Skip to main content

Thyroid Hormone Receptor Family Members

Homodimers, Heterodimers, and Mechanisms of Transcriptional Repression

  • Chapter
  • 98 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 22))

Abstract

The thyroid hormone receptor (TR) is a member of the nuclear hormone receptor (NHR) superfamily. These receptors are hormone-dependent transcription factors that regulate gene transcription by binding to regulatory regions of DNA termed hormone response elements (HREs) (1). TR binds to DNA in the presence or absence of its ligand, triiodothyronine (T3), and is capable of upregulating or downregulating gene transcription depending on the nature of the underlying response element. Genes that are stimulated by T3 are regulated by positive thyroid hormone response elements (pTREs); genes that are repressed by T3 are regulated by negative thyroid hormone response elements (nTREs). nTREs are particularly important in feedback inhibition in the hypothalamic-pituitary-thyroid axis, and are present in the promoter regions of the TRH, thyroid stimulating hormone β (TSHβ), and common pituitary glycoprotein α-subunit genes. TR binds to TREs as monomer, homodimer, or heterodimer with thyroid hormone receptor accessory proteins (TRAPs). In addition, TR is capable of binding to other nuclear proteins, including corepressors and coactivators, which enable it to modulate the transcription of T3-dependent genes. Thus, the presence of associated nuclear factors, as well as the nature of the underlying DNA response element, enables TR to regulate gene expression differentially.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  2. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature 1986; 324: 641–646.

    Article  PubMed  CAS  Google Scholar 

  3. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B. The c-erbA protein is a high-affinity receptor for thyroid hormone. Nature 1986; 324: 635–640.

    Article  PubMed  CAS  Google Scholar 

  4. Glass CK. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 1994; 15: 391–407.

    PubMed  CAS  Google Scholar 

  5. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991; 352: 497–505.

    Article  PubMed  CAS  Google Scholar 

  6. Umesono K, Evans RM. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 1989; 57: 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  7. Mader S, Kumar V, Verneuil HD, Chambon P. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 1989; 338: 271–274.

    Article  PubMed  CAS  Google Scholar 

  8. Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14: 184–193.

    PubMed  CAS  Google Scholar 

  9. Horlein A, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, Rosenfeld MG. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 397–404.

    Article  PubMed  CAS  Google Scholar 

  10. Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377: 454–457.

    Article  PubMed  CAS  Google Scholar 

  11. Sande S, Privalsky ML. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol 1996; 10: 813–825.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang J, Zamir I, Lazar MA. Differential recognition of liganded and unliganded thyroid hormone receptor by retinoid X receptor regulates transcriptional repression. Mol Cell Biol 1997; 17: 6887–6897.

    PubMed  CAS  Google Scholar 

  13. Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature 1995; 378: 690–697.

    Article  PubMed  CAS  Google Scholar 

  14. Sakurai A, Nakai A, DeGroot LJ. Structural analysis of human thyroid hormone receptor beta gene. Mol Cell Endocrinol 1990; 71: 83–91.

    Article  PubMed  CAS  Google Scholar 

  15. Hodin RA, Lazar MA, Wintman BI, Darling DS, Koenig RJ, Larsen PR, Moore DD, Chin WW. Identification of a thyroid hormone receptor that is pituitary-specific. Science 1989; 244: 76–79.

    Article  PubMed  CAS  Google Scholar 

  16. Wilkinson JR, Towles HC. Identification and characterization of the AF-1 transactivation domain of thyroid hormone receptor 131. J Biol Chem 1997; 272:23, 824–23, 832.

    Google Scholar 

  17. Tomura H, Lazar J, Phyillaier M, Nikodem VM. The N-terminal region (A/B) of rat thyroid hormone receptor al, 131, but not 132 contains a strong thyroid hormone-dependent transactivation function. Proc Natl Acad Sci USA 1995; 92: 5600–5604.

    Article  PubMed  CAS  Google Scholar 

  18. Sjoberg M, Vennstrom B. Ligand-dependent and -independent transactivation by thyroid hormone receptor (32 is determined by the structure of the hormone response element. Mol Cell Biol 1995; 15: 4718–4726.

    PubMed  CAS  Google Scholar 

  19. Langlois M-F, Zanger K, Monden T, Safer JD, Hollenberg AN, Wondisford FE. A unique role of the 13–2 thyroid hormone receptor isoform in negative regulation by thyroid hormone: mapping of a novel amino-terminal domain important for ligand-independent activation. J Biol Chem 1997; 272:24, 927–24, 933.

    Google Scholar 

  20. Lechan RM, Qi Y, Jackson IMD, Mandavi V. Identification of thyroid hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. Endocrinology 1994; 135: 92–100.

    Article  PubMed  CAS  Google Scholar 

  21. Schwartz HL, Lazar MA, Oppenheimer JH. Widespread distribution of immunoreactive thyroid hormone 132 receptor (TR132) in the nuclei of extrapituitary rat tissues. J Biol Chem 1994; 269: 24777–24782.

    PubMed  CAS  Google Scholar 

  22. Yang Y-Z, Burgos-Trinidad M, Wu Y, Koenig RJ. Thyroid hormone receptor variant a2: role of the ninth heptad in DNA binding, heterodimerization with retinoid X receptors, and dominant negative activity. J Biol Chem 1996; 271: 28235–28242.

    Article  PubMed  CAS  Google Scholar 

  23. Katz D, Reginato MJ, Lazar MA. Functional regulation of thyroid hormone receptor variant TRa2 by phosphorylation. Mol Cell Biol 1995; 15: 2341–2348.

    PubMed  CAS  Google Scholar 

  24. Mitsuhashi TG, Tennyson GE, Nikodem VM. Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci USA 1988; 85: 5804–5808.

    Article  PubMed  CAS  Google Scholar 

  25. Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P, Laudet V, Samarut J. Identification of transcripts initiated from an internal promoter in the c-erbAa locus that encode inhibitors of retinoic acid receptor-a and triiodothyronine receptor activities. Mol Endocrinol 1997; 11: 1278–1290.

    Article  PubMed  CAS  Google Scholar 

  26. Miyajima N, Horiuchi R, Shibuya Y, Fukushige S-I, Matsubara K-I, Toyoshima K, Tamamoto T. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell 1989; 57: 31–39.

    Article  PubMed  CAS  Google Scholar 

  27. Lazar MA, Hodin RA, Darling DS, Chin WW. A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erbAa transcriptional unit. Mol Cell Biol 1989; 9: 1128–1136.

    PubMed  CAS  Google Scholar 

  28. Harding HP, Lazar MA. The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol Cell Biol 1995; 15: 4791–4802.

    PubMed  CAS  Google Scholar 

  29. Zamir I, Harding HP, Atkins GB, Horlein A, Glass CK, Rosenfeld MG, Lazar MA. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol Cell Biol 1996; 16: 5458–5465.

    PubMed  CAS  Google Scholar 

  30. Hollenberg AN, Monden T, Wondisford FE. Ligand-independent and -dependent functions of thyroid hormone receptor isoforms depend upon their distinct amino termini. J Biol Chem 1995; 270: 14274–14280.

    Article  PubMed  CAS  Google Scholar 

  31. Hadzik E, Habeos I, Raaka BM, Samuels HH. A novel multifunctional motif on the amino-terminal A/B domain of T3Ra modulates DNA binding and receptor dimerization. J Biol Chem 1998; 273: 10270–10278.

    Article  Google Scholar 

  32. Hollenberg AN, Monden T, Madura JP, Lee K, Wondisford FE. Function of nuclear co-repressor protein on thyroid hormone response elements is regulated by the receptor A/B domain. J Biol Chem 1996; 271: 28516–28520.

    Article  PubMed  CAS  Google Scholar 

  33. Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, Dehay C, Legrand C, Gauthier K, Kedinger M, Malaval L, Rousset B, Samarut J. The T3Ra gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J 1997; 16: 4412–4420.

    Article  PubMed  CAS  Google Scholar 

  34. Wilkstrom L, Johansson C, Salto C, Barlow C, Barros AC, Baas F, Forrest D, Thoren P, Vennstrom B. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor al. EMBO J 1998; 17: 455–461.

    Article  Google Scholar 

  35. Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM, Curran T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor f3: evidence for tissue-specific modulation of receptor function. EMBO J 1996; 15: 3006–3015.

    PubMed  CAS  Google Scholar 

  36. Weiss RE, Forrest D, Pohlenz J, Cua K, Curran T, Refetoff S. Thyrotropin regulation by thyroid hormone in thyroid hormone receptor 13-deficient mice. Endocrinology 1997; 138: 3624–3629.

    Article  PubMed  CAS  Google Scholar 

  37. Glass CK, Holloway JM, Devary OV, Rosenfeld MG. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 1988; 54: 313–323.

    Article  PubMed  CAS  Google Scholar 

  38. Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D receptors. Cell 1991; 65: 1255–1266.

    Article  PubMed  CAS  Google Scholar 

  39. Brent GA, Harney JW, Chen Y, Warne RL, Moore DD, Larsen PR. Mutations of the rat growth hormone promoter which increase and decrease response to thyroid hormone define a consensus thyroid hormone response element. Mol Endocrinol 1989; 3: 1996–2004.

    Article  PubMed  CAS  Google Scholar 

  40. Katz RW, Subauste JS, Koenig RJ. The interplay of half-site sequence and spacing on the activity of direct repeat thyroid hormone response elements. J Biol Chem 1995; 270: 5238–5242.

    Article  PubMed  CAS  Google Scholar 

  41. Katz RW, Koenig RJ. Nonbiased identification of DNA sequences that bind thyroid hormone receptor al with high affinity. J Biol Chem 1993; 268: 19392–19397.

    PubMed  CAS  Google Scholar 

  42. Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacherewski T, Chen J-Y, Staub A, Gamier J-M, Mader S, Chambon P. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 1992; 68: 377–395.

    Article  PubMed  CAS  Google Scholar 

  43. Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 1990; 345: 224–229.

    Article  PubMed  CAS  Google Scholar 

  44. Yu VC, Delsert C, Andersen B, Hooloway JM, Devary OV, Naar AM, Kim SY, Boutin J-M, Glass CK, Rosenfeld MG. RXR(3: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 1991; 67: 1251–1266.

    Article  PubMed  CAS  Google Scholar 

  45. Zechel C, Shen X-Q, Chen J-Y, Chen Z-P, Chambon P, Gronemeyer H. The dimerization interface formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J 1994; 13: 1425–1433.

    PubMed  CAS  Google Scholar 

  46. Desvergne B, Petty KJ, Nikodem V. Functional characterization and receptor binding studies of the malic enzyme thyroid hormone response element. J Biol Chem 1991; 266: 1008–1013.

    PubMed  CAS  Google Scholar 

  47. Petty KJ, Desvergne B, Mitsuhashi T, Nikodem VM. Identification of a thyroid hormone response element in the malic enzyme gene. J Biol Chem 1990; 265: 7395–7400.

    PubMed  CAS  Google Scholar 

  48. Hollenberg AN, Monden T, Flynn TR, Boers M-E, Cohen O, Wondisford FE. The human thyrotropinreleasing hormone gene is regulated through two distinct classes of negative thyroid hormone response elements. Mol Endocrinol 1995; 9: 540–550.

    Article  PubMed  CAS  Google Scholar 

  49. Bodenner DL, Mroczynsk MA, Weintraub BD, Radovick S, Wondisford FE. A detailed functional and structural analysis of a major thyroid hormone inhibitory element in the human thyrotropin (3 subunit gene. J Biol Chem 1991; 266: 21666–21673.

    PubMed  CAS  Google Scholar 

  50. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 1995; 9: 1033–1045.

    Article  PubMed  CAS  Google Scholar 

  51. Forman BM, Umesono K, Chen J, Evans RM. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 1995; 81: 541–550.

    Article  PubMed  CAS  Google Scholar 

  52. Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 1992; 6: 329–344.

    Article  PubMed  CAS  Google Scholar 

  53. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992; 68: 397–406.

    Article  PubMed  CAS  Google Scholar 

  54. DiRenzo J, Soderstrom M, Kurokawa R, Ogliastro M-H, Ricote M, Ingrey S, Horlein A, Rosenfeld MG, Glass CK. Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol Cell Biol 1997; 17: 2166–2176.

    PubMed  CAS  Google Scholar 

  55. Kurokawa RJ, DiRenzo M, Boehm M, Sugarman J, Gloss B, Rosenfeld MG, Heyman RA, Glass CK. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 1994; 371: 528–531.

    Article  PubMed  CAS  Google Scholar 

  56. Lala DS, Mukherjee R, Schulman IG, Koch SSC, Dardashti LJ, Nadzan AM, Croston GE, Evans RM. Activation of specific RXR heterodimers by an antagonist of RXR heterodimers. Nature 1996; 383: 450–453.

    Article  PubMed  CAS  Google Scholar 

  57. Schulman IG, Li C, Schwabe JWR, Evans RM. The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev 1997; 11: 299–308.

    Article  PubMed  CAS  Google Scholar 

  58. Zechel C, Shen X-Q, Chambon P, Gronemeyer H. Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J 1994; 13: 1414–1424.

    PubMed  CAS  Google Scholar 

  59. Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 1995; 375: 203–211.

    Article  PubMed  CAS  Google Scholar 

  60. Lu XP, Eberhardt NL, Pfahl M. DNA bending by retinoid X receptor-containing retinoid and thyroid hormone receptor complexes. Mol Cell Biol 1993; 13: 6509–6519.

    PubMed  CAS  Google Scholar 

  61. Berrodin TJ, Marks MS, Ozato K, Linney E, Lazar MA. Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol Endocrinol 1992; 6: 1468–1478.

    Article  PubMed  CAS  Google Scholar 

  62. Lee S-K, Choi H-S, Song M-R, Lee M-O, Lee JW. Estrogen receptor, a common interaction partner for a subset of nuclear receptors. Mol Endocrinol 1998; 12: 1184–1192.

    Article  PubMed  CAS  Google Scholar 

  63. Bogazzi F, Hudson LD, Nikodem VM. A novel heterodimerization partner for thyroid hormone receptor: peroxisome proliferator-activated receptor. J Biol Chem 1994; 269: 11683–11686.

    PubMed  CAS  Google Scholar 

  64. Yen PM, Darling DS, Carter RL, Forgione M, Umeda PK, Chin WW. Triiodothyronine (T3) decreases binding to DNA by T3-receptor homodimers but not receptor-auxiliary protein heterodimers. J Biol Chem 1992; 267: 3565–3568.

    PubMed  CAS  Google Scholar 

  65. Collingwood TN, Butler A, Tone Y, Clifton-Bligh RI, Parker MG, Chatterjee VKK. Thyroid hormone-mediated enhancement of heterodimer formation between thyroid hormone receptor ß and retinoid X receptor. J Biol Chem 1997; 272: 13060–13065.

    Article  PubMed  CAS  Google Scholar 

  66. Kakizawa T, Miyamoto T, Kaneko A, Yajima H, Itchikawa K, Hashizume K. Ligand-dependent heterodimerization of thyroid hormone receptor and retinoid X receptor. J Biol Chem 1997; 272: 23799–23804.

    Article  PubMed  CAS  Google Scholar 

  67. Cohen RN, Wondisford FE, Hollenberg AN. Two separate NCoR (nuclear receptor corepressor) interaction domains mediate corepressor action of thyroid hormone response elements. Mol Endocrinol 1998; 12: 1567–1581.

    Article  PubMed  CAS  Google Scholar 

  68. Wagner BL, Norris JD, Knotts TA, Weigel NL, McDonnell DP. The nuclear corepressors NCoR and SMRT are key regulators of both ligand and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol Cell Biol 1998; 18: 1369–1378.

    PubMed  CAS  Google Scholar 

  69. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen T-M, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 1998; 95: 2920–2925.

    Article  PubMed  CAS  Google Scholar 

  70. Tzagarakis-Foster C, Privalsky ML. Phosphorylation of thyroid hormone receptors by protein kinase A regulates DNA recognition by specific inhibition of receptor monomer binding. J Biol Chem 1998; 273: 10926–10932.

    Article  PubMed  CAS  Google Scholar 

  71. Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol 1996; 10: 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  72. Takeshita A, Yen PM, Misiti S, Cordona GR, Liu Y, Chin WW. Molecular cloning and properties of a full-length putative thyroid hormone receptor co-activator. Endocrinology 1996; 137: 3594–3597.

    Article  PubMed  CAS  Google Scholar 

  73. Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270: 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  74. Voegel JJ, Heine MJS, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160kD transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 1996; 15: 3667–3675.

    PubMed  CAS  Google Scholar 

  75. Chakravarti D, Lamorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/p300 in nuclear receptor signaling. Nature 1996; 383: 99–102.

    Article  PubMed  CAS  Google Scholar 

  76. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin S-C, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–414.

    Article  PubMed  CAS  Google Scholar 

  77. Cavailles V, Deuvois S, L’Horset F, Lopez G, Hoarse S, Kushner PJ, Parker MG. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 1995; 14: 3741–3751.

    PubMed  CAS  Google Scholar 

  78. Yang X-J, Ogryzko VV, Nishikawa J-I, Hoawd BH, Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996; 382: 319–324.

    Article  PubMed  CAS  Google Scholar 

  79. Blanco JCG, Minucci S, Lu J, Yang X-J, Walker KK, Chen H, Evans RM, Nakatani Y, Ozato K. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev 1998; 12: 1638–1651.

    Article  PubMed  CAS  Google Scholar 

  80. Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM, Mullen T-M, Glass CK, Rosenfeld MG. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 1998; 279: 703–707.

    Article  PubMed  CAS  Google Scholar 

  81. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 1997; 387: 677–684.

    Article  PubMed  CAS  Google Scholar 

  82. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan X-Y, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS. AIB 1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997; 277: 965–968.

    Article  PubMed  CAS  Google Scholar 

  83. Monden T, Wondisford FE, Hollenberg AN. Isolation and characterization of a novel ligand-dependent thyroid hormone receptor-coactivating protein. J Biol Chem 1997; 272: 29834–29841.

    Article  PubMed  CAS  Google Scholar 

  84. Xu J, Qiu Y, Demayo FJ, Tsai SY, Tsai M-J, O’Malley BW. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 1998; 279: 1922–1925.

    Article  PubMed  CAS  Google Scholar 

  85. Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nucleaer receptors. Nature 1997; 387: 733–736.

    Article  PubMed  CAS  Google Scholar 

  86. Feng W, Ribeiro RCJ, Wagner RL, Nguyen H, Apriletti JW, Fletterick RJ, Baxter JD, Kushner PJ, West BL. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 1998; 280: 1747–1749.

    Article  PubMed  CAS  Google Scholar 

  87. Treuter E, Albrektsen T, Johansson L, Leers J, Gustafsson J-A. A regulatory role for RIP140 in nuclear receptor activation. Mol Endocrinol 1998; 12: 864–881.

    Article  PubMed  CAS  Google Scholar 

  88. Ogryzko VV, Schitz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996; 87: 953–959.

    Article  PubMed  CAS  Google Scholar 

  89. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature 1996; 384: 641–643.

    Article  PubMed  CAS  Google Scholar 

  90. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai M-J, O’Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997; 389: 194–198.

    Article  PubMed  CAS  Google Scholar 

  91. Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang X-J, Howard BH, Qin J, Nakatani Y. Histone-like TAFs within the PCAF histone acetylase complex. Cell 1998; 94: 35–44.

    Article  PubMed  CAS  Google Scholar 

  92. Misiti S, Schomburg L, Yen PM, Chin WW. Expression and hormonal regulation of coactivator and corepressor genes. Endocrinology 1998; 139: 2493–2500.

    Article  PubMed  CAS  Google Scholar 

  93. Seol W, Choi HS, Moore DD. Isolation and characterization of proteins that interact specifically with the retinoid X receptor: two novel orphan nuclear receptors. Mol Endocrinol 1995; 9: 72–85.

    Article  PubMed  CAS  Google Scholar 

  94. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 1997; 11: 693–705.

    Article  PubMed  CAS  Google Scholar 

  95. Smith CL, Nawaz Z, O’Malley BW. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4 hydroxytamoxifen. Mol Endocrinol 1997; 11: 657–666.

    Article  PubMed  CAS  Google Scholar 

  96. Hong S-H, Wong C-W, Privalsky ML Signaling by tyrosine kinases negatively regulates the interaction between transcription factors and SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) corepressor. Mol Endocrinol 1998; 12: 1161–1171.

    Article  PubMed  CAS  Google Scholar 

  97. Kurokawa R, Soderstrom M, Horlein A, Halachmi S, Brown M, Rosenfeld MG, Glass CK. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 1995; 377: 451–454.

    Article  PubMed  CAS  Google Scholar 

  98. Zamir I, Zhang J, Lazar MA. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev 1997; 11: 835–846.

    Article  PubMed  CAS  Google Scholar 

  99. Heinzel T, Lavinsky RM, Mullen T-M, Soderstrom M, Laherty CD, Torchia J, Yang W-M, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997; 387: 43–48.

    Article  PubMed  CAS  Google Scholar 

  100. Nagy L, Kao H-Y, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Screiber SL, Evans RM. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997; 89: 373–380.

    Article  PubMed  CAS  Google Scholar 

  101. Alland L, Muhle R, Hou H, Potes J, Chin L, Schreiber-Agus N, DePinho RA. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 1997; 387: 49–55.

    Article  PubMed  CAS  Google Scholar 

  102. Zamir I, Dawson J, Lavinsky RM, Glass CK, Rosenfeld MG, Lazar MA. Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Proc Natl Acad Sci USA 1997; 94: 14400–14405.

    Article  PubMed  CAS  Google Scholar 

  103. Chen JD, Umesono K, Evans RM. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci USA 1996; 93: 7567–7571.

    Article  PubMed  CAS  Google Scholar 

  104. Tomic-Canic M, Day D, Samuels HH, Freedberg IM, Blumenberg M. Novel regulation of keratin gene expression by thyroid hormone and retinoic receptors. J Biol Chem 1996; 271: 1416–1423.

    Article  PubMed  CAS  Google Scholar 

  105. Darling DS, Carter RL, Yen PM, Welborn JM, Chin WW, Umeda PK. Different dimerization activities of a and 13 thyroid hormone receptor isoforms. J Biol Chem 1993; 268: 10221–10227.

    PubMed  CAS  Google Scholar 

  106. Izumo S, Nadal-Ginard B, Mandavi V. All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner Science 1986; 231: 597–600.

    CAS  Google Scholar 

  107. Satoh T, Yamada M, Iwaki T, Mori M. Negative regulation of the gene for the preprothyrotropinreleasing hormone from the mouse by thyroid hormone requires additional factors in conjunction with thyroid hormone receptors. J Biol Chem 1996; 271: 27919–27926.

    Article  PubMed  CAS  Google Scholar 

  108. Balkan W, Tavianni MA, Gkonos PJ, Roos BA. Expression of rat thyrotropin-releasing hormone (TRH) gene in TRH-producing tissues of transgenic mice requires sequences located in exon 1. Endocrinology 1998; 139: 252–259.

    Article  PubMed  CAS  Google Scholar 

  109. Naar AM, Boutin J-M, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 1991; 65: 1267–1279.

    Article  PubMed  CAS  Google Scholar 

  110. Darling DS, Burnside J, Chin WW. Binding of thyroid hormone receptors to the rat thyrotropin-(3 gene. Mol Endocrinol 1989; 3: 1359–1368.

    Article  PubMed  CAS  Google Scholar 

  111. Can FE, Burnside J, Chin WW. Thyroid hormones regulate rat thyrotropin3 gene activity expressed in GH3 cells. Mol Endocrinol 1989; 3: 709–716.

    Article  Google Scholar 

  112. Wondisford FE, Usula SJ, Decherney GS, Castren M, Radovick S, Gyves PW, Teme JP, Kerfoot BP, Nikodem VM, Carter BJ, Weintraub BD. Cloning of the human thyrotropin n-subunit gene and transient expression of biologically active human thyrotropin after gene transfection. Mol Endocrinol 1988; 2: 32–39.

    Article  PubMed  CAS  Google Scholar 

  113. Can FE, Wong NCW. Characteristics of a negative thyroid hormone response element. J Biol Chem 1994; 269: 4175–4179.

    Google Scholar 

  114. Chatterjee VKK, Lee J-K, Rentoumis A, Jameson JL. Negative regulation of the thyroid-stimulating hormone a gene by thyroid hormone: receptor interaction adjacent to the TATA box. Proc Natl Acad Sci USA 1989; 86: 9114–9118.

    Article  PubMed  CAS  Google Scholar 

  115. Datta S, Magge SN, Madison LD, Jameson JL. Thyroid hormone receptor mediates transcriptional activation and repression of different promoters in vitro. Mol Endocrinol 1992; 6: 815–825.

    Article  PubMed  CAS  Google Scholar 

  116. Burnside J, Darling DS, Can FE, Chin WW. Thyroid hormone regulation of the rat glycoprotein hormone a-subunit gene promoter activity. J Biol Chem 1989; 264: 6886–6891.

    PubMed  CAS  Google Scholar 

  117. Brent GA, Williams GR, Harney JW, Forman BM, Samuels HH, Moore DD, Larsen PR. Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3,5,3’-triiodothyronine. Mol Endocrinol 1991; 5: 542–548.

    Article  PubMed  CAS  Google Scholar 

  118. Zhang W, Brooks RL, Silversides DW, West BL, Leidig F, Baxter JD, Eberhardt NL. Negative thyroid hormone control of human growth hormone gene expression is mediated by 3’-untranslated/ 3’-flanking DNA. J Biol Chem 1992; 267: 15056–15063.

    PubMed  CAS  Google Scholar 

  119. Bigler J, Eisenman RN. Novel location and function of a thyroid hormone response element. EMBO J 1995; 14: 5710–5723.

    PubMed  CAS  Google Scholar 

  120. Tagami T, Madison LD, Nagaya T, Jameson JL. Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol Cell Biol 1997; 17: 2642–2648.

    PubMed  CAS  Google Scholar 

  121. Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev 1993; 14: 348–399.

    PubMed  CAS  Google Scholar 

  122. Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD. Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance: evidence of two “hot spot” regions of the ligand binding domain. J Clin Invest 1991; 88: 2123–2130.

    Article  PubMed  CAS  Google Scholar 

  123. Yagi H, Pohlenz J, Hayashi Y, Sakurai A, Refetoff S. Resistance to thyroid hormone caused by two mutant thyroid hormone receptors beta, R243Q and R243W, with marked impairment of function that cannot be explained by altered in vitro 3,5,3’-triiodothyronine binding affinity. J Clin Endocrinol Metab 1997; 82: 1608–1614.

    Article  PubMed  CAS  Google Scholar 

  124. Onigata K, Yagi H, Sakurai A, Nagashima T, Nomura Y, Nagashima K, Hashizume K, Morikawa A. A novel point mutation (R243Q) in exon 7 of the c-erbA beta thyroid hormone receptor gene in a family with resistance to thyroid hormone. Thyroid 1995; 5: 355–358.

    Article  PubMed  CAS  Google Scholar 

  125. Adams M, Matthews C, Collingwood TN, Tone Y, Beck-Peccoz P, Chatterjee VK. Genetic analysis of 29 kindreds with generalized and pituitary resistance to thyroid hormone: identification of thirteen novel mutations in the thyroid hormone receptor beta gene. J Clin Invest 1994; 94: 506–515.

    Article  PubMed  CAS  Google Scholar 

  126. Weiss RE, Hayashi Y, Nagaya T, Petty KJ, Murata Y, Tunca H, Seo H, Refetoff S. Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptor a or ß genes may be due to a defective cofactor. J Clin Endocrinol Metab 1996; 81: 4196–4203.

    Article  PubMed  CAS  Google Scholar 

  127. Zhu X-G, Yu C-L, McPhie P, Wong R, Cheng S-Y. Understanding the molecular mechanisms of dominant negative action of mutant thyroid hormone (31-receptors: the important role of the wildtype/mutant receptor heterodimer. Endocrinology 1996; 137: 712–721.

    Article  PubMed  CAS  Google Scholar 

  128. Nagaya T, Jameson JL. Thyroid hormone receptor dimerization is required for dominant negative inhibition by mutations that cause thyroid hormone resistance. J Biol Chem 1993; 268: 15766–15771.

    PubMed  CAS  Google Scholar 

  129. Nagaya T, Madison LD, Jameson JL. Thyroid hormone receptor mutants that cause resistance to thyroid hormone: evidence for receptor competition for DNA sequences in target genes. J Biol Chem 1992; 267: 13014–13019.

    PubMed  CAS  Google Scholar 

  130. Tagami T, Jameson JL. Nuclear corepressors enhance the dominant negative activity of mutant receptors that cause resistance to thyroid hormone. Endocrinology 1998; 139: 640–650.

    Article  PubMed  CAS  Google Scholar 

  131. Yoh SM, Chatterjee VKK, Privalsky ML. Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol Endocrinol 1997; 11: 470–480.

    Article  PubMed  CAS  Google Scholar 

  132. Collingswood TN, Rajanayagam O, Adams M, Wagner R, Cavailles V, Kalkhoven E, Matthews C, Nystrom E, Stenlof K, Lindstedt G, Tisell L, Fletterick RJ, Parker MG, Chatterjee VKK. A natural transactivation mutation in the thyroid hormone 3 receptor: impaired interaction with putative transcriptional mediators. Proc Natl Acad Sci USA 1997; 94: 248–253.

    Article  Google Scholar 

  133. Safer JD, Cohen RN, Hollenberg AN, Wondisford FE. Defective release of corepressor by hinge mutants of the thyroid hormone receptor found in patients with resistance to thyroid hormone. J Biol Chem 1998; 273: 30175–30182.

    Article  PubMed  CAS  Google Scholar 

  134. Hayashi Y, Weiss RE, Sarne DH, Yen PM, Sunthornthepvarakul T, Marcocci C, Chin WW, Refetoff S. Do clinical manifestations of resistance to thyroid hormone correlate with the functional alterations of the corresponding mutant thyroid hormone-f3 receptors? J Clin Endocrinol Metab 1996; 80: 3246–3256.

    Article  Google Scholar 

  135. Abel ED, Kaulbach HC, Campos-Barros A, Ahima RS, Boers M-E, Hashimoto K, Forrest D, Wondisford FE. Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin. J Clin Invest 1999; 103: 271–279.

    Article  PubMed  CAS  Google Scholar 

  136. Flynn TR, Hollenberg AN, Cohen O, Menke JB, Steven JU, Tollin S, Hegarty MK, Wondisford FE. A novel C-terminal domain in the thyroid hormone receptor selectively mediates thyroid hormone inhibition. J Biol Chem 1994; 269: 32713–32716.

    PubMed  CAS  Google Scholar 

  137. Clifton-Bligh RJ, Zagher FD, Wagner RL, Collingwood TN, Francois I, Helvoirt MV, Fletterick RJ, Chatterjee VKK. A novel TR(3 mutation (R383H) in resistance to thyroid hormone syndrome predominantly impairs corepressor release and negative transcriptional regulation. Mol Endocrinol 1997; 12: 609–621.

    Article  Google Scholar 

  138. Safer JD, Langlois MF, Cohen R, Monden T, John-Hope D, Madura J, Hollenberg AN, Wondisford FE. Isoform variable action among thyroid hormone receptor mutants provides insight into pituitary resistance to thyroid hormone. Mol Endocrinol 1997; 11: 16–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.N., Wondisford, F.E. (2000). Thyroid Hormone Receptor Family Members. In: Shupnik, M.A. (eds) Gene Engineering in Endocrinology. Contemporary Endocrinology, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-221-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-221-0_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-147-9

  • Online ISBN: 978-1-59259-221-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics