ingraham HA, Parker KL. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol 1994; 8: 654–662.

    Article  PubMed  CAS  Google Scholar 

  28. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA. Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 1998; 93: 445–454.

    Article  PubMed  CAS  Google Scholar 

  29. Tamai KT, Monaco L, Alastalo TP, Lalli E, Parvinen M, Sassone-Corsi P. Hormonal and developmental regulation of DAX-1 expression in Sertoli cells. Mol Endocrinol 1996; 10: 1561–1569.

    Article  PubMed  CAS  Google Scholar 

  30. Ito M, Yu R, Jameson JL. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol Cell Biol 1997; 17: 1476–1483.

    PubMed  CAS  Google Scholar 

  31. Zazopoulos E, Lalli E, Stocco DM, Sassone-Corsi P. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature 1997; 390: 311–315.

    Article  PubMed  CAS  Google Scholar 

  32. Crawford PA, Dorn C, Sadovsky Y, Milbrandt J. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol Cell Biol 1998; 18: 2949–2956.

    PubMed  CAS  Google Scholar 

  33. Crawford PA, Sadovsky Y, Milbrandt J. Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol Cell Biol 1997; 17: 3997–4006.

    PubMed  CAS  Google Scholar 

  34. Halvorson LM, Kaiser UB, Chin WW. Stimulation of luteinizing hormone beta gene promoter activity by the orphan nuclear receptor, steroidogenic factor-1. J Biol Chem 1996; 271: 6645–6650.

    Article  PubMed  CAS  Google Scholar 

  35. Keri RA, Nilson JH. A steroidogenic factor-1 binding site is required for activity of the luteinizing hormone beta subunit promoter in gonadotropes of transgenic mice. J Biol Chem 1996; 271:10, 78210, 785.

    Google Scholar 

  36. Barnhart KM, Mellon PL. The orphan nuclear receptor, steroidogenic factor-1, regulates the glycoprotein hormone alpha-subunit gene in pituitary gonadotropes. Mol Endocrinol 1994; 8: 878–885.

    Article  PubMed  CAS  Google Scholar 

  37. Wehrenberg U, Ivell R, Jansen M, von Goedecke S, Walther N. Two orphan receptors binding to a common site are involved in the regulation of the oxytocin gene in the bovine ovary. Proc Natl Acad Sci USA 1994; 91: 1440–1444.

    Article  PubMed  CAS  Google Scholar 

  38. Duval DL, Nelson SE, Clay CM. A binding site for steroidogenic factor-1 is part of a complex enhancer that mediates expression of the murine gonadotropin-releasing hormone receptor gene. Biol Reprod 1997; 56: 160–168.

    Article  PubMed  CAS  Google Scholar 

  39. Cammas FM, Pullinger GD, Barker S, Clark Ai. The mouse adrenocorticotropin receptor gene: cloning and characterization of its promoter and evidence for a role for the orphan nuclear receptor steroidogenic factor 1. Mol Endocrinol 1997; 11: 867–876.

    Article  PubMed  CAS  Google Scholar 

  40. Hu Z, Zhuang L, Guan X, Meng J, Dufau ML. Steroidogenic factor-1 is an essential transcriptional activator for gonad-specific expression of promoter 1 of the rat prolactin receptor gene. J Biol Chem 1997; 272:14, 263–14, 271.

    Google Scholar 

  41. Giuili G, Shen WH, Ingraham HA. The nuclear receptor SF-1 mediates sexually dimorphic expression of Mullerian Inhibiting Substance, in vivo. Development 1997; 124: 1799–1807.

    PubMed  CAS  Google Scholar 

  42. Halvorson LM, Ito M, Jameson JL, Chin WW. Steroidogenic factor-1 and early growth response protein l act through two composite DNA binding sites to regulate luteinizing hormone 13-subunit gene expression. J Biol Chem 1998; 273:14, 712–14, 720.

    Google Scholar 

  43. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. WT-1 is required for early kidney development. Cell 1993; 74: 679–691.

    Article  PubMed  CAS  Google Scholar 

  44. Crawford PA, Polish JA, Ganpule G, Sadovsky Y. The activation function-2 hexamer of steroidogenic factor-1 is required, but not sufficient for potentiation by SRC-1. Mol Endocrinol 1997; 11: 1626–1635.

    Article  PubMed  CAS  Google Scholar 

  45. Hammer GD, Krylova I, Zhang Y, Darimont B, Simpson K, Weigel N, Ingraham HA. A single phosphoserine site on SF-1 mediates function by selective interaction with coactivators. Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment:integration of hormone signaling in reproduction and stress. Mol Cell 1999; 3: 521–526.

    Article  PubMed  CAS  Google Scholar 

  46. Ito M, Yu RN, Jameson JL. Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1. Mol Endocrinol 1998; 12: 290–301.

    Article  PubMed  CAS  Google Scholar 

  47. Carlone DL, Richards JS. Functional interactions, phosphorylation, and levels of 3’,5’-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol Endocrinol 1997; 11: 292–304.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang P, Mellon SH. The orphan nuclear receptor steroidogenic factor-1 regulates the cyclic adenosine 3’,5’-monophosphate-mediated transcriptional activation of rat cytochrome P450c 17 (17 alpha-hydroxylase/c17–20 lyase). Mol Endocrinol 1996; 10: 147–158.

    Article  PubMed  CAS  Google Scholar 

  49. Lalli E, Bardoni B, Zazopoulos E, Wurtz JM, Strom TM, Moras D, Sassone-Corsi P. A transcriptional silencing domain in DAX-1 whose mutation causes adrenal hypoplasia congenita. Mol Endocrinol 1997; 11: 1950–1960.

    Article  PubMed  CAS  Google Scholar 

  50. Perlmann T, Evans RM. Nuclear receptors in Sicily: all in the famiglia. Cell 1997; 90: 391–397.

    Article  PubMed  CAS  Google Scholar 

  51. Masuda N, Yasumo H, Tamura T, Hashiguchi N, Furusawa T, Tsukamoto T, Sadano H, Osumi T. An orphan nuclear receptor lacking a zinc-finger DNA-binding domain: interaction with several nuclear receptors. Biochim Biophys Acta 1997; 1350: 27–32.

    Article  PubMed  CAS  Google Scholar 

  52. Seol W, Choi HS, Moore DD. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 1996; 272: 1336–1339.

    Article  PubMed  CAS  Google Scholar 

  53. Seol W, Chung M, Moore DD. Novel receptor interaction and repression domains in the orphan receptor SHP. Mol Cell Biol 1997; 17: 7126–7131.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nachtigal, M.W., Enyeart-VanHouten, D., Ingraham, H.A. (2000). SF-1 and DAX-1. In: Shupnik, M.A. (eds) Gene Engineering in Endocrinology. Contemporary Endocrinology, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-221-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-221-0_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-147-9

  • Online ISBN: 978-1-59259-221-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics