Skip to main content

Proximal Events in T-Cell Activation

  • Chapter
Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 279 Accesses

Abstract

Engagement of the T cell antigen receptor (TCR) triggers complex intracellular signaling cascades, leading to new gene expression, initiation of protein synthesis, induction of effector functions, and clonal expansion. Characterization of the details of TCR-mediated activation has been an intense and fruitful area of investigation in recent years. Such studies have demonstrated the central involvement of protein tyrosine kinases (PTKs) and phosphatases (PTPs) in T cell signaling. Rapid tyrosine phosphorylation mediated by the PTKs leads to multiple events, including molecular translocation to the TCR and PTKs, initiation of protein–protein interactions, enzyme activation, cytoskeletal changes, and translocation of signals to the nucleus. The focus of this review is on the early events of TCR engagement and activation, with particular emphasis on some of the most recent discoveries, adding further light to the sequential steps of T-cell signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jorgensen JL, Reay PA, Ehrich EW, Davis MM. Molecular components of T-cell recognition. Annu Rev Immunol 1992; 10: 835–873.

    Article  PubMed  CAS  Google Scholar 

  2. Weiss A. T cell antigen receptor signal transduction: A tale of tails and cytoplasmic protein-tyrosine kinases. Cell 1993; 73: 209–212.

    Article  PubMed  CAS  Google Scholar 

  3. Weissman AM. The T-cell antigen receptor: A multisubunit signaling complex. Chem Immunol 1994; 59: 1–18.

    Article  PubMed  CAS  Google Scholar 

  4. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA. An aß T cell receptor structure at 2.5 A and its orientation in the TCR–MHC complex. Science 1996; 274: 209–219.

    Article  PubMed  CAS  Google Scholar 

  5. Townsend ARM, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 1986; 44: 959–968.

    Article  PubMed  CAS  Google Scholar 

  6. Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 1985; 317: 359–361.

    Article  PubMed  CAS  Google Scholar 

  7. Bentley GA, Mariuzza RA. The structure of the T cell antigen receptor. Annu Rev Immunol 1996; 14: 563–590.

    Article  PubMed  CAS  Google Scholar 

  8. Wange RL, Samelson LE. Complex complexes: Signaling at the TCR. Immunity 1996; 5: 197–205.

    Article  PubMed  CAS  Google Scholar 

  9. Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell 1994; 76: 263–274.

    Article  PubMed  CAS  Google Scholar 

  10. Cantrell D. T cell antigen receptor signal transduction pathways. Annu Rev Immunol 1996; 14: 259–274.

    Article  PubMed  CAS  Google Scholar 

  11. Reth M. Antigen receptor tail clue. Nature 1989; 338: 383–384.

    Article  PubMed  CAS  Google Scholar 

  12. Baniyash M, Garcia-Morales P, Luong E, Samelson LE, Klausner RD. The T cell antigen receptor chain is tyrosine phosphorylated upon activation. J Biol Chem 1988; 263:18, 22518, 230.

    Google Scholar 

  13. Samelson LE, Klausner RD. Tyrosine kinases and tyrosine-based activation motifs. J Biol Chem 1992; 267:24, 913–24, 916.

    Google Scholar 

  14. Chan AC, Desai DM, Weiss A. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu Rev Immunol 1994; 12: 555–592.

    Article  PubMed  CAS  Google Scholar 

  15. von Boehmer H. Positive selection of lymphocytes. Cell 1994; 76: 219–228.

    Article  Google Scholar 

  16. Nossal GJV. Negative selection of lymphocytes. Cell 1994; 76: 229–239.

    Article  PubMed  CAS  Google Scholar 

  17. Matsui K, Boniface JJ, Steffner P, Reay PA, Davis MM. Kinetics of T-cell receptor binding to peptide/I-E’` complexes: Correlation of the dissociation rate with T-cell responsiveness. Proc Natl Acad Sci USA 1994; 91:12, 862–12, 866.

    Google Scholar 

  18. Corr M, Salnetz AE, Boyd LF, Jelonek MT, Khilko S, Al-Ramadi BK, Kim YS, Maher SE, Bothwell ALM, Margulies DH. T cell receptor-MHC class I peptide interactions: Affinity, kinetics, and specificity. Science 1994; 265: 946–949.

    Article  PubMed  CAS  Google Scholar 

  19. Heemels MT, Ploegh H. Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem 1995; 64: 463–491.

    Article  PubMed  CAS  Google Scholar 

  20. Harding CV, Unanue ER. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 1990; 346: 574–576.

    Article  PubMed  CAS  Google Scholar 

  21. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 1996; 4: 565–571.

    Article  PubMed  CAS  Google Scholar 

  22. Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med 1995; 181: 577–584.

    Article  PubMed  CAS  Google Scholar 

  23. Valitutti S, Müller S, Cella M, Padovan E, Lanzavecchia A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 1995; 375: 148–151.

    Article  PubMed  CAS  Google Scholar 

  24. Samelson LE, Patel MD, Weissman AM, Harford JB, Klausner RD. Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor. Cell 1986; 46: 1083–1090.

    Article  PubMed  CAS  Google Scholar 

  25. Iwashima M, Irving BA, van Oers NSC, Chan AC, Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 1994; 263: 1136–1139.

    Article  PubMed  CAS  Google Scholar 

  26. van Oers NS, Killeen N, Weiss A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J Exp Med 1996; 183: 1053–1062.

    Article  PubMed  Google Scholar 

  27. Howe LR, Weiss A. Multiple kinases mediate T-cell-receptor signaling. Trends Biochem Sci 1995; 20: 59–64.

    Article  PubMed  CAS  Google Scholar 

  28. Samelson LE, Phillips AF, Luong ET, Klausner RD. Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor. Proc Natl Acad Sci USA 1990; 87: 4358–4362.

    Article  PubMed  CAS  Google Scholar 

  29. Gauen LKT, Tony Kong A-N, Samelson LE, Shaw AS. p596’“ tyrosine kinase associates with multiple T-cell receptor subunits through its unique amino-terminal domain. Mol Cell Biol 1992; 12: 5438–5446.

    CAS  Google Scholar 

  30. van Oers NSC, Killeen N, Weiss A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J Exp Med 1996; 183: 1053–1062.

    Article  PubMed  Google Scholar 

  31. Turner JM, Brodsky MH, Irving BA, Levin SD, Perlmutter RM, Littman DR. Interaction of the unique N-terminal region of tyrosine kinase p56“ with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell 1990; 60: 755–765.

    Article  PubMed  CAS  Google Scholar 

  32. Glaichenhaus N, Shastri N, Littman DR, Turner JM. Requirement for association of p56k with CD4 in antigen-specific signal transduction in T cells. Cell 1991; 64: 511–520.

    Article  PubMed  CAS  Google Scholar 

  33. Cooper JA, Howell B. The when and how of Src regulation. Cell 1993; 73: 1051–1054.

    Article  PubMed  CAS  Google Scholar 

  34. Chan AC, Iwashima M, Turck CW, Weiss A. ZAP-70: A 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 1992; 71: 649–662.

    Article  PubMed  CAS  Google Scholar 

  35. Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM. Defective T cell receptor signaling and CD8+ thymocyte selection in humans lacking ZAP-70 kinase. Cell 1994; 76: 947–958.

    Article  PubMed  CAS  Google Scholar 

  36. Chan AC, Kadlecek TA, Elder ME, Filipovich AH, Kuo W-L, Iwashima M, Parslow TG, Weiss A. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 1994; 264: 1599–1601.

    Article  PubMed  CAS  Google Scholar 

  37. Elder ME, Lin D, Clever J, Chan AC, Hope TJ, Weiss A, Parslow TG. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 1994; 264: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  38. Negishi I, Motoyama N, Nakayama K-i, Nakayama K, Senju S, Hatakeyama S, Zheng Q, Chan AC, Loh DY. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 1995; 376: 435–438.

    Article  PubMed  CAS  Google Scholar 

  39. Wange RL, Kong A-N, Samelson LE. A tyrosine-phosphorylated 70-KDa proten binds a photoaffinity analogue of ATP and associates with both the Ç chain and CD3 components of the activated T cell antigen receptor. J Biol Chem 1992; 267:11, 685–11, 688.

    Google Scholar 

  40. Wange RL, Malek SN, Desiderio S, Samelson LE. Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor Ç and CD3e from activated jurkat T cells. J Biol Chem 1993; 268:19, 797–19, 801.

    Google Scholar 

  41. Sloan-Lancaster J, Zhang W, Presley J, Williams BL, Abraham RT, Lippincott-Schwartz J, Samelson LE. Regulation of ZAP-70 intracellular localization: visualization with the green fluorescent protein. J Exp Med 1997; 186: 1713–1724.

    Article  PubMed  CAS  Google Scholar 

  42. binding specificity to T cell receptor tyrosine-based activation motifs: The tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J Exp Med 1995; 181: 375–380.

    Article  Google Scholar 

  43. Bu J-Y, Shaw AS, Chan AC. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc Natl Acad Sci USA 1995; 92: 5106–5110.

    Article  PubMed  CAS  Google Scholar 

  44. Koyasu S, Tse AGD, Moingeon P, Hussey RE, Mildonian A, Hannisian J, Clayton LK, Reinherz EL. Delineation of a T-cell activation motif required for binding of protein tyrosine kinases containing tandem SH2 domains. Proc Natl Acad Sci USA 1994; 91: 6693–6697.

    Article  PubMed  CAS  Google Scholar 

  45. Hatada MH, Lu X, Laird ER, Green J, Morgenstern JP, Lou M, Marr CS, Phillips TB, Ram MK, Theriault K, Zoller MJ, Karas JL. Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature 1995; 377: 32–38.

    Article  PubMed  CAS  Google Scholar 

  46. Sloan-Lancaster J, Presley J, Ellenberg J, Yamazaki T, Lippincott-Schwartz J, Samelson LE. ZAP-70 association with the TRCÇ: Fluorescence imaging of dynamic changes upon cellular stimulation. J Cell Biol 1998; 143:613–624.

    Google Scholar 

  47. Caplan S, Zeliger S, Wang L, Baniyash M. Cell-surface-expressed T-cell antigen-receptor chain is associated with the cytoskeleton. Proc Natl Acad Sci USA 1995; 92: 47684772.

    Google Scholar 

  48. Watts JD, Affolter M, Krebs DL, Samelson LE, Aebersold R. Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase ZAP-70. JBiol Chem 1994; 269:29, 520–29, 529.

    Google Scholar 

  49. Wange RL, Guitian R, Isakov N, Watts JD, Aebersold R, Samelson LE. Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70. J Biol Chem 1995; 270:18, 730–18, 733.

    Google Scholar 

  50. Kong G, Dalton M, Wardenburg JB, Straus D, Kurosaki T, Chan AC. Distinct tyrosine phosphorylation sites within ZAP-70 mediate activation and negative regulation of antigen receptor function. Mol Cell Biol 1996; 16: 5026–5035.

    PubMed  CAS  Google Scholar 

  51. Zhao Q, Weiss A. Enhancement of lymphocyte responsiveness by a gain-of-function mutation of ZAP-70. Mol Cell Biol 1996; 16: 6765–6774.

    PubMed  CAS  Google Scholar 

  52. Chan AC, Dalton M, Johnson R, Kong GH, Wang T, Thoma R, Kurosaki T. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J 1995; 14: 2499–2508.

    PubMed  CAS  Google Scholar 

  53. Neumeister EN, Zhu Y, Richars S, Terhorst C, Chan AC, Shaw AS. Binding of ZAP-70 to phosphorylated T-cell receptor Ç and y enhances its autophosphorylation and generates specific binding sites for SH2 domain-containing proteins. Mol Cell Biol 1995; 15: 31713178.

    Google Scholar 

  54. Huby RDJ, Carlile GW, Ley SC. Interactions between the protein-tyrosine kinase ZAP-70, the proto-oncoprotein Vav, and tubulin in Jurkat T cells. J Biol Chem 1995; 270:30, 24130, 244.

    Google Scholar 

  55. Thome M, Duplay P, Guttinger M, Acuto O. Syk and ZAP-70 mediate recruitment of p56“/ CD4 to the activated T cell receptor/CD3/Ç complex. J Exp Med 1995; 181: 1997–2006.

    Google Scholar 

  56. Katzav S, Sutherland M, Packham G, Yi T, Weiss A. The protein tyrosine kinase ZAP-70 can associate with the SH2 domain of proto-vay. J Biol Chem 1994; 269:32, 579–32, 585.

    Google Scholar 

  57. Plas DR, Johnson R, Pingel JT, Matthews RJ, Dalton M, Roy G, Chan AC, Thomas ML. Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 1996; 272: 1173–1176.

    Article  PubMed  CAS  Google Scholar 

  58. Fournel M, Davidson D, Weil R, Veillette A. Association of tyrosine protein kinase ZAP-70 with the protooncogene product p 120c-cbl in T lymphocytes. J Exp Med 1996; 183: 301–306.

    Article  PubMed  CAS  Google Scholar 

  59. Lupher MLJ, Reedquist KA, Miyake S, Langdon WY, Band H. A novel phosphotyrosinebinding domain in the N-terminal transforming region of Cbl interacts directly and selectively with ZAP-70 in T cells. J Biol Chem 1996; 271:24, 063–24, 068.

    Google Scholar 

  60. Weil R, Cloutier JF, Fournel M, Veillette A. Regulation of ZAP-70 by Src family tyrosine protein kinases in an antigen-specific T-cell line. J Biol Chem 1995; 270: 2791–2799.

    Article  PubMed  CAS  Google Scholar 

  61. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–2048.

    Article  PubMed  CAS  Google Scholar 

  62. Wiest A, Ashe JM, Abe R, Bolen JB, Singer A. TCR activation of ZAP-70 is impaired in CD4*CD8* thymocytes as a consequence of intrathymic interactions that diminish available p561ck. Immunity 1996; 4: 495–504.

    Article  PubMed  CAS  Google Scholar 

  63. Pawson T. Protein modules and signalling networks. Nature 1995; 373: 573–580.

    Article  PubMed  CAS  Google Scholar 

  64. Downward J. The GRB-2/Sem-5 adaptor protein. FEBS Lett 1994; 338: 113–117.

    Article  PubMed  CAS  Google Scholar 

  65. Holsinger LJ, Spencer DM, Austin DJ, Schreiber SL, Crabtree GR. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci USA 1995; 92: 9810–9814.

    Article  PubMed  CAS  Google Scholar 

  66. Donovan JA, Wange RL, Langdon WY, Samelson LE. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J Biol Chem 1994; 269:22, 921–22, 924.

    Google Scholar 

  67. Jackman JK, Motto DG, Sun Q, Tanemoto M, Turck CW, Peltz GA, Koretsky GA, Findell PR. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. J Biol Chem 1995; 270: 7029–7032.

    Article  PubMed  CAS  Google Scholar 

  68. Buday L, Egan SE, Rodriguez-Viciana P, Cantrell DA, Downward J. A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J Biol Chem 1994; 269: 9019–9023.

    PubMed  CAS  Google Scholar 

  69. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnick D, Bar-Sagi D, Schlessinger J. The SH2 and SH3 domain-containing protein Grb2 links receptor tyrosine kinases to Ras signaling. Cell 1992; 70: 431–442.

    Article  PubMed  CAS  Google Scholar 

  70. Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C isoenzymes. J Biol Chem 1997; 272:15, 045–15, 048.

    Google Scholar 

  71. Newton AC. Regulation of protein kinase C. Curr Opin Cell Biol 1997; 9: 161–167.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. LAT: The ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998; 92: 83–92.

    Article  PubMed  CAS  Google Scholar 

  73. June CH, Fletcher MC, Ledbetter JA, Samelson LE. Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J Immunol 1990; 144: 1591–1599.

    PubMed  CAS  Google Scholar 

  74. Fukazawa T, Reedquist KA, Panchamoorthy G, Soltoff S, Trub T, Druker B, Cantley L, Shoelson SE, Band H. T cell activation-dependent association between the p85 subunit of the phosphatidyl 3-kinase and Grb2/phospholipase C-y1-binding phosphotyrosyl protein pp36/38. J Biol Chem 1995; 270:20, 177–20, 182.

    Google Scholar 

  75. Sieh M, Batzer A, Schlessinger J, Weiss A. Grb2 and phospholipase C-yl associate with a 36–38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol Cell Biol 1994; 14: 4435–4442.

    PubMed  CAS  Google Scholar 

  76. Marshall CJ. Ras effectors. Curr Opin Cell Biol 1996; 8: 197–204.

    Article  PubMed  CAS  Google Scholar 

  77. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997; 9: 180–186.

    Article  PubMed  CAS  Google Scholar 

  78. Karin M, Lui Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240246.

    Google Scholar 

  79. Fischer K-D, Zmuidzinas A, Gardner S, Barbacid M, Bernstein A, Guidos C. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4*CD8* thymocytes. Nature 1995; 374: 474–476.

    Article  PubMed  CAS  Google Scholar 

  80. Tarakhovsky A, Turner M, Schaal S, Mee PJ, Duddy LP, Rajewsky K, Tybulewicz VII. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vay. Nature 1995; 374: 467–470.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang R, Alt FW, Davidson L, Orkin SH, Swat W. Defective signalling through the Tand B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 1995; 374: 470–473.

    Article  PubMed  CAS  Google Scholar 

  82. Wu J, Katzav S, Weiss A. A functional T cell receptor signaling pathway is required for p95“a” activity. Mol Cell Biol 1995; 15: 4337–4346.

    PubMed  CAS  Google Scholar 

  83. Motto DG, Ross SE, Wu J, Hendricks-Taylor LR, Korwtsky GA. Implication of the Grb2associated phosphoprotein SLP-76 in T cell receptor-mediated interleukin 2 production. J Exp Med 1996; 183: 1937–1943.

    Article  PubMed  CAS  Google Scholar 

  84. Wu J, Motto DG, Koretsky GA, Weiss A. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity 1996; 4: 593–602.

    Article  PubMed  CAS  Google Scholar 

  85. Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 1996; 272: 1170–1173.

    Article  PubMed  CAS  Google Scholar 

  86. Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, Kinet J-P, Long EO. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 1996; 4: 77–85.

    Article  PubMed  CAS  Google Scholar 

  87. Fry AM, Lanier LL, Weiss A. Phosphotyrosine in the killer cell inhibitory receptor motif of NKB 1 are required for negative signaling and for association with protein tyrosine phosphatase 1C. J Exp Med 1996; 184: 295–300.

    Article  PubMed  CAS  Google Scholar 

  88. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1: 405–413.

    Article  PubMed  CAS  Google Scholar 

  89. Chacko GW, Tridandapani S, Damen JE, Liu L, Krystal G, Coggeshall KM. Negative signaling in B lymphocytes induces tyrosine phosphorylation of the 145-kDa inositol polyphosphate 5-phosphatase, SHIP. J Immunol 1996; 157: 2234–2238.

    Google Scholar 

  90. Liao XC, Littman DR. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 1995; 3: 757–769.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sloan-Lancaster, J., Samelson, L.E. (2000). Proximal Events in T-Cell Activation. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics