Skip to main content

Abstract

Signaling from transforming growth factor-β (TGF-β) receptors involves biochemical mechanisms and molecular interactions unique to the transmembrane receptor serinethreonine kinases that bind and transduce signals from ligands belonging to the large family of peptides related to TGF-β (1,2). Members of this family play key roles in regulation of a wide variety of biological end points ranging from early embryonic patterning events to the control of growth, differentiation, and gene expression in adult cells. Although approximately 40 ligands belong to this family, most of the information obtained thus far on signal transduction pathways has come either from genetic studies in Drosophila and Caenorhabditis elegans (3,4) or from study of the pathways activated by a restricted set of ligands expressed in vertebrates, including TGF-β, activin, and the bone morphogenetic proteins, BMPs 2 and 4. Although several pathways, including those involving ras and mitogen-activated protein kinases (MAP-kinases) have been implicated in signaling from TGF-β (2,5), this brief review emphasizes the downstream signaling pathways of these ligands and their receptors attributable to one particular family of signaling intermediates, the recently identified SMAD proteins, which are phosphorylated by the receptor kinases and translocate to the nucleus, where they activate nuclear targets by participating in transcriptional complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kingsley DM. The TGF-beta superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes Dey 1994; 8: 133–146.

    Article  CAS  Google Scholar 

  2. Derynck R, Feng XH. TGF-beta receptor signaling. Biochim Biophys Acta 1997; 1333: F105–150.

    PubMed  CAS  Google Scholar 

  3. Newfeld SJ, Chartoff EH, Graff JM, Melton DA, Gelbart WM. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development 1996; 122: 2099–2108.

    PubMed  CAS  Google Scholar 

  4. Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci USA 1996; 93: 790–794.

    Article  PubMed  CAS  Google Scholar 

  5. Attisano L, Wrana JL. Signal transduction by members of the transforming growth factor-beta superfamily. Cytokine Growth Factor Rev 1996; 7: 327–339.

    Article  PubMed  CAS  Google Scholar 

  6. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471.

    Article  PubMed  CAS  Google Scholar 

  7. Feng XH, Derynck R. Ligand-independent activation of transforming growth factor (TGF) beta signaling pathways by heteromeric cytoplasmic domains of TGF-beta receptors. J Biol Chem 1996; 271:13, 123–13, 129.

    Google Scholar 

  8. Wieser R, Wrana JL, Massague J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 1995; 4: 2199–2208.

    Google Scholar 

  9. Charng MJ, Kinnunen P, Hawker J, Brand T, Schneider MD. FKBP-12 recognition is dispensable for signal generation by type I transforming growth factor-beta receptors. 1996; J Biol Chem 271:22, 941–22, 944.

    Google Scholar 

  10. Chen YG, Liu F, Massague J. Mechanism of TGFbeta receptor inhibition by FKBP12. EMBO J 1997; 16: 3866–3876.

    Article  PubMed  CAS  Google Scholar 

  11. Reddy KB, Jin G, Karode MC, Harmony JA, Howe PH. Transforming growth factor beta (TGF beta)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 1996; 35: 6157–6163.

    Article  PubMed  CAS  Google Scholar 

  12. Chen RH, Miettinen PJ, Maruoka EM, Choy L, Derynck R. A WD-domain protein that is associated with and phosphorylated by the type II TGF-beta receptor. Nature 1995; 377: 548552.

    Google Scholar 

  13. Raftery LA, Wisotzkey RG. Characterization of Medea, a gene required for maximal function of the Drosophila BMP homolog Decapentaplegic. Ann NY Acad Sci 1996; 785: 318320.

    Google Scholar 

  14. Wiersdorff V, Lecuit T, Cohen SM, Mlodzik M. Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 1996; 122: 2153–2162.

    PubMed  CAS  Google Scholar 

  15. Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 1997; 272:28, 107–28, 115.

    Google Scholar 

  16. Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL. TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 1997; 272:27, 678–27, 685.

    Google Scholar 

  17. Lagna G, Hata A, Hemmati-Brivanlou A, Massague J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 1996; 383: 832–836.

    Article  PubMed  CAS  Google Scholar 

  18. Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 1997; 389: 85–89.

    Article  PubMed  CAS  Google Scholar 

  19. Liu F, Pouponnot C, Massague J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 1997; 11: 3157–3167.

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL, Falb D. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997; 89: 1165–1173.

    Article  PubMed  CAS  Google Scholar 

  21. Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD, Feeley R, Gimeno CJ, Woolf EA, Tayber O, Mays GG, Sampson BA, Schoen FJ, Gimbrone MA Jr, Falb D. Vascular MADs: Two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci USA 1997; 94: 9314–9319.

    Article  PubMed  CAS  Google Scholar 

  22. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 1997; 389: 622–626.

    Article  PubMed  CAS  Google Scholar 

  23. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian it, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997; 389: 631–635.

    Article  PubMed  CAS  Google Scholar 

  24. Keeton MR, Curriden SA, van Zonneveld AJ, Loskutoff DJ. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem 1991; 66:23, 048–23, 052.

    Google Scholar 

  25. Wrana JL, Attisano L, C:arcamo J, Zentella A, Doody J, Laiho M, Wang XF, Massague J. TGF beta signals through a heteromeric protein kinase receptor complex. Cell 1992; 71: 1003–1014.

    CAS  Google Scholar 

  26. Feng XH, Filvaroff EH, Derynck R. Transforming growth factor-beta (TGF-beta)-induced down-regulation of cyclin A expression requires a functional TGF-beta receptor complex. Characterization of chimeric and truncated type I and type II receptors. J Biol Chem 1995; 270:24, 237–24, 245.

    Google Scholar 

  27. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Trie K, Nishida E, Matsumoto K. TAB 1: An activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 1996; 272: 1179–1182.

    Article  PubMed  CAS  Google Scholar 

  28. Slack JM. Inducing factors in Xenopus early embryos. Curr Biol 1994; 4: 116–126.

    Article  PubMed  CAS  Google Scholar 

  29. Baker JC, Harland RM. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dey 1996; 10: 1880–1889.

    Article  CAS  Google Scholar 

  30. Nakao A, Roijer E, Imamura T, Souchelnytskyi S, Stenman G, Heldin CH, ten Dijke P. Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway. J Biol Chem 1997; 272: 2896–2900.

    Article  PubMed  CAS  Google Scholar 

  31. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 1997; 16: 5353–5362.

    Article  PubMed  CAS  Google Scholar 

  32. Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui LC, Bapat B, Gallinger S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996; 86: 543–552.

    Article  PubMed  CAS  Google Scholar 

  33. Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996; 87: 1215–1224.

    Article  PubMed  CAS  Google Scholar 

  34. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana JL. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 1996; 85: 489–500.

    Article  PubMed  CAS  Google Scholar 

  35. Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM, Massague J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 1996; 381: 620–623.

    Article  PubMed  CAS  Google Scholar 

  36. Lechleider RJ, de Caestecker MP, Dehejia A, Polymeropoulos MH, Roberts AB. Serine phosphorylation, chromosomal localization, and transforming growth factor-beta signal transduction by human bsp-1. J Biol Chem 1996; 271:17, 617–17, 620.

    Google Scholar 

  37. Yingling JM, Das P, Savage C, Zhang M, Padgett RW, Wang XF. Mammalian dwarfins are phosphorylated in response to transforming growth factor beta and are implicated in control of cell growth. Proc Natl Acad Sci USA 1996; 93: 8940–8944.

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki A, Chang C, Yingling JM, Wang XF, Hemmati-Brivanlou A. Smad5 induces ventral fates in Xenopus embryo. Dey Biol 1997; 184: 402–405.

    Article  CAS  Google Scholar 

  39. Nishimura R, Kato Y, Chen D, Harris SE, Mundy GR, Yoneda T. Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J Biol Chem 1998; 273: 1872–1879.

    Google Scholar 

  40. Chen Y, Bhushan A, Vale W. Smad8 mediates the signaling of the receptor serine kinase. Proc Natl Acad Sci USA 1997; 4:12, 938–12, 943.

    Google Scholar 

  41. Watanabe TK, Suzuki M, Omori Y, Hishigaki H, Hone M, Kanemoto N, Fujiwara T, Nakamura Y, Takahashi E. Cloning and characterization of a novel member of the human Mad gene family (MADH6). Genomics 1997; 42: 446–451.

    Article  PubMed  CAS  Google Scholar 

  42. Kretzschmar M, Liu F, Hata A, Doody J, Massagué J. The TGF-beta family mediator Smadl is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 1997; 11: 984–995.

    Article  PubMed  CAS  Google Scholar 

  43. Shi Y, Hata A, Lo RS, Massague J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 1997; 388: 87–93.

    Article  PubMed  CAS  Google Scholar 

  44. Lo RS, Chen Y-G, Shi Y, Pavletich NP, Massagué J. The L3 loop: A structural motif determining specific interactions between SMAD proteins and TGF-13 receptors. EMBO J, 1998; 17: 996–1005.

    Article  PubMed  CAS  Google Scholar 

  45. Wu RY, Zhang Y, Feng XH, Derynck R. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol Cell Biol 1997; 17: 2521–2528.

    PubMed  CAS  Google Scholar 

  46. Hata A, Lo RS, Wotton D, Lagna G, Massagué J. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 1997; 388: 82–87.

    Article  PubMed  CAS  Google Scholar 

  47. de Caestecker MP, Hemmati P, Larisch-Bloch S, Ajmera R, Roberts AB, Lechleider RJ. Characterization of functional domains within Smad4/DPC4. J Biol Chem 1997; 272: 13, 690–13, 696.

    Google Scholar 

  48. Hahn SA, Schutte M, Hogue AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271: 350–353.

    Article  PubMed  CAS  Google Scholar 

  49. Candia AF, Watabe T, Hawley SH, Onichtchouk D, Zhang Y, Derynck R, Niehrs C, Cho KW. Cellular interpretation of multiple TGF-beta signals: Intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 1997; 124: 44674480.

    Google Scholar 

  50. Zhang Y, Feng X, We R, Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 1996; 383: 168–172.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Y, Musci T, Derynck R. The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol 1997; 7: 270–276.

    Article  PubMed  Google Scholar 

  52. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 1998; 12: 107–119.

    Article  PubMed  CAS  Google Scholar 

  53. Nakayama T., Snyder M., Grewal S., Tsuneizumi K., Tabata T., Christian J. Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development 1998; 125: 857–867.

    PubMed  CAS  Google Scholar 

  54. Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997; 278: 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  55. Tsuneizumi K, Nakayama T, Kamoshida Y, Kornberg TB, Christian JL, Tabata T. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 1997; 389: 627–631.

    Article  PubMed  CAS  Google Scholar 

  56. Hata A, Lagna G, Massague J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smadl signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 1998; 12: 186–197.

    Article  PubMed  CAS  Google Scholar 

  57. Darnell JE Jr. STATs and gene regulation. Science 1997; 277: 1630–1635.

    Article  PubMed  CAS  Google Scholar 

  58. Roberts AB. Molecular and cell biology of TGF- 3. Miner Electrolyte Metab 1998; 24: 11 1119.

    Google Scholar 

  59. Huang HC, Murtaugh LC, Vize PD, Whitman M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J 1995; 14: 5965–5973.

    Google Scholar 

  60. Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling [published erratum appears in Nature 1996; 19–26; 384(6610):6481. Nature 383:691–696.

    Google Scholar 

  61. Howell M, Hill CS. XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J 1997; 16: 7411–7421.

    Article  PubMed  CAS  Google Scholar 

  62. Kim J, Johnson K, Chen HJ, Carroll S, Laughon A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 1997; 388: 304–308.

    Article  PubMed  CAS  Google Scholar 

  63. Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang XF. Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Mol Cell Biol 1997; 17: 7019–7028.

    PubMed  CAS  Google Scholar 

  64. Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB. Type beta transforming growth factor: A bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 1985; 82: 119–123.

    Article  PubMed  CAS  Google Scholar 

  65. Kretzschmar M, Doody J, Massagué J. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smadl. Nature 1997; 389: 618–622.

    Article  PubMed  CAS  Google Scholar 

  66. de Caestecker MP, Parks WT, Frank CS, Castagnino P, Bottaro DP, Roberts AB, Lechleider RS. Smad2 transduces common signals from receptor serine—threonine and tyrosine kinases. Genes Dey 1998; 12: 1587–1592.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Roberts, A.B., de Caestecker, M.P., Lechleider, R.J. (2000). Signaling from TGF-β Receptors. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics