Skip to main content

Regulation of Cell Growth and Death by p53

  • Chapter
Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 279 Accesses

Abstract

p53 is one of the most frequently mutated genes in human cancer, and loss of p53 function after mutation contributes to the development of many of the major malignancies that are the leading causes of cancer-related deaths worldwide (1). The high tumor incidence seen in mice deleted of p53 confirmed the credentials of p53 as a tumor suppressor gene (2) and investigation of p53 has become not only one of the most interesting, but arguably also the most intensively studied, fields in tumor biology. We now have at least some level of understanding of both how p53 mediates its tumor suppressor activities and how p53 activity is regulated, and are beginning to apply this information to the development of therapies based on reactivation of p53 function in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, lie T, Hovig E, Smith- S¢rensen B, Montesano R, Harris CC. Database of p.53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 1994; 22: 3551–3555.

    PubMed  CAS  Google Scholar 

  2. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 1992; 356: 215–221.

    Article  PubMed  CAS  Google Scholar 

  3. Levine M. p53,the cellular gatekeeper for growth and division. Cell 1997; 88:323–331.

    Article  PubMed  CAS  Google Scholar 

  4. Haffner R, Oren M. Biochemical properties and biological effects of p.5.3. Curr Opin Genet Dey 1995; 5: 84–90.

    Article  CAS  Google Scholar 

  5. Field S, Jang SJ. Presence of a potent transcription activating sequence in the p53 protein. Science 1990; 249: 1046–1049.

    Article  Google Scholar 

  6. Hansen R, Oren M. p.53; from inductive signal to cellular effect. Curr Opin Genet Dey 1997; 7: 46–51.

    Article  CAS  Google Scholar 

  7. Bates S, Vousden KH p53 in signalling checkpoint arrest or apoptosis. Curr Opin Genet Dey 1996; 6: 1–7.

    Article  Google Scholar 

  8. Walker KK, Levine AJ. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Nail Acad Sci USA 1996; 93:15, 335–15, 340.

    Google Scholar 

  9. Shaulsky, G, Goldfinger N, Tosky MS, Levine A, Rotter V. Nuclear localization is essential for the activity of p.5.3 protein. Oncogene 1991: 6: 2055–2065.

    PubMed  CAS  Google Scholar 

  10. Wang P, Reed M, Wang Y, Mayr G, Stenger J, Anderson M, Schwedes JF, Tegtmeyer P. p53 domains. Structure, oligomerization, and transformation. Mol Cell Biol 1994; 14: 5182–5191.

    PubMed  CAS  Google Scholar 

  11. Hupp TR, Meek DW, Midgley CA, Lane DP. Regulation of the specific DNA binding function of p53. Cell 1992; 71: 875–886.

    Article  CAS  Google Scholar 

  12. Jayaraman L, Prives C. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p.53 C-terminus. Cell 1995; 81: 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  13. Soussi T, Caron de Fromentel C, May P. Structural aspects of the p53 protein in relation to gene evolution. Oncogene 1990; 5: 945–952.

    PubMed  CAS  Google Scholar 

  14. Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half life. Mol Cell Biol 1988; 8: 531–539.

    PubMed  CAS  Google Scholar 

  15. Iggo R Gatter K, Bartek J, Lane D, Harris AL. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 1990; 335:675–679.

    Article  Google Scholar 

  16. Kern SE, Kinzler KW, Baker SJ, Nigro JM, Rotter V, Levine AJ, Friedman P, Prives C, Vogelstein B. Mutant p53 proteins bind DNA abnormally in vitro. Oncogene 1991; 6: 131–136.

    PubMed  CAS  Google Scholar 

  17. Milner J, Medcalf EA. Co-translation of activated mutant p.5.3 with wild type drives the wild type p53 protein into the mutant conformation. Cell 1991; 65: 765–774.

    Article  PubMed  CAS  Google Scholar 

  18. Milner J, Medcalf EA, Cook AC. Tumor suppressor p53: Analysis of wild-type and mutant p53 complexes. Mol Cell Biol 1991; 11: 12–19.

    PubMed  CAS  Google Scholar 

  19. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ. Gain of function mutations in p.53. Nature Genet 4: 42–46.

    Google Scholar 

  20. Lin J, Teresky AK, Levine AJ. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene 1995; 10: 2387–2390.

    PubMed  CAS  Google Scholar 

  21. Li R, Sutphin PD, Schwartz D, Matas D, Almog N, Wolkowicz R, Goldfinger N, Pei H, Prokocimer M, Rotter V. Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 1998; 16: 3269–3277.

    Article  PubMed  CAS  Google Scholar 

  22. Kaghad M, Bonnet H, Yang A, Creamier L, Biscan J-C, Valent A, Minty A, Chalon P, Lelias J-M, Dumont X, Ferrara P, McKeon F, Caput D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809–819.

    Article  PubMed  CAS  Google Scholar 

  23. Bian J, and Sun Y. p53CP, a putative p53 competing protein that specifically binds to the consensus p53 DNA binding sites: A third member of the p.53 family? Proc Nat Acad Sci USA 1997; 94:14,753–14,758.

    Article  CAS  Google Scholar 

  24. Schmale H, Bamberger C. A novel protein with strong homology to the tumor suppressor p53. Oncogene 1997; 15: 1363–1367.

    Article  CAS  Google Scholar 

  25. Jost CA, Marin MC, Kaelin WG Jr p73 is a human p53-related protein that can induce apoptosis. Nature 1997; 389: 191–194.

    Article  PubMed  CAS  Google Scholar 

  26. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89: 7491–7495.

    Article  PubMed  CAS  Google Scholar 

  27. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 353: 345–347.

    Article  Google Scholar 

  28. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T. A subset of p53-deficient embyos exhibit exencephaly. Nature Genet 1995; 10: 175–180.

    Article  PubMed  CAS  Google Scholar 

  29. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR. High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 1995; 5: 931–936.

    Article  PubMed  CAS  Google Scholar 

  30. MacCullum DE, Hupp TR, Midgley CA, Stuart D, Campbell SJ, Harper A, Walsh FS, Wright EG, Balmain A, Lane DP, Hall PA. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 1996; 13: 2575–2587.

    Google Scholar 

  31. Gottlieb E, Haffner R, King A, Asher G, Gruss P, Lonai P, Oren M. Transgenic mouse model for studying the transcriptional activity of the p53 protein: Age-and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO J 1997; 16: 1381–1390.

    Article  PubMed  CAS  Google Scholar 

  32. Komarova EA, Chernov MV, Franks R, Wang K, Armin G, Zelnick CR, Chin DM, Bacus SS, Stark GR, Gudkov AV. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensititivy in vivo. EMBO J 1997; 16: 1391–1400.

    Article  PubMed  CAS  Google Scholar 

  33. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992; 70: 923–935.

    Article  CAS  Google Scholar 

  34. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science 1996; 271: 1744–1747.

    Article  CAS  Google Scholar 

  35. Smith ML, Chen I-T, Zhan Q, O’Conner PM, Fornace AJ. Involvement of p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene 1995; 10: 1053–1059.

    PubMed  CAS  Google Scholar 

  36. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992; 70: 937–948.

    Article  PubMed  CAS  Google Scholar 

  37. Hicks GG, Egan SE, Greenberg AH, Mowat M. Mutant p53 tumor suppressor alleles release ras-induced cell cycle growth arrest. Mol Cell Biol 1991; 11: 1344–1352.

    PubMed  CAS  Google Scholar 

  38. Hiebert SW, Packham G, Strom DK, Haffner R, Oren M, Zambetti G, Cleveland JL. E2F1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol Cell Biol 1995; 15: 6864–6874.

    PubMed  CAS  Google Scholar 

  39. Morgenbesser SD, Williams BO, Jacks T, DePinho RA. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 1994; 371: 72–74.

    Article  PubMed  CAS  Google Scholar 

  40. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p.53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  PubMed  CAS  Google Scholar 

  41. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type by hypoxia-inducible factor lalpha. Nature 1998; 392: 405–408.

    Article  PubMed  CAS  Google Scholar 

  42. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265: 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  43. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  44. Kemp CJ, Burns PA, Brown K, Nagase H, Balmain A. Transgenic approaches to the analysis of and p.53 function in multistage carcinogenesis. Cold Spring Harb Symp Quant Biol 1994; 59: 427–434.

    Article  PubMed  CAS  Google Scholar 

  45. Pietenpol JA, Tokino T, Thiagaligam S, El-Deiry W, Kinzler KW, Vogelstein B. Sequence-specific transcriptional activation is essential for growth suppression by p.53. Proc. Natl. Acad. Sci. USA 1994; 91: 1998–2002.

    Article  CAS  Google Scholar 

  46. Attardi LD, Lowe SW, Brugarolas J, Jacks T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J 1996; 15: 3639–3701.

    Google Scholar 

  47. El-Deiry W, Tokino T, Velculescu VE, Levy DB, Parson VE, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p.53 tumour suppression. Cell 1993; 75: 817–825.

    Article  PubMed  CAS  Google Scholar 

  48. Waldman T, Kinzler KW, Vogelstein B. p21 in necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187–5190.

    PubMed  CAS  Google Scholar 

  49. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21c’F’ undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684.

    Article  PubMed  CAS  Google Scholar 

  50. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Harmon GJ. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 1995; 377: 552–556.

    Article  PubMed  CAS  Google Scholar 

  51. Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995; 377: 646–649.

    Article  PubMed  CAS  Google Scholar 

  52. Hermeking H, Lengauer C, Polyak K, He T–C, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B. 14–3–3e is a p53–regulated inhibitor of G2/M progression. Mol Cell 1997; 1: 3 – 11.

    Article  PubMed  CAS  Google Scholar 

  53. Amson RB, Nemani M, Roperch J-P, Israeli D, Bougueleret L, LeGall I, Medhioub M, Linares-Cruz G, Lethrosne F, Pasturaud P, Piouffre L, Prieur S, Susini L, Alvaro V, Millasseau P, Guidicelli C, Bui H, Massart C, Cazes L, Dufour F, Bruzzoni-Giovanelli H, Owadi H, Hennion C, Charpak G, Dausset J, Calvo F, Oren M, Cohen D, Telerman A. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: Activation of the vertebrate homologue of the Drosophila seven in absentia gene. Proc Natl Acad Sci USA 1996; 93: 3953–3957.

    Article  PubMed  CAS  Google Scholar 

  54. Zhan Q, Chen IT, Antimore MJ, Fornace AJ. Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol Cell Biol 1998; 18: 2768–2778.

    PubMed  CAS  Google Scholar 

  55. Polyak K, Waldman T, He T-C, Kinzler KW, Vogelstein B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dey 1996; 10: 1945–1952.

    Article  CAS  Google Scholar 

  56. Gorospe M, Cirielli C, Wamg X, Seth P, Capogrossi MC, Holbrook NJ. p21“’aWc’p’ protects against p53-mediated apoptosis of human melanoma cells. Oncogene 1997; 14: 929–935.

    Article  PubMed  CAS  Google Scholar 

  57. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  PubMed  CAS  Google Scholar 

  58. Knudson MC, Tung KSK, Tourtellotte WG, Brown GAJ, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 1995; 270: 96–98.

    Article  PubMed  CAS  Google Scholar 

  59. McCurrach ME, Connor TMF, Knudson MC, Korsmeyer SJ, Lowe SW. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci USA 1997; 94: 2345–2349.

    Article  PubMed  CAS  Google Scholar 

  60. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 1997; 385: 637–640.

    Article  PubMed  CAS  Google Scholar 

  61. Wu G, Burns TF, McDonald ER, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, El-Deiry WS. KILLER/ DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet 1997; 17: 141–143.

    Article  PubMed  CAS  Google Scholar 

  62. Israeli D, Tessler E, Haupt Y, Elkeles A, Wilder S, Amson R, Telerman A, Oren M. A novelp53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose expression promotes apoptosis. EMBO J 1997; 16: 4384–4392.

    Article  PubMed  CAS  Google Scholar 

  63. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang W-W, Kruzel E, Radinsky R. Wild-type human p53 and a temperature sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 1995; 15: 3032–3040.

    PubMed  CAS  Google Scholar 

  64. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389: 300–305.

    Article  PubMed  CAS  Google Scholar 

  65. Sabbatini P, Chiou S-K, Rao L, White E. Modulation of p53-mediated transcriptional repression and apoptosis by the adenovirus E1B 19K protein. Mol Cell Biol 1995; 15: 1060–1070.

    PubMed  CAS  Google Scholar 

  66. Shen YQ, Shenk T. Relief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular bd-2 protein. Proc Natl Acad Sci USA 1994; 91: 8940–8944.

    Article  PubMed  CAS  Google Scholar 

  67. Ryan KM, Vousden KH. Characterization of structural p53 mutants which show selective defects in apoptosis, but not cell cycle arrest. Mol Cell Biol 1998; 18: 3692–3698.

    PubMed  CAS  Google Scholar 

  68. Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M. Induction of apoptosis in HeLa cells by trans-activation deficient p53. Genes Dev 1995; 9: 2170–2183.

    Article  PubMed  CAS  Google Scholar 

  69. Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 1994; 370: 220–223.

    Article  PubMed  CAS  Google Scholar 

  70. Sakamuro D, Sabbatini P, White E, Prendergast GC. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 1997; 15: 887–898.

    Article  PubMed  CAS  Google Scholar 

  71. Ruaro EM, Collavin L, Del Sal G, Haffner R, Oren M, Levine AJ, Schneider C. A prolinerich motif in p53 is required for transactivation-independent growth arrest as induced by Gas 1. Proc Natl Acad Sci USA 1997; 94: 4675–4680.

    Article  PubMed  CAS  Google Scholar 

  72. Goga A, Liu X, Hambuch TM, Senechal K, Major E, Berk AJ, Witte ON, Sawyers CL. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase. Onco gene 1995; 11: 791–799.

    CAS  Google Scholar 

  73. Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci USA 1994; 91: 6098–6102.

    Article  PubMed  CAS  Google Scholar 

  74. Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly J-M, Wang Z, Friedberg EC, Evans MK, Taffe BG, Bohr VA, Weeda G, Hoeijmakers JHJ, Forrester K, Harris CC. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genet 1995; 10: 188–195.

    Article  PubMed  CAS  Google Scholar 

  75. Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers JH, Harris CC. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dey 1996; 10: 1219–1232.

    Article  CAS  Google Scholar 

  76. Rowan S, Ludwig RL, Haupt Y, Bates S, Lu X, Oren M, Vousden KH. Specific loss of apoptotic but not cell cycle arrest funtion in a human tumour derived p53 mutant. EMBO J 1996; 15: 827–838.

    PubMed  CAS  Google Scholar 

  77. Ludwig RL, Bates S, Vousden KH. Differential transcriptional activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol 1996; 16: 4952–4960.

    PubMed  CAS  Google Scholar 

  78. Friedlander P, Haupt Y, Prives C, Oren M. A mutant p.53 that discriminated between p.5.3 responsive genes cannot induce apoptosis. Mol Cell Biol 1996; 16: 4961–4971.

    PubMed  CAS  Google Scholar 

  79. Chen X, Ko LJ, Jayaraman L, Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dey 1996; 10: 2438–2451.

    Article  CAS  Google Scholar 

  80. Gottlieb E, Haffner R, von Ruden T, Wagner EF, Oren M. Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3 dependent hematopoietic cells following IL-3 withdrawal. EMBO J 1994; 13: 1368–1374.

    PubMed  CAS  Google Scholar 

  81. Lin Y, Benchimol S. Cytokines inhibit p53-mediated apoptosis but not p53-mediated G1 arrest. Mol Cell Biol 1995; 15: 6045–6054.

    PubMed  CAS  Google Scholar 

  82. Guillouf C, Grana X, Selvakumaran M, De Luca A, Giordano A, Hoffman B, Liebermann DA. Dissection of the genetic programs of p53-mediated G1 growth arrest and apoptosis: Blocking p53-induced apoptosis unmasks G1 arrest. Blood 1995; 85: 2691–2698.

    PubMed  CAS  Google Scholar 

  83. Quelle FW, Wang J, Feng J, Wang D, Cleveland JL, Ihle JN, Zambetti GP. Cytokine rescue of p53-dependent apoptosis and cycle arrest is mediated by distinct Jak kinase signaling pathways. Genes Dey 1998; 12: 1099–1107.

    Article  CAS  Google Scholar 

  84. Qin X-Q, Livingston DM, Kaelin WG, Adams PD. Deregulated transcription factor E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994; 91:10, 918–10, 922.

    Google Scholar 

  85. Hickman ES, Bates S, Vousden KH. Perturbation of the p53 response by human papillomavirus type 16 E7. J Virol 1997; 71: 3710–3718.

    PubMed  CAS  Google Scholar 

  86. Kubbutat MHG, Vousden KH. Keeping an old friend under control: regulation of p53 stability. Mol Med Today 1998; 4: 250–256.

    Article  PubMed  CAS  Google Scholar 

  87. Kubbutat MHG, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    Article  PubMed  CAS  Google Scholar 

  88. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Article  CAS  Google Scholar 

  89. Marston NJ, Crook T, Vousden KH. Interaction of p53 with MDM2 is independent of E6 and does not mediate wild type transformation suppressor function. Oncogene 1994; 9: 2707–2716.

    PubMed  CAS  Google Scholar 

  90. Momand J, Zambetti GP, George DL, Levine M. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    Article  PubMed  CAS  Google Scholar 

  91. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embyonic lethality in Mdm2deficient mice by absence of p53. Nature 1995; 378: 206–208.

    Article  CAS  Google Scholar 

  92. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p.53. Nature 1995; 378: 203–206.

    Article  Google Scholar 

  93. Midgley CA, Lane DP. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 1997; 15: 1179–1189.

    Article  PubMed  CAS  Google Scholar 

  94. Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998; 17: 554–564.

    Article  PubMed  CAS  Google Scholar 

  95. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997; 420: 25–27.

    Article  CAS  Google Scholar 

  96. Shieh S-Y, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997; 91: 325–334.

    Article  PubMed  CAS  Google Scholar 

  97. Mayo LD, Turchi JJ, Berberich SJ. Mdm-2 phosphorylation by DBA-dependent protein kinase prevents interaction with p53. Cancer Res 1997; 57: 5013–5016.

    CAS  Google Scholar 

  98. Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dey 1997; 11: 3471–3481.

    Article  CAS  Google Scholar 

  99. Fried LM, Koumenis C, Peterson SR, Green SL, van Zijl P, Allalunis-Turner J, Chen DJ, Fishel R, Giaccia AJ, Brown JM, Kirchgessner CU. The DNA damage response in DNA-dependent protein kinase-deficient SCID mouse cells: Replication protein A hyperphosphorylation and p.53 induction. Proc Natl Acad Sci USA 1996; 93:13, 825–13, 830.

    Google Scholar 

  100. Kastan MB, Zhan Q, El Deiry W-S, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace A-J Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597.

    Google Scholar 

  101. Kubbutat MHG, Ludwig RL, Ashcroft M, Vousden KH. Regulation of Mdm2 directed degradation by the C-terminus of p53. Mol Cell Biol 1993; 18: 5690–5698.

    Google Scholar 

  102. Stott F, Bates SA, James M, McConnell BB, Starborg M, Brookes S, Palmero I, Hara E, Ryan KM, Vousden KH, Peters G. The alternative product from the human CDKN2A locus, p14F, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17: 5001–5014.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725–734.

    Article  PubMed  CAS  Google Scholar 

  104. Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordon-Cardo C, DePinho RA. The Ink4a tumor suppressor gene product, p19ß, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92: 713–723.

    Article  PubMed  CAS  Google Scholar 

  105. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product pl9°. Cell 1997; 91: 649–659.

    Article  PubMed  CAS  Google Scholar 

  106. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83: 993–1000.

    Article  PubMed  CAS  Google Scholar 

  107. Bates S, Phillips AC, Stott F, Ludwig RL, Peters G, Vousden KH. E2F-1 regulation of pl4ARF links pRB and p.53 tumor suppressor functions. Nature 1998; 395: 124, 125.

    Google Scholar 

  108. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson N. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996; 85: 537–548.

    Article  PubMed  CAS  Google Scholar 

  109. Field SJ, Tsai F-Y, Kuo F, Zubiaga AM, Kaelin WG, Livingston DM, Orkin SH, Greenberg ME. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996; 85: 549–561.

    Article  PubMed  CAS  Google Scholar 

  110. Ryan HE, Lo J, Johnson RS. HIF-la is required for solid tumor formation and embyonic vascularization. EMBO J 1998; 17: 3005–3015.

    Article  PubMed  CAS  Google Scholar 

  111. Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 1997; 89: 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  112. Gu W, Shi X-L, Roeder RG. Synergistic activation of transcription by CBP and p53. Nature 1997; 387: 819–823.

    Article  CAS  Google Scholar 

  113. Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM. Binding and modulation of p53 by p300/CBP coactivators. Nature 1997; 387: 823–827.

    Article  PubMed  CAS  Google Scholar 

  114. Thomas A, White E. Suppression of the p300-dependent mdm2 negative-feedback loop induced the p53 apoptotic function. Genes Dey 1998; 12: 1975–1985.

    Article  CAS  Google Scholar 

  115. Hupp TR, Sparks A, Lane DP. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 1995; 83: 237–245.

    Article  CAS  Google Scholar 

  116. Hupp TR, Lane DP. Regulation of the cryptic sequence-specific DSA-binding function of p53 by protein kinases. CSH Symp Quant Biol 1994; 59: 195–206.

    Article  CAS  Google Scholar 

  117. Halazonetis TD, Kandil AN. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J 1993; 12: 5057–5064.

    PubMed  CAS  Google Scholar 

  118. Hupp TR, Lane DP. Two distinct signaling pathways activate the latent DNA binding function of p53 in a casein kinase II-independent manner. J Biol Chem 1995; 270:18, 165–18, 174.

    Google Scholar 

  119. Shaw P, Freeman J, Bovey R, Iggo R. Regulation of specific DNA binding by p53: Evidence for a role of 0-glycosylation and charged residues at the carboxy-terminus. Oncogene 1996; 12: 921–930.

    PubMed  CAS  Google Scholar 

  120. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the C-terminal domain. Cell 1997; 90: 595–606.

    Article  PubMed  CAS  Google Scholar 

  121. Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD. ATM–dependent activation of p53 involves dephosphorylation and association with 14–3–3 proteins. Nature Genet 1998; 19: 175 – 178.

    Article  PubMed  CAS  Google Scholar 

  122. Jayaraman L, Murthy KGK, Zhu C, Curran T, Xanthoudakis S, Prives C. Identification of redox/repair protein Ref-1 as a potent activator of p.53. Genes Dey 1997; 11: 558–570.

    Article  CAS  Google Scholar 

  123. Jayaraman L, Moorthy NC, Murthy KG, Manley JL, Bustin M, Prives C. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dey 1998; 12: 462–472.

    Article  CAS  Google Scholar 

  124. Lu X, Burbridge SA, Griffin S, Smith HM. Discordance between accumulated p53 protein levels and its transcriptional activity in response to U.V. radiation. Oncogene 1997; 13: 413–418.

    Google Scholar 

  125. Sun Y, Bian J, Wang Y, Jacobs C. Activation of p53 transcriptional activity by 1,10phenanthroline, a metal chelator and redox sensitive compound. Oncogene 1997; 14: 385–393.

    Article  PubMed  CAS  Google Scholar 

  126. Lutzker SG, Levine AJ. A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damge or cellular differentiation. Nature Med 1996; 2: 804–810.

    Article  PubMed  CAS  Google Scholar 

  127. Moll UM, Riou G, Levine AJ. Two distinct mechanisms alter p53 in breast cancer: Mutation and nuclear exclusion. Proc Natl Acad Sci USA 1992; 89: 7262–7266.

    Article  PubMed  CAS  Google Scholar 

  128. Takahashi K, Suzuki K. DNA synthesis-associated nuclear exclusion of p53 in normal human breast epithelial cells in culture. Oncogene 1994; 9: 183–188.

    PubMed  CAS  Google Scholar 

  129. Alagjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 1998; 8: 145–155.

    Article  Google Scholar 

  130. Khan QA, Vousden KH, Dipple A. Cellular response to DNA damage from a potent carcinogen involves stabilization of p53 without induction of p21waf1/cip1. Carcinogenesis 1997; 18: 2313–1218.

    Article  PubMed  CAS  Google Scholar 

  131. Khan Q, Agarwal R, Seidel A, Frank H, Vousden KH, Dipple A. Effects of optical isomers of benzo(g)chryses antidihydrodiol epoxide in passage of MCF-7 cells through the cell cycle. Mol Carcinog 1998; 23: 115–120.

    Article  PubMed  CAS  Google Scholar 

  132. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80–83.

    Article  PubMed  CAS  Google Scholar 

  133. Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, Smith S, Hill DE, Sidransky D, Kinzler KW, Vogelstein B. p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 1993; 53: 2231–2234.

    PubMed  CAS  Google Scholar 

  134. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 1993; 53: 2736–2739.

    PubMed  CAS  Google Scholar 

  135. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275: 967–969.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ryan, K.M., Vousden, K.H. (2000). Regulation of Cell Growth and Death by p53. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics