Skip to main content

Subnuclear Trafficking of Glucocorticoid Receptors

General Mechanisms and Specific Recruitment to a Unique Target Site by Tethering to a DNA-Bound POU Domain Protein

  • Chapter
Gene Engineering in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 22))

  • 96 Accesses

Abstract

All members of the steroid hormone/nuclear receptor superfamily function as transcriptional regulatory proteins and have the capacity to interact specifically with select target genes (1). Although many mechanistic aspects of the nuclear receptor—regulated transcription have been elucidated over the past 15 yr (2), our understanding of how this process is efficiently orchestrated in a crowded nucleus remains limited. How do receptors locate their target sites within native chromatin? Are nuclear receptors free to “diffuse” throughout the nucleus in search of high-affinity sites, or is their trafficking restricted through a distinct set of subnuclear compartments? Which factors regulate receptor trafficking within the nucleus? This chapter focuses initially on global mechanisms of steroid receptor subcellular trafficking with a particular emphasis on nucleo-cytoplasmic shuttling and nuclear export of the glucocorticoid receptor (GR). Subsequently, our discussion shifts to a novel mechanism of GR transrepression in which GR recruitment to a unique target site is mediated not by specific DNA binding, but by site-specific tethering of the receptor to a DNA-bound POU domain transcription factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schatz G, Umesono K, Blumberg B, Kastner P, Mark L, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  CAS  PubMed  Google Scholar 

  2. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994; 63: 451–486.

    Article  CAS  PubMed  Google Scholar 

  3. Guiochon-Mantel A, Lescop P, Christin-Maitre S, Loosefelt H, Perrot-Applanat M, Milgrom E. Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J 1991; 10: 3851–3859.

    CAS  PubMed  Google Scholar 

  4. Chandran UR, DeFranco DB. Intranuclear migration of chicken progesterone receptor, but not simian virus-40 large tumor antigen, in transient heterokaryons. Mol Endocrinol 1992; 6: 837–844.

    Article  CAS  PubMed  Google Scholar 

  5. Dauvois S, White R, Parker MG. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J Cell Sci 1993; 106: 1377–1388.

    CAS  PubMed  Google Scholar 

  6. Madan AP, DeFranco DB. Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc Natl Acad Sci USA 1993; 90: 3588–3592.

    Article  CAS  PubMed  Google Scholar 

  7. Ishii DN, Pratt WB, Aronow L. Steady-state level of the specific glucocorticoid binding component in mouse fibroblasts. Biochemistry 1992; 11: 3896–3904.

    Article  Google Scholar 

  8. Munck A, Wira C, Young DA, Mosher KM, Hallahan C, Bell PA. Glucocorticoid-receptor complexes and the earliest steps in the action of glucocorticoids on thymus cells. J Steroid Biochem 1972; 3: 567–578.

    Article  CAS  PubMed  Google Scholar 

  9. DeFranco DB, Madan AP, Tang Y, Chandran UR, Xiao N, Yang J. Nucleocytoplasmic shuttling of steroid receptors. In: Litwack G, ed. Vitamins and Hormones, vol. 51. Academic, New York, 1995, pp. 315–338.

    Google Scholar 

  10. Doye V, Hurt EC. Genetic approaches to nuclear pore structure and function. Trends Genetics 1995; 11: 235–241.

    Article  CAS  Google Scholar 

  11. Gerace L. Nuclear export signals and the fast track to the cytoplasm. Cell 1995; 82: 341–344.

    Article  CAS  PubMed  Google Scholar 

  12. Moroianu J. Molecular mechanisms of nuclear protein transport. Crit Rev Euk Gene Exp 1997; 7: 61–72.

    Article  CAS  Google Scholar 

  13. Picard D, Yamamoto KR. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 1987; 6: 3333–3340.

    CAS  PubMed  Google Scholar 

  14. Wikström A-C, Bakke O, Okret S, Bronnegard M, Gustafsson J-A. Intracellular localization of the glucocorticoid receptor: evidence for cytoplasmic and nuclear localization. Endocrinology 1987; 120: 1232–1242.

    Article  PubMed  Google Scholar 

  15. Qi M, Hamilton BJ, DeFranco D. v-mos oncoproteins affect the nuclear retention and reutilization of glucocorticoid receptors. Mol Endocrinol 1989; 3: 1279–1288.

    Article  CAS  PubMed  Google Scholar 

  16. Bloom E, Matulich DT, Lan NC, Higgins SJ, Simons SS, Baxter JD. Nuclear binding of glucocorticoid receptors: relations between cytosol binding, activation, and the biological response. J Steroid Biochem 1989; 12: 175–184.

    Article  Google Scholar 

  17. Becker PB, Gloss B, Schmid W, Strähle U, Schütz G. In vivo protein-DNA interactions in a glucocorticoid response element require the presence of hormone. Nature 1986; 324: 686–688.

    Article  CAS  PubMed  Google Scholar 

  18. Cordingley MG, Riegel AT, Hager GL. Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 1987; 48: 261–270.

    Article  CAS  PubMed  Google Scholar 

  19. Munck A, Holbrook NJ. Glucocorticoid-receptor complexes in rat thymus cells: rapid kinetic behavior and a cyclic model. J Biol Chem 1984; 259: 820–831.

    CAS  PubMed  Google Scholar 

  20. Reik A, Schütz G, Stewart AF. Glucocorticoids are required for estasblishment and maintenance of an alteration in chromatin structure: induction leads to a reversible disruption of nucleosomes over an enhancer EMBO J 1991; 10: 2569–2576.

    CAS  Google Scholar 

  21. Kraus WL, Kadonaga JT. p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev 1998; 12: 331–342.

    Article  CAS  PubMed  Google Scholar 

  22. Barrack ER, Coffey DS. The specific binding of estrogens and androgens to the nuclear matrix of sex responsive tissues. J Biol Chem 1980; 255: 7265–7275.

    CAS  PubMed  Google Scholar 

  23. van Steensel B, Jenster G, Damm K, Brinkmann AO, van Driel R. Domains of the human androgen receptor and glucocorticoid receptor involved in binding to the nuclear matrix. J Cell Biochem 1995; 57: 465–478.

    Article  PubMed  Google Scholar 

  24. Tang Y, DeFranco DB. ATP-dependent release of glucocorticoid receptors from the nuclear matrix. Mol Cell Biol 1996; 16: 1989–2001.

    CAS  PubMed  Google Scholar 

  25. Bidwell JP, van Wijnen AJ, Fey AG, Dworetzky S, Penman S, Stein JL, Lian JB, Stein GS. Osteocalcin gene promoter-binding factors are tissue-specific nuclear matrix components. Proc Natl Acad Sci USA 1993; 90: 3162–3166.

    Article  CAS  PubMed  Google Scholar 

  26. Van Wijnen AJ, Bidwell JP, Fey EG, Penman S, Lian JB, Stein JL, Stein GS. Nuclear matrix association of multiple sequence-specific DNA binding activities related to SP1, ATF, CCAAT, C/EBP, OCT1, and AP-1. Biochemistry 1993; 32: 8397–8402.

    Article  PubMed  Google Scholar 

  27. Sun J-M, Chen HY, Davie JR. Nuclear factor 1 is a component of the nuclear matrix. J Cell Biochem 1994; 55: 252–263.

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, Liu J, DeFranco DB. Subnuclear trafficking of glucocorticoid receptors in vitro: chromatin recycling and nuclear export. J Cell Biol 1997; 137: 523–538.

    Article  CAS  PubMed  Google Scholar 

  29. Nakielny S, Dreyfuss G. Nuclear export of proteins and RNA. Curr Opin Cell Biol 1997; 9: 420–429.

    Article  CAS  PubMed  Google Scholar 

  30. Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R. The HIV-1 Rev activaiton domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82: 475–483.

    CAS  Google Scholar 

  31. Wen W, Meinkoth JL, Tsien RY, Taylor SS. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995; 82: 463–473.

    Article  CAS  PubMed  Google Scholar 

  32. Fornerod M, Ohno M, Yoshida M, Mattaj IW. CMR1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90: 1051–1060.

    Article  CAS  PubMed  Google Scholar 

  33. Stade K, Ford CS, Guthrie C, Weis K. Exportin (Crmlp) is an essential nuclear export factor. Cell 1997; 90: 1041–1050.

    Article  CAS  PubMed  Google Scholar 

  34. Ullman K, Powers M, Forbes D. Nuclear export receptors: from importin to exportin. Cell 1997; 90: 967–970.

    Article  CAS  PubMed  Google Scholar 

  35. Pennisi E. The nucleus’s revolving door. Science 1998; 279: 1129–1131.

    Article  CAS  PubMed  Google Scholar 

  36. Michael WM, Choi M, Dreyfuss G. A nuclear export signal in hnRNPA1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 1995; 83: 415–422.

    Article  CAS  PubMed  Google Scholar 

  37. Guiochon-Mantel A, Delabre K, Lescop P, Milgrom E. Nuclear localization signals also mediate the outward movement of proteins from the nucleus. Proc Natl Acad Sci USA 1994; 91: 7179–7183.

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, DeFranco DB. Differential roles of heat shock protein 70 in the in vitro nuclear import of glucocorticoid receptor and simian virus 40 large tumor antigen. Mol Cell Biol 1994; 14: 5088–5098.

    CAS  PubMed  Google Scholar 

  39. Yang J, DeFranco DB. Assessment of glucocorticoid receptor-heat shock protein 90 interactions in vivo during nucleocytoplasmic trafficking. Mol Endocrinol 1996; 10: 3–13.

    Article  CAS  PubMed  Google Scholar 

  40. Pratt WB, Jolly DJ, Pratt DV, Hollenberg SM, Giguere V, Cadepond FM, Schweizer-Groyer G, Catelli M-G, Evans RM, Baulieu E-E. A region in the steroid binding domain determines formation of the non-DNA binding, 9S glucocorticoid receptor complex. J Biol Chem 1988; 263: 267–273.

    CAS  PubMed  Google Scholar 

  41. Kang KI, Devin J, Cadepond F, Jibard N, Guiochon-Mantel A, Baulieu E-E, Catelli M-G. In vivo functional protein-protein interaction: nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus. Proc Natl Acad Sci USA 1994; 91: 340–344.

    Article  CAS  PubMed  Google Scholar 

  42. Smith DF. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol 1993; 7: 1418–1429.

    Article  CAS  PubMed  Google Scholar 

  43. Czar MJ, Lyons RH, Welsh MJ, Renoir JM, Pratt WB. Evidence that the FK506-binding immunophilin heat shock protein 56 is required for trafficking of the glucocorticoid receptor from the cytoplasm to the nucleus. Mol Endocrinol 1995; 9: 1549–1560.

    Article  CAS  PubMed  Google Scholar 

  44. Perrot-Applanat M, Leescop P, Milgrom E. The cytoskeleton and cellular trafficking of the progesterone receptor. J Cell Biol 1992; 119: 337–348.

    Article  CAS  PubMed  Google Scholar 

  45. Imamoto N, Mastsuoka Y, Kurihara T, Kohno K, Miyagi M, Sakiyama F, Okada Y, Tsunasawa S, Yoneda Y. Antibodies against 70-kD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins. J Cell Biol 1992; 119: 1047–1061.

    Article  CAS  PubMed  Google Scholar 

  46. Shi Y, Thomas JO. The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol Cell Biol 1992; 12: 2186–2192.

    CAS  PubMed  Google Scholar 

  47. Gasc J-M, Renoir J-M, Delahaye F, Baulieu E-E. Nuclear localization of two steroid receptor-associated proteins, hsp90 and p59. Exp Cell Res 1990; 186: 362–367.

    Article  CAS  PubMed  Google Scholar 

  48. Mandell RB, Feldherr CM. Identification of two HSP70-related Xenopus oocyte proteins that are capable of recycling across the nuclear envelope. J Cell Biol 1990; 111: 1775–1783.

    Article  CAS  PubMed  Google Scholar 

  49. Lewis MJ, Pelham HRB. Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J 1985; 4: 3137–3143.

    CAS  PubMed  Google Scholar 

  50. Liu Y, Liang S, Tartakoff AM. Heat shock disassembles the nucleolus and inhibits nuclear protein import and poly(A)+ RNA export. EMBO J 1996; 15: 6750–6757.

    CAS  PubMed  Google Scholar 

  51. Shaknovich R, Shue G, Kohtz S. Conformational activation of a basic helix-loop-helix protein (MyoDl) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol 1992; 12: 5059–5068.

    CAS  PubMed  Google Scholar 

  52. Shue G, Kohtz DS. Structural and functional aspects of basic helix-loop-helix protein folding by heat shock protein 90. J Biol Chem 1994; 269: 2707–2711.

    CAS  PubMed  Google Scholar 

  53. Landel CC, Kushner PJ, Greene GL. The interaction of human estrogen receptor with DNA is modulated by receptor-associated proteins. Mol Endocrinol 1994; 8: 1407–1419.

    Article  CAS  PubMed  Google Scholar 

  54. Onate SA, Estes PA, Welch WJ, Nordeen SK, Edwards DP. Evidence that heat shock protein-70 associated with progesterone receptors is not involved in receptor-DNA binding. Mol Endocrinol 1991; 5: 1993–2004.

    Article  CAS  PubMed  Google Scholar 

  55. Srinivasan G, Patel NT, Thompson EB. Heat shock protein is tightly associated with the recombinant human glucocorticoid receptor: glucocorticoid response element complex. Mol Endocrinol 1994; 8: 189–196.

    Article  CAS  PubMed  Google Scholar 

  56. Edwards DP, Estes PA, Fadok VA, Bona BJ, Onate S, Nordeen SK, Welch WJ. Heat shock alters the composition of heteromeric steroid receptor complexes and enhances receptor activity in vivo. Biochemistry 1992; 31: 2482–2491.

    Article  CAS  PubMed  Google Scholar 

  57. Sanchez ER, Hu J-L, Zhong S, Shen P, Greene MJ, Housley PR. Potentiation of glucocorticoid receptor-mediated gene expression by heat and chemical shock. Mol Endocrinol 1994; 8: 408–421.

    Article  CAS  PubMed  Google Scholar 

  58. Hu J-L, Guan X-J, Sanchez ER. Enhancement of glucocorticoid receptor-mediated gene expression by cellular stress: evidence for the involvement of a heat shock-initiated factor or process during recovery from stress. Cell Stress Chaperones 1996; 1: 197–205.

    Article  CAS  PubMed  Google Scholar 

  59. Kimura Y, Yahara I, Lindquist S. Role of protein chaperone YDJ1 in establishing hsp90-mediated signal transduction pathways. Science 1995; 268: 1362–1365.

    Article  CAS  PubMed  Google Scholar 

  60. Caplan AJ, Langley E, Wilson EM, Vidal J. Hormone-dependent transactivation by the human androgen receptor is regulated by a dnaJ protein. J Biol Chem 1995; 270: 5251–5257.

    Article  CAS  PubMed  Google Scholar 

  61. Freeman BC, Morimoto RI. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 1995; 15: 2969–2979.

    Google Scholar 

  62. Cyr DM, Langer T, Douglas MG. DNAJ-like proteins: molecular chaperones and specific regulators of Hsp70. TIBS 1994; 19: 176–181.

    CAS  PubMed  Google Scholar 

  63. Bresnick EH, Dalman FC, Sanchez ER, Pratt WB. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J Biol Chem 1989; 264: 4992–4997.

    CAS  PubMed  Google Scholar 

  64. Danielian PS, White R, Lees JA, Parker MG. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 1992; 11: 1025–1033.

    CAS  PubMed  Google Scholar 

  65. Tang Y, Ramakrishnan C, Thomas J, DeFranco DB. A role for HDJ-2/HSDJ in correcting subnuclear trafficking, transactivation and transrepression defects of a glucocorticoid receptor zinc finger mutant. Mol Biol Cell 1997; 8: 795–809.

    CAS  PubMed  Google Scholar 

  66. Archer TK, Lee H-L, Cordingley MG, Mymryk JS, Fragoso G, Berard DS, Hager GL. Differential steroid hormone induction of transcription on the mouse mammary tumor virus promoter. Mol Endocrinol 1994; 8: 568–576.

    Article  CAS  PubMed  Google Scholar 

  67. Miner JN, Yamamoto KR. Regulatory crosstalk at composite response elements. TIBS 1991; 16: 423426.

    Google Scholar 

  68. Heck S, Kullman M, Gast A, Ponta H, Rahmsdorf HJ, Herrlich P, Cato ACB. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J 1994; 13: 4087–4095.

    CAS  PubMed  Google Scholar 

  69. Horwitz KB, Jackson TA, Bain DA, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol 1996; 10: 1167–1177.

    Article  CAS  PubMed  Google Scholar 

  70. Drouin J, Trifiro MA, Plante RK, Nemer M, Eriksson P, Wrange O. Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of pro-opiomeanocortin gene transcription. Mol Cell Biol 1989; 9: 5305–5314.

    CAS  PubMed  Google Scholar 

  71. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 1990; 249: 1266–1272.

    Article  CAS  PubMed  Google Scholar 

  72. Schule R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 1990; 62: 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  73. Yang-Yen H-F, Chanbard J-C, Sun Y-L, Smeal T, Schmidt TJ, Drouin J, Karin M. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 1990; 62: 1205–1215.

    Article  CAS  PubMed  Google Scholar 

  74. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–414.

    Article  CAS  PubMed  Google Scholar 

  75. Chang TJ, Scher BM, Waxman S, Scher W. Inhibition of GATA-1 function by the glucocorticoid receptor: possible mechanism of steroid inhibition of erythroleukemia cell differentiation. Mol Endocrinol 1993; 7: 528–542.

    Article  CAS  PubMed  Google Scholar 

  76. Philips A, Maira M, Mullick A, Chamberland M, Lesage S, Hugo P, Drouin J. Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol Cell Biol 1997; 17: 5952–5959.

    CAS  PubMed  Google Scholar 

  77. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS Jr. Characterization of mechanisms in transrepression of NF-kB by activated glucocorticoid receptors. Mol Cell Biol 1995; 15: 943–953.

    CAS  PubMed  Google Scholar 

  78. Kutoh E, Strömstedt P-E, Poellinger L. Functional interference between the ubiquitous and constitutive octamer transcription factor 1 (OTF-1) and the glucocorticoid receptor by direct protein-protein interaction involving the homeo subdomain of OTF-1. Mol Cell Biol 1992; 12: 4960–4969.

    CAS  PubMed  Google Scholar 

  79. Chandran UR, Attardi B, Friedman R, Zheng Z-W, Roberts JL, DeFranco DB. Glucocorticoid repression of the mouse gonadotropin-releasing hormone gene is mediated by promoter elements that are recognized by heteromeric complexes containing glucocorticoid receptor. J Biol Chem 1996; 271:20, 412–20, 420.

    Google Scholar 

  80. Chandran UR, Warren BS, Hager GL, DeFranco DB. The glucocorticoid receptor is tethered to DNA-bound Oct-1 at the mouse GnRH distal negative glucocorticoid response element. J Biol Chem 1999; 274: 2372–2378.

    Article  CAS  PubMed  Google Scholar 

  81. Brüggemeier U, Kalff M, Franke S, Scheidereit C, Beato M. Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. Cell 1991; 64: 565–572.

    Article  PubMed  Google Scholar 

  82. Gstaiger M, Georgiev O, van Leeuwen H, van der Vliet P, Shaffner W. The B cell coactivator Bob shows DNA sequence-dependent complex formation with Oct-1/Oct-2 factors, leading to differential promoter activation. EMBO J 1996; 15: 2781–2790.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chandran, U.R., DeFranco, D.B. (2000). Subnuclear Trafficking of Glucocorticoid Receptors. In: Shupnik, M.A. (eds) Gene Engineering in Endocrinology. Contemporary Endocrinology, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-221-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-221-0_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-147-9

  • Online ISBN: 978-1-59259-221-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics