Skip to main content

Farnesyltransferase Inhibitors

Anti-Ras or Anticancer Drugs?

  • Chapter
Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 279 Accesses

Abstract

Oncogenic ras mutations and aberrant Ras function are important in many human tumors, so blocking the activity of oncogenic Ras has been a significant priority in recent drug discovery efforts toward novel cancer chemotherapeutic agents. These efforts have included attempts designed specifically to inhibit the active, guanosine triphosphate (GTP)-bound form of Ras, to reduce the total amount of GTP-bound Ras, to interfere with Ras binding to its downstream targets or to interfere with those targets themselves, or to prevent Ras from associating with the plasma membrane. Of these approaches, the last has been the most successful to date. Ras and other farnesylated proteins require modification by a farnesyl isoprenoid lipid for correct subcellular localization and biological activity. Farnesyltransferase (FTase), the enzyme that attaches the isoprenoid to the C-terminus of Ras, has been a target for rational drug design since its cloning in 1991, and FTase inhibitors (FTIs) are now in early phases of clinical trials as anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbacid M. ras genes. Annu Rev Biochem 1987; 56:779–827.

    Google Scholar 

  2. Khosravi-Far R, Der CJ. The Ras signal transduction pathway. Cancer Metastas Rev 1994; 13: 67–89.

    Article  CAS  Google Scholar 

  3. Bos JL. ras oncogenes in human cancer: A review. Cancer Res 1989; 49:4682–4689.

    Google Scholar 

  4. Clark GJ, Der CJ, Dickey BF, Birnbaumer L, GTPases, in Biology. vol I. Oncogenic Activation of Ras Proteins. Springer-Verlag, 1993, Berlin, 108, pp 259–288.

    Google Scholar 

  5. Pazin MJ, Williams LT. Triggering signaling cascades by receptor tyrosine kinases. Trends Biochem Sci 1992; 17: 374–378.

    Article  PubMed  CAS  Google Scholar 

  6. Maltese WA. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J 1990; 4: 3319–3328.

    PubMed  CAS  Google Scholar 

  7. Cox AD, Der CJ. Protein prenylation: More than just glue? Curr Opin Cell Biol 1992; 4: 1008–1016.

    Article  PubMed  CAS  Google Scholar 

  8. Magee AI, Newman CMH, Giannakouros T, Hancock JF, Fawell E, Armstrong J. Lipid modifications and function of the ras superfamily of proteins. Biochem Soc Trans 1992; 20: 497–499.

    PubMed  CAS  Google Scholar 

  9. Boyartchuk VL, Ashby MN, Rine J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 1997; 275: 1796–1800.

    Article  PubMed  CAS  Google Scholar 

  10. Magee AI, Gutierrez L, McKay IA, Marshall CJ, Hall A. Dynamic fatty acylation of p21 N-ras EMBO J 1987; 6: 3353–3357.

    PubMed  CAS  Google Scholar 

  11. Willumsen BM, Christensen A, Hubbert NL, Papageorge AG, Lowy DR. The p21 ras C-terminus is required for transformation and membrane association. Nature 1984; 310: 583586.

    Google Scholar 

  12. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992; 89: 6403–6407.

    Article  PubMed  CAS  Google Scholar 

  13. Sattler I, Tamanoi F. Prenylation of Ras and inhibitors of prenyltransferases, in Regulation of the RAS Signaling Network. Maruta H, Burgess AW, RG Landes, Austin, TX, pp. 95–137.

    Google Scholar 

  14. Cox AD, Der CJ. Farnesyltransferase inhibitors and cancer treatment: Targeting simply Ras? Biochim Biophys Acta 1997; 1333: F51 - F71.

    PubMed  CAS  Google Scholar 

  15. Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS. Inhibition of purified p21“’ famesyl:protein transferase by Cys-AAX tetrapeptides. Cell 1990; 62: 81–88.

    Article  PubMed  CAS  Google Scholar 

  16. Moores SL, Schaber MD, Mosser SD, Rands E, O’Hara MB, Garsky VM, Marshall MS, Pompliano DL, Gibbs JB. Sequence dependence of protein isoprenylation. J Biol Chem 1991; 266:14, 603–14, 610.

    Google Scholar 

  17. Goldstein JL, Brown MS, Stradley SJ, Reiss Y, Gierasch LM. Nonfarnesylated tetrapeptide inhibitors of protein farnesyltransferase. J Biol Chem 1991; 266:15, 575–15, 578.

    Google Scholar 

  18. Orner CA, Kohl NE. CA1A2X-competitive inhibitors of farnesyltransferase as anti-cancer agents. Trends Pharmacol Sci 1997; 18: 437–444.

    Google Scholar 

  19. Sebti S, Hamilton AD. Inhibitors of prenyl transferases. Curr Opin Oncol 1997; 9: 557–561.

    Article  PubMed  CAS  Google Scholar 

  20. James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, Crowley CW, Lucas BK, Levinson AD, Marsters JC, Jr. Benzodiazepine peptidomimetics: potent inhibitors of Ras famesylation in animal cells. Science 1993; 260: 1937–1942.

    Article  PubMed  CAS  Google Scholar 

  21. Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934–1937.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia AM, Rowell C, Ackermann K, Kowalczyk JJ, Lewis MD. Peptidomimetic inhibitors of ras famesylation and function in whole cells. J Biol Chem 1993; 268:18, 41518, 418.

    Google Scholar 

  23. Cox AD, Garcia AM, Westwick JK, Kowalczyk JJ, Lewis MD, Brenner DA, Der CJ. The CAAX peptidomimetic compound B581 specifically blocks famesylated, but not geranylgeranylated or myristylated, oncogenic Ras signaling and transformation. J Biol Chem 1994; 269:19,203–19,206.

    Google Scholar 

  24. Manne V, Yan N, Carboni JM, Tuomari AV, Ricca CS, Brown JG, Andahazy ML, Schmidt RJ, Patel D, Zahler R, Weinmann R, Der CJ, Cox AD, Hunt JT, Barbacid M, Seizinger BR. Bisubstrate inhibitors of farnesyltransferase: a novel class of specific inhibitors of Ras transformed cells. Oncogene 1995; 10: 1763–1779.

    PubMed  CAS  Google Scholar 

  25. Carboni JM, Yan N, Cox AD, Bustelo X, Graham SM, Lynch MJ, Weinmann R, Seizinger BR, Der CJ, Barbacid M, Manne V. Farnesyltransferase inhibitors are inhibitors of Ras, but not R-Ras/TC21, transformation. Oncogene 1995; 10: 1905–1913.

    PubMed  CAS  Google Scholar 

  26. Lerner EC, Qian L, Blaskovich MA, Fossum RD, Vogt A, Sun J, Cox AD, Der CJ, Hamilton AD, Sebti SM. Ras CAAX peptidomimetic FTI-277 blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras/Raf complexes. J Biol Chem 1995; 270:26, 802–26, 806.

    Google Scholar 

  27. James GL, Brown MS, Cobb MH, Goldstein JL. Benzodiazepine peptidomimetic BZA-5B interrupts the MAP kinase activation pathway in H-Ras-transformed Rat-1 cells, but not in untransformed cells. J Biol Chem 1996; 269:27, 705–27, 714.

    Google Scholar 

  28. Kohl NE, Wilson FR, Mosser SD, Giuliani E, deSolms SJ, Conner MW, Anthony NJ, Holtz WJ, Gomez RP, Lee T, Smith RL, Graham SL, Hartman GD, Gibbs JB, Oliff A. Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc. Natl. Acad. Sci. USA 1994; 91: 9141–9145.

    Article  PubMed  CAS  Google Scholar 

  29. Yan N, Ricca C, Fletcher J, Glover T, Seizinger BR, Manne V. Farnesyltransferase inhibitors block the neurofibromatosis type 1 (NF1) malignant phenotype. Cancer Res 1995; 55: 35693575.

    Google Scholar 

  30. Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A, Rosen N. A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 1995; 55: 5302–5309.

    PubMed  CAS  Google Scholar 

  31. Hunt JT, Lee VG, Leftheris K, Seizinger B, Carboni J, Mabus J, Ricca C, Yan N, Manne V. Potent, cell active, non-thiol tetrapeptide inhibitors of farnesyltransferase. J Med Chem 1996; 39: 353–358.

    Article  PubMed  CAS  Google Scholar 

  32. Leftheris K, Kiline T, Vite GD, Cho YH, Bhide RS, Patel DV, Patel MM, Schmidt RJ, Weller HN, Andahazy ML, Carboni JM, Gullo-Brown JL, Lee FYF, Ricca C, Rose WC, Yan N, Barbacid M, Hunt JT, Meyers CA, Seizinger BR, Zahler R, Manne V. Development of highly potent inhibitors of Ras famesyl transferase possessing cellular and in vivo activity. J Med Chem 1996; 39: 224–236.

    Article  PubMed  CAS  Google Scholar 

  33. Nagasu T, Yoshimatsu K, Rowell C, Lewis MD, Garcia AM. Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res 1995; 55: 5310–5314.

    PubMed  CAS  Google Scholar 

  34. Sun J, Qian Y, Hamilton AD, Sebti SM. Ras CAAX peptidomimetic FTI-276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-Ras mutation and p53 deletion. Cancer Res 1995; 55: 4243–4247.

    PubMed  CAS  Google Scholar 

  35. Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, Giuliani EA, Gomez RP, Graham SL, Hamilton K, Handt LK, Hartman GD, Koblan KS, Kral AM, Miller PJ, Mosser SD, O’Neill TJ, Rands E, Schaber MD, Gibbs JB, Oliff A. Inhibition of famesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Med 1995; 1: 792–797.

    Article  PubMed  CAS  Google Scholar 

  36. Barrington RE, Subler MA, Rands E, Omer CA, Miller PJ, Hundley JE, Koester SK, Troyer DA, Bearss DJ, Conner MW, Gibbs JB, Hamilton K, Koblan KS, Mosser SD, O’Neill TJ, Schaber MD, Senderak ET, Windle JJ, Oliff A, Kohl NE. A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 1998; 18: 8592.

    Google Scholar 

  37. Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 1997; 15: 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  38. Park HW, Boduluri SR, Moomaw JF, Casey PJ, Beese LS. Crystal structure of protein farnesyltransferase at 2.25 A resolution. Science 1997; 275: 1800–1804.

    Article  PubMed  CAS  Google Scholar 

  39. Long SB, Casey PJ, Beese LS. Cocrystal structure of protein famesyltransferase complexed with a famesyl diphosphate substrate. Biochemistry 1998; 37: 9612–9618.

    Article  PubMed  CAS  Google Scholar 

  40. Del Villar K, Mitsuzawa H, Yang W, Sattler I, Tamanoi F. Amino acid substitiutions that convert the protein substrate specificity of farnesyltransferase to that of geranylgeranyltransferase type I. J Biol Chem 1997; 272: 680–687.

    Article  PubMed  Google Scholar 

  41. Kral AM, Diehl RE, deSolms SJ, Williams TM, Kohl NE, Omer CA. Mutational analysis of conserved residues of the beta-subunit of human famesyl:protein transferase. J Biol Chem 1997; 272:27, 319–27, 323.

    Google Scholar 

  42. Tschantz WR, Furfine ES, Casey Pi. Substrate binding is required for release of product from mammalian protein famesyltransferase. J Biol Chem 1997; 272: 9989–9993.

    Article  PubMed  CAS  Google Scholar 

  43. Yokoyama K, Zimmerman K, Scholten J, Gelb MH. Differential prenyl pyrophosphate binding to mammalian protein geranylgeranyltransferase-I and protein farnesyltransferase and its consequence on the specificity of protein prenylation. J Biol Chem 1997; 272: 3944–3952.

    Article  PubMed  CAS  Google Scholar 

  44. Njoroge FG, Vibulbhan B, Pinto P, Bishop WR, Bryant MS, Nomeir AA, Lin C, Liu M, Doll RJ, Girijavallabhan V, Ganguly AK. Potent, selective, and orally bioavailable tricyclic pyridyl acetamide N-oxide inhibitors of famesyl protein transferase with enhanced in vivo antitumor activity. J Med Chem 1998; 41: 1561–1567.

    Article  PubMed  CAS  Google Scholar 

  45. James GL, Goldstein JL, Brown MS. Resistance of K-rasBv12 proteins to farnesyltransferase inhibitors in Rat-1 cells. Proc Natl Acad Sci USA 1996; 93: 4454–4458.

    Article  PubMed  CAS  Google Scholar 

  46. Sun J, Qian Y, Hamilton AD, Sebti SM. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 1998; 16: 1467–1473.

    Article  PubMed  CAS  Google Scholar 

  47. James GL, Goldstein JL, Brown MS. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem 1995; 270: 6221–6226.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang FL, Kirschmeier P, Can D, James L, Bond RW, Wang L, Patton R, Windsor WT, Syto R, Zhang R, Bishop WR. Characterization of Ha-Ras, N-Ras, Ki-Ras4A, and KiRas4B as in vitro substrates for famesyl protein transferase and geranylgeranyl protein transferase type I. J Biol Chem 1997; 272:10, 232–10, 239.

    Google Scholar 

  49. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM. Direct demonstration of geranylgeranylation and famesylation of Ki-Ras in vivo. J Biol Chem 1997; 272:14, 093–14, 097.

    Google Scholar 

  50. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK. K- and N-Ras are geranylgeranylated in cells treated with famesyl protein transferase inhibitors. J Biol Chem 1997; 272:14, 459–14, 464.

    Google Scholar 

  51. Hancock JF, Cadwallader K, Paterson H, Marshall CJ. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 1991; 10: 4033–4039.

    PubMed  CAS  Google Scholar 

  52. Plattner R, Anderson Mi, Sato KY, Fasching CL, Der CJ, Stanbridge EJ. Loss of oncogenic ras expression does not correlate with loss of tumorigenicity in human cells. Proc Natl Acad Sci USA 1996; 93: 6665–6670.

    Article  PubMed  CAS  Google Scholar 

  53. Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 1993; 260: 85–88.

    CAS  Google Scholar 

  54. Cates CA, Michael RL, Stayrook KR, Harvey KA, Burke YD, Randall SK, Crowell PL, Crowell DN. Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Lett 1996; 110: 49–55.

    Article  PubMed  CAS  Google Scholar 

  55. James GL, Goldstein JL, Pathak RK, Anderson RG, Brown MS. PxF, a prenylated protein of peroxisomes. J Biol Chem 1994; 269:14, 182–14, 190.

    Google Scholar 

  56. Kaminski JJ, Rane DF, Snow ME, Weber L, Rothofsky ML, Anderson SD, Lin SL. Identification of novel farnesyl protein transferase inhibitors using three-dimensional database searching methods. J Med Chem 1997; 40: 4103–4112.

    Article  PubMed  CAS  Google Scholar 

  57. Lebowitz PF, Davide JP, Prendergast GC. Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol Cell Biol 1995; 15: 66136622.

    Google Scholar 

  58. Adamson P, Marshall CJ, Hall A, Tilbrook PA. Post-translational modifications of p21`h0 proteins. J Biol Chem 1992; 267:20, 033–20, 038.

    Google Scholar 

  59. Lebowitz PF, Casey PJ, Prendergast GC, Thissen JA. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J Biol Chem 1997; 272:15, 59115, 594.

    Google Scholar 

  60. Foster R, Hu K-Q, Lu Y, Nolan KM, Thissen J, Settleman J. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo famesylation. Mol Cell Biol 1996; 16: 2689–2699.

    PubMed  CAS  Google Scholar 

  61. Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P. A new member of the Rho family, Rndl, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 1998; 141: 187–197.

    Article  PubMed  CAS  Google Scholar 

  62. Guasch RM, Scambler P, Jones GE, Ridley AJ. RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol 1998; 18: 4761–4771.

    PubMed  CAS  Google Scholar 

  63. Clark GJ, Kinch MS, Rogers-Graham K, Sebti SM, Hamilton AD, Der CJ. The Ras-related protein Rheb is famesylated and antagonizes Ras signaling and transformation. J Biol Chem 1997; 272:10, 608–10, 615.

    Google Scholar 

  64. Diamond RH, Cressman DE, Laz TM, Abrams CS, Taub R. PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol 1994; 14: 3752–3762.

    PubMed  CAS  Google Scholar 

  65. Diamond RH, Peters C, Jung SP, Greenbaum LE, Haber BA, Silberg DG, Traber PG, Taub R. Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine. Am J Physiol 1996; 271: G121–129.

    PubMed  CAS  Google Scholar 

  66. De Smedt F, Boom A, Pesesse X, Schiffmann SN, Emeux C. Post-translational modification of human brain type I inositol-1,4,5-triphosphate 5-phosphatase by famesylation. J Biol Chem 1996; 271:10, 419–10, 424.

    Google Scholar 

  67. Nantais DE, Schwemmle M, Stickney JT, Vestal DJ, Buss JE. Prenylation of an interferongamma-induced GTP-binding protein: The human guanylate binding protein, huGBP1. J Leukoc Biol 1996; 60: 423–431.

    PubMed  CAS  Google Scholar 

  68. Kemppainen RJ, Behrend EN. Dexamethasone rapidly induces a novel ras superfamily member-related gene in AtT-20 cells. J Biol Chem 1998; 273: 3129–3131.

    Article  PubMed  CAS  Google Scholar 

  69. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G,. Science 1995; 269: 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  70. Crick DC, Andres DA, Waechter CJ. Geranylgeraniol promotes entry of UT-2 cells into the cell cycle in the absence of mevalonate. Exp Cell Res 1997; 231: 302–307.

    Article  PubMed  CAS  Google Scholar 

  71. Raiteri M, Arnaboldi L, McGeady P, Gelb MH, Verri D, Tagliabue C, Quarato P, Ferraboschi P, Santaniello E, Paoletti R, Fumagalli R, Corsini A. Pharmacological control of the mevalonate pathway: Effect on arterial smooth muscle cell proliferation. J Pharmacol Exp Ther 1997; 281: 1144–1153.

    PubMed  CAS  Google Scholar 

  72. Vogt A, Qian Y, McGuire TF, Hamilton AD, Sebti SM. Protein geranylgeranylation, not famesylation, is required for the G1 to S phase transition in mouse fibroblasts. Oncogene 1996; 13: 1991–1999.

    PubMed  CAS  Google Scholar 

  73. Miguel K, Pradines A, Sun J, Qian Y, Hamilton AD, Sebti SM, Favre G. GGTI-298 induces GO-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res 1997; 57: 1846–1850.

    Google Scholar 

  74. Weber JD, Hu W, Jefcoat SC Jr, Raben DM, Baldassare JJ. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced Gl progression through the independent regulation of cyclin D1 and p27. J Biol Chem 1997; 272:32,966–32,971.

    Google Scholar 

  75. Noguchi Y, Nakamura S, Yasuda T, Kitagawa M, Kohn LD, Saito Y, Hirai, A. Newly synthesized Rho A, not Ras, is isoprenylated and translocated to membranes coincident with progression of the GI to S phase of growth-stimulated rat FRTL-5 cells. J Biol Chem 1998; 273: 3649–3653.

    Article  PubMed  CAS  Google Scholar 

  76. Flint OP, Masters BA, Gregg RE, Durham SK. HMG CoA reductase inhibitor-induced myotoxicity: Pravastatin and lovastatin inhibit the geranylgeranylation of low-molecularweight proteins in neonatal rat muscle cell culture. Toxicol Appl Pharmacol 1997; 145: 99110.

    Google Scholar 

  77. Stark WW Jr, Blaskovich MA, Johnson BA, Qian Y, Vasudevan A, Pitt B, Hamilton AD, Sebti SM, Davies P. Inhibiting geranylgeranylation blocks growth and promotes apoptosis in pulmonary vascular smooth muscle cells. Am J Physiol 1998; 275: L55–63.

    PubMed  CAS  Google Scholar 

  78. Dalton MB, Fantle KS, Bechtold HA, DeMaio L, Evans RM, Krystosek A, Sinensky M. The farnesyl protein transferase inhibitor BZA-5B blocks farnesylation of nuclear lamins and p21ras but does not affect their function and localization. Cancer Res 1995; 55: 3295–3304.

    PubMed  CAS  Google Scholar 

  79. Mangues R, Corral T, Kohl NE, Symmans WF, Lu S, Malumbres M, Gibbs JB, Oliff A, Pellicer A. Antitumor effect of a farnesyl-protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Cancer Res 1998; 58: 1253–1259.

    PubMed  CAS  Google Scholar 

  80. Prendergast GC, Davide JP, Lebowitz PF, Wechsler-Reya R, Kohl NE. Resistance of a variant ras-transformed cell line to phenotypic reversion by farnesyl transferase inhibitors. Cancer Res 1996; 56: 2626–2632.

    PubMed  CAS  Google Scholar 

  81. Bernhard EJ, Kao G, Cox AD, Sebti SM, Hamilton AD, Muschel RJ, McKenna WG. The farnesyltransferase inhibitor FTI-277 radiosensitizes H-ras-transformed rat embryo fibroblasts. Cancer Res 1996; 56: 1727–1730.

    PubMed  CAS  Google Scholar 

  82. Bernhard EJ, McKenna WG, Hamilton AD, Sebti SM, Qian Y, Wu JM, Muschel RJ. Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res 1998; 58: 1754–1761.

    PubMed  CAS  Google Scholar 

  83. Moasser MM, Sepp-Lorenzino L, Kohl NE, Oliff A, Balog A, Su DS, Danishefsky SJ, Rosen N. Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci USA 1998; 95: 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  84. Danesi R, Figg WD, Reed E, Myers CE. Paclitaxel (taxol) inhibits protein isoprenylation and induces apoptosis in PC-3 human prostate cancer cells. Mol Pharmacol 1995; 47: 1106–1111.

    PubMed  CAS  Google Scholar 

  85. Thissen JA, Gross JM, Subramanian K, Meyer T, Casey PJ. Prenylation-dependent association of K-Ras with microtubules: Evidence for a role in subcellular trafficking. J Biol Chem 1997; 272:30, 362–30, 370.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cox, A.D., Der, C.J. (2000). Farnesyltransferase Inhibitors. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_28

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics