Skip to main content

Using Protein-Interaction Domains to Manipulate Signaling Pathways

  • Chapter
Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 286 Accesses

Abstract

The signal transduction machinery of eukaryotes is driven by changes in protein—protein associations. We have traditionally thought of signal transmission as being mediated by the altered activities of enzymes such as kinases and GTPases; in most cases, however, such changes in enzymatic activity are the result of changes in protein—protein binding. Furthermore, the activation of enzymes involved in signaling often leads in turn to further changes in their binding interactions or those of their substrates. The central importance of protein—protein binding is reinforced by the realization that most enzymes involved in signaling pathways consist of multiple protein-interaction domains (and, in some cases, lipid interaction domains) in addition to the catalytic domain itself. This modular design allows the activity of the enzyme and its local concentration relative to potential activators and substrates to be regulated by interactions with other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pawson T. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997; 278: 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  2. Pawson T. Protein modules and signalling networks. Nature 1995; 373: 573–579.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen GB, Baltimore D. Modular binding domains in signal transduction proteins. Cell 1995; 80: 237–248.

    Article  PubMed  CAS  Google Scholar 

  4. Kuriyan J, Cowbum D. Modular peptide recognition domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct 1997; 26: 259–288.

    Article  PubMed  CAS  Google Scholar 

  5. Khwaja A, Hallberg B, Wame PH, Downward, J. Networks of interaction of p120cbl and p130cas with Crk and Grb2 adaptor proteins. Oncogene 1996; 12: 2491–2498.

    PubMed  CAS  Google Scholar 

  6. Buday L, Khwaja A, Sipeki S, Farago A, Downward J. Interactions of Cbl with two adaptor proteins, Grb2 and Crk, upon T cell activation. J Biol Chem 1996; 271: 6159–6163

    Article  PubMed  CAS  Google Scholar 

  7. Claesson-Welsh L. Signal transduction by the PDGF receptors. Prog Growth Factor Res 1994; 5: 37–54.

    Article  PubMed  CAS  Google Scholar 

  8. Klinghoffer RA, Duckworth B, Valius M, Cantley L, Kaslauskas A. Platelet-derived growth factor-dependent activation of phosphatidylinositol 3-kinase is regulated by receptor binding of SH2-domain-containing proteins which influence Ras activity. Mol Cell Biol 1996; 16: 5905–5914.

    PubMed  CAS  Google Scholar 

  9. Bazenet CE, Gelderloos JA, Kazlauskas A. Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation. Mol Cell Biol 1996; 16: 6926–6936.

    PubMed  CAS  Google Scholar 

  10. Segal RA, Bhattacharyya A, Rua LA, Alberta JA, Stephens RM, Kaplan DR, Stiles CD. Differential utilization of Trk autophosphorylation sites. J Biol Chem 1996; 271:20, 175–20, 181.

    Google Scholar 

  11. Tanaka S, Hattori S, Kurata T, Nagashima K, Fukui Y, Nakamura S, Matsuda M. Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells. Mol Cell Biol 1993; 13: 4409–4415.

    PubMed  CAS  Google Scholar 

  12. Wang Z, Moran MF. Requirement for the adapter protein GRB2 in EGF receptro endocytosis. Science 1996; 272: 1935–1939.

    Article  PubMed  CAS  Google Scholar 

  13. Tanaka M, Gupta R, Mayer BJ. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol Cell Biol 1995; 15: 6829–6837.

    PubMed  CAS  Google Scholar 

  14. Tang TL, Freeman RMJ, O’Reilly AM, Neel BG, Sokol SY. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 1995; 80: 473–483.

    Article  PubMed  CAS  Google Scholar 

  15. Perkins LA, Larsen I, Perrimon N. Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 1992; 70: 225–236.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka M, Lu W, Gupta R, Mayer BJ. Expression of mutated Nck SH2/SH3 adaptor respecifies mesodermal cell fate in Xenopus laevis development. Proc Natl Acad Sci USA 1997; 94: 4493–4498.

    Article  PubMed  CAS  Google Scholar 

  17. Aronheim A, Engelberg D, Li N, al-Alawi N, Schlessinger J, Karin M. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 1994; 78: 949–961.

    Article  PubMed  CAS  Google Scholar 

  18. Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR. Controlling signal transduction with synthetic ligands. Science 1993; 262: 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  19. Holsinger LJ, Spencer DM, Austin DJ, Schreiber SL, Crabtree GR. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci USA 1995; 92: 9810–9814.

    Article  PubMed  CAS  Google Scholar 

  20. Belshaw PJ, Ho SN, Crabtree GR, Schreiber SL. Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Nat Acad Sci USA 1996; 93: 4604–4607.

    Article  PubMed  CAS  Google Scholar 

  21. Klemm JD, Beals CR, Crabtree GR. Rapid targeting of nuclear proteins to the cytoplasm. Curr Biol 1997; 7: 638–644.

    Article  PubMed  CAS  Google Scholar 

  22. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Shaffhausen B, Cantley LC. SH2 domains recognize specific phosphopeptide sequences. Cell 1993; 72: 767–778.

    Article  PubMed  CAS  Google Scholar 

  23. Ren R, Mayer BJ, Cicchetti P, Baltimore D. Identification of a 10-amino acid proline-rich SH3 binding site. Science 1993; 259: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  24. Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 1994; 76: 933–945.

    Article  PubMed  CAS  Google Scholar 

  25. Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quilliam LA, Kay BK. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, p53bp, PLC-γ, Crk, and Grb2. Proc Natl Acad Sci USA 1996; 93: 1540–1544.

    Article  PubMed  CAS  Google Scholar 

  26. Rickles RJ, Botfield MC, Zhou X-M, Henry PA, Brugge JS, Zoller MJ. Phage display selection of ligand residues important for Src homology 3 domain binding specificity. Proc Natl Acad Sci USA 1995; 92:10, 909–10, 913.

    Google Scholar 

  27. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 1994; 91: 664–668.

    Article  PubMed  CAS  Google Scholar 

  28. Theodore L, Derossi D, Chassaing G, Llirbat B, Kubes M, Jordan P, Chneiweiss H, Godement P, Prochainz A. Intraneural delivery of protein kinase C pseudosubstrate leads to growth cone collapse. J Neurosci 1995; 15: 7158–7167.

    PubMed  CAS  Google Scholar 

  29. Hall H, Williams EJ, Moore SE, Walsh FS, Prochaintz A, Doherty P. Inhibition of FGFstimulated neurite outgrowth by a cell-membrane permeable phosphopeptide. Curr Biol 1996; 6: 580–587.

    Article  PubMed  CAS  Google Scholar 

  30. Combs AP, Kapoor TM, Feng S, Chen JK, Daude-Snow LF, Schreiber SL. Protein structure-based combinatorial chemistry: Discovery of non-peptide binding elements to Src SH3 domains. J Am Chem Soc 1996; 118: 287–288.

    Article  CAS  Google Scholar 

  31. Cowburn D, Zheng J, Xu Q, Barany G. Enhanced affinities and specificities of consolidated ligands for the Src homology (SH) 3 and SH2 domains of Abelson protein-tyrosine kinase. J Biol Chem 1995; 270:26, 738–26, 741.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mayer, B.J. (2000). Using Protein-Interaction Domains to Manipulate Signaling Pathways. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics