Skip to main content

Control of MAPK Signaling by Ste20- and Ste11-Like Kinases

  • Chapter
Book cover Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 282 Accesses

Abstract

Mammalian mitogen-activated protein kinases (MAPKs) were identified biochemically during the late 1980s (1,2). In 1990, mammalian p44 MAPK was cloned and referred to as extracellular signal-regulated kinase (ERK) (3). In parallel, MAPK pathways were being identified by genetic selection in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, the fly Drosophila melanogaster, and the worm Caenorhabditis elegans (4–6). Molecular cloning and functional characterization has defined a growing family of MAPKs in all eukaryotic organisms. MAPKs represent a family of serine/threonine kinases that are uniquely activated by dual phosphorylation of a threonine and tyrosine in a Thr-X-Tyr motif in the activation loop of the kinase domain, where X is an amino acid that varies among different MAPK family members. Eukaryotic cells express multiple MAPKs. For example, to date the number of MAPKs identified includes 12 in mammals, 6 in S.cerevisiae, 4 in S.pombe, 4 in C.elegans, and 3 in D. melanogaster. All the MAPKs characterized to date are members of a module composed of three protein kinases that form a sequential activation pathway (Fig. 1). The three component module consists of a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and the MAPK. When the MKKK is activated, it phosphorylates and activates a specific MKK. The MKK, in turn, phosphorylates and activates a specific MAPK. In many instances, this three component module is regulated by a MAPK kinase kinase kinase (MKKKK). As discussed below, different MAPKs are involved in regulating specific cellular functions including mitosis, differentiation, challenge by cytokines and adaptation to stress such as nutrient starvation, osmotic imbalance, irradiation, and changes in redox state of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ray LB, Sturgill TW. Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc Natl Acad Sci USA 1988; 85: 3753–3757.

    Article  PubMed  CAS  Google Scholar 

  2. Rossomando AJ, Payne DM, Weber MJ, Sturgill TW. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase Proc Natl Acad Sci USA 1989; 86: 6940–6943.

    Article  PubMed  CAS  Google Scholar 

  3. Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 1990; 249: 64–67.

    Article  PubMed  CAS  Google Scholar 

  4. Biggs WHI, Lipursky SL. Primary structure, expression, and signal-dependent tyrosine phosphorylation of a Drosophila homolog of extracellular signal-regulated kinase. Proc Natl Acad Sci USA 1994; 89: 6295–6299.

    Article  Google Scholar 

  5. Neiman AM, Stevenson BJ, Xu HP, Sprague GF, Herskowitz I, Wigler M, Marcus S. Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organsims. Mol Cell Biol 1993; 4: 107–120.

    CAS  Google Scholar 

  6. Wu J, Han M. Suppression of activated Let-60 ras protein defines a role of Caenorhabditis elegans Sur-1 MAP kinase in vulval differentiation. Genes Dev 1994; 8: 147–159.

    Article  PubMed  CAS  Google Scholar 

  7. Herskowitz I, Park HO, Sanders S, Valtz N, Peter M. Programming of cell polarity in budding yeast by endogenous and exogenous signals. Cold Spring Harbor Symposia Quant Biol 1995; 60: 717–727.

    Article  CAS  Google Scholar 

  8. Fanger GR, Gerwins P, Widmann C, Jarpe MB, Johnson GL. MEKKs, GCKs, MLKs, PAKs, TAKs, and Tpls: Upstream regulators of the c-jun amino-terminal kinases. Curr Op Gen Dev 1997; 7: 67–74.

    Article  CAS  Google Scholar 

  9. Inouye C, Dhillon N, Thonier J. Ste5 RING-H2 domain: Role in Ste4-promoted oligomerization for yeast pheromone signaling. Science 1997; 278: 103–106.

    Article  PubMed  CAS  Google Scholar 

  10. Errede B, Levin DA. A conserved kinase cascade for MAPK kinase activation in yeast. Curr Opin Cell Biol 1993; 5: 254–260.

    Article  PubMed  CAS  Google Scholar 

  11. Schultz J, Furguson B, Sprague GF. Signal transduction and growth control in yeast. Curr Opin Gen Dev 1995; 5: 31–37.

    Article  CAS  Google Scholar 

  12. Herskowitz I. MAP kinase pathways in yeast: For mating and more. Cell 1995; 80: 187–197.

    Article  PubMed  CAS  Google Scholar 

  13. Hunter T. The protein kinases of budding yeast: Six score and more. Tr. Biochem. Sci. 1997; 18–22.

    Google Scholar 

  14. Bardwell L, Cook JG, Inouye CJ, Thonier J. Signal propagation and regulation in the mating phermone response pathway of the yeast Saccharomyces cerevisiae. Dev. Biol. 1994; 166: 363–379.

    CAS  Google Scholar 

  15. Peter M, Gartner A, Horecka J, Ammerer G, Herskowitz I. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 1993; 73: 747–769.

    Article  PubMed  CAS  Google Scholar 

  16. Elion EA, Satterberg B, Kranz JE. FUS3 phosphorylates multiple components of the mating signal transduction cascade: Evidence for STE12 and FAR I. Mol Biol Cell 1993; 4.

    Google Scholar 

  17. Whiteway MS, Wu C, Leeuw T, Clark K, Fourest-Lieuvin A, Thomas DY, Leberer E. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p. Science 1995; 269: 1572–1575.

    Article  PubMed  CAS  Google Scholar 

  18. Bienstock RJ, Darden T, Wiseman R, Pedersen L, Barrett JC. Molecular modeling of the amino-terminal zinc RING domain of BRCA1. Cancer Res 1996; 56: 2539–2545.

    PubMed  CAS  Google Scholar 

  19. Borden KL, Freemont PS. The RING finger domain: A recent example of a sequence-structure family. Curr Opin Struct Biol 1996; 6: 395–401.

    Article  PubMed  CAS  Google Scholar 

  20. Feng Y, Song LY, Kincaid E, Mahanty SK, Elion EA. Functional binding between G(3 and the LIM domain of Ste5 is required for activate the MEKK Ste 11. Curr Biol 1998; 8: 267–278.

    Article  PubMed  CAS  Google Scholar 

  21. Aelst LV, Barr M, Marcus S, Polverino A, Wigler M. Complex formation between Ras and Raf and other protein kinases. Proc Nad Acad Sci USA 1993; 90: 6213–6217.

    Article  Google Scholar 

  22. Chang EC, Barr M, Wang Y, Jung V, Xu HP, Wigler MH. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 1994; 79: 131–141.

    Article  PubMed  CAS  Google Scholar 

  23. Ottilie S, Miller PJ, Johnson DI, Creasy CL, Sells MA, Bagrodia S, Forsburg SL, Chernoff J. Fission yeast pakl+ encodes a protein kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating. EMBO J 1995; 14: 5908–5919.

    PubMed  CAS  Google Scholar 

  24. Krisak L, Strich R, Winters RS, Hall JP, Mallory MJ, Kreitzer D, Tuan RS, Winter W. SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev 1994; 8: 2151–2161.

    CAS  Google Scholar 

  25. Friesen H, Lunz R, Doyle S, Segall J. Mutation of the SPS1-encoded protein kinase of Saccharomyces cerevisiae leads to defects in transcription and morphology during spore formation. Genes Dev 1994; 8: 2162–2175.

    Article  PubMed  CAS  Google Scholar 

  26. Brewster JL, Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science 1993; 259: 1760–1763.

    Article  PubMed  CAS  Google Scholar 

  27. Maeda T, Takekawa M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of a SH3-containing osmosensor. Science 1995; 269: 554–558.

    Article  PubMed  CAS  Google Scholar 

  28. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1YPD1–SSK1 “Two-component” osmosensor. Cell 1996; 86: 865–875.

    Article  PubMed  CAS  Google Scholar 

  29. Posas F, Saito H. Osmotic activation of the HOG MAPK pathway via Stel 1p MAPKKK: scaffold role of Pbs2p MAPKK. Science 1997; 276: 1702–1705.

    Article  PubMed  CAS  Google Scholar 

  30. Samejima I, Makie S, Fantes PA. Multiple modes of activation of the stress-responsive MAP kinase pathway in fission yeast. EMBO J 1997; 16: 6162–6170.

    Article  PubMed  CAS  Google Scholar 

  31. Shioazaki K, Shiozaki M, Russel P. Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wikl-Wisl-Spcl kinase cascade. Mol Biol Cell 1997; 8: 409–419.

    Google Scholar 

  32. Shieh J, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JBA. The Mcs4 response regulator coordinately controls the stress-activated Wakl-Wis1 -Sty l MAPK kinase pathway and fission yeast cell cycle. Genes Dev 1997; 11: 1008–1022.

    Article  PubMed  CAS  Google Scholar 

  33. Warbrick E, Fantes PA. The wis 1 protein kinase is a dosage-dependent regulator of mitosis in Schizosaccharomyces pombe. EMBO J 1991; 10: 4291–4299.

    CAS  Google Scholar 

  34. Irie K, Gotoh Y, Yashar BM, Errede B, Nishida E, Matsumoto K. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, funcion in the pathway mediated by protein kinase C. Mol Cell Biol 1993; 13: 3076–3083.

    PubMed  CAS  Google Scholar 

  35. Lee KS, Irie K, Gotoh Y, Watanabe Y, Araki H, Nishida E, Matsumoto K, Levin DE. A yeast mitogen-activated protein kinase homolog (Mpklp) mediates signalling by protein kinase C. Mol Cell Biol 1993; 13: 3067–3075.

    PubMed  CAS  Google Scholar 

  36. Levin DE, Bartlett-Heubusch E. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific stability defect. J Cell Biol 1992; 116: 1221–1229.

    Article  PubMed  CAS  Google Scholar 

  37. Toda T, Dhut S, Superti-Furga G, Gotoh Y, Nishida E, Sugiura R, Kuno T. The fission yeast pmk1’ gene encodes a novel mitogen-activated protein kinase homolog which regulates cell integrity and functions coordinately with the protein kinase C pathway. Mol Cell Biol 1996; 16: 6752–6764.

    PubMed  CAS  Google Scholar 

  38. Zaitsevskaya-Carter T, Cooper JA. Spml, a stress-activated MAPK kinase that regulates morphogenesis in S. pombe. EMBO J 1997; 16: 1318–1331.

    Article  CAS  Google Scholar 

  39. Cvrckova F, DeVirgilio C, Manser E, Pringle JR, Nasmyth K. Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev 1995; 1818–1830.

    Google Scholar 

  40. Benton BK, Tinkelenberg A, Gonzalez I, Cross FR. Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis. Mol Cell Biol 1997; 17: 5067–5076.

    PubMed  CAS  Google Scholar 

  41. Leberer E, Thomas DY, Whiteway M. Pheromone signalling and polarized morphogenesis in yeast. Curr Op Genet Dev 1997; 7: 59–66.

    Article  PubMed  CAS  Google Scholar 

  42. Kornfeld K. Vulval development in Caenorhabditis elegans. Trends Genet 1997; 13: 55–61.

    Article  PubMed  CAS  Google Scholar 

  43. Rubin GM. Signal transduction and the fate of the R7 photoreceptor in Drosophila. Trends Genet 1991; 7: 372–377.

    PubMed  CAS  Google Scholar 

  44. Knust E. Drosophila morphogenesis: Movements behind the edge. Curr Biol 1997; 7: R558 - R561.

    Article  PubMed  CAS  Google Scholar 

  45. Sundaram M, Han M. Control and integration of cell signaling pathways during C. elegans vulval development. BioEssays 1996; 18: 473–480.

    Article  PubMed  CAS  Google Scholar 

  46. Han M, Golden A, Han Y, Sternberg PW. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 1993; 363: 133–140.

    Article  PubMed  CAS  Google Scholar 

  47. Sundaram M, Han M. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 1995; 83: 889–901.

    Article  PubMed  CAS  Google Scholar 

  48. Kornfeld K, Horn DB, Horvitz HR. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 1995; 83: 909–913.

    Google Scholar 

  49. Downward J. KSR: A novel player in the Ras pathway. Cell 1995; 83: 831–834.

    Article  PubMed  CAS  Google Scholar 

  50. Therrien M, Michaud NR, Rubin GM, Morrison DK. KSR modulates signal propagation within the MAPK cascade. Genes Dev 1996; 10: 2684–2695.

    Article  PubMed  CAS  Google Scholar 

  51. Han J, Choi KY, Brey PT, Lee WJ. Molecular cloning and characterization of a Drosophila p38 mitogen-activated protein kinase. J Biol Chem 1998; 273: 369–374.

    Article  PubMed  CAS  Google Scholar 

  52. Nishida Y, Hata M, Ayaki T, Ryo H, Yamagata M, Shimizu K, Nishizuka Y. Proliferation of both somatic and germ cells is affected in the Drosophila mutants of raf proto-oncogene. EMBO J 1988; 7: 775–781.

    PubMed  CAS  Google Scholar 

  53. Ambrosio L, Mahowald AP, Perrimon N. Requirement of the Drosophila raf homologue for torso function. Nature 1989; 342: 288–291.

    Article  PubMed  CAS  Google Scholar 

  54. Dickson B, Sprenger F, Morrison D, Hafen E. Raf functions downstream of Rasl in the sevenless signal transduction pathway. Nature 1992; 360: 600–603.

    Article  PubMed  CAS  Google Scholar 

  55. Perrimon N. Signalling pathways initiated by receptor protein tyrosine kinases in Drosophila. Curr Biol 1994; 6: 260–266.

    CAS  Google Scholar 

  56. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997; 9: 180–186.

    Article  PubMed  CAS  Google Scholar 

  57. Boulton TG, Nye SH, Robbins DJ, Nye I, Radziejeska E, Morgenbesser SD, DePinho RA, Panayatatos N, Cobb MH, Yancopoulos GD. ERKs: A family of protein-serine/ threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991; 65: 663–675.

    Article  PubMed  CAS  Google Scholar 

  58. Cheng M, Boulton TG, Cobb MH. ERK3 is a constitutively nuclear protein kinase. J Biol Chem 1996; 271: 8951–8958.

    Article  PubMed  CAS  Google Scholar 

  59. Peng X, Angelastro JM, Greene LA. Tyrosine phosphorylation of extracellular signal-regulated protein kinase 4 in response to growth factors. J Neurochem 1996; 66: 1191 1197.

    Google Scholar 

  60. Derijard B, Hibi M, Wu I, Barrett T, Su B, Deng R, Karin M, Davis RJ. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994; 76: 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  61. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-jun kinases. Nature 1994; 369: 156160.

    Google Scholar 

  62. Kallunki T, Su B, Tsigelny I, Sluss HK, Derijard B, Moore G, Davis RJ, Karin M. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dey 1994; 8: 2996–3007.

    Article  CAS  Google Scholar 

  63. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, Davis RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 1996; 15: 2760–2770.

    PubMed  CAS  Google Scholar 

  64. Mertens S, Craxton M, Goedert M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett 1996; 383: 273–276.

    Article  PubMed  CAS  Google Scholar 

  65. Zervos AS, Faccio L, Gatto JP, Kyriakis JM, Brent R. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc Natl Acad Sci USA 1995; 92:10, 531–10, 534.

    Google Scholar 

  66. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J. Characterization of the structure and function of a new mitogen-activated protein kinase (p38ß). J Biol Chem 1996; 271:17, 920–17, 926.

    Google Scholar 

  67. Lechner N, Zahalka MA, Giot J, Moller NPH, Ullrich A. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci USA 1996; 93: 4355–4359.

    Article  PubMed  CAS  Google Scholar 

  68. Stein B, Yang MX, Young DB, Janknech R, Hunter T, Murray BW, Barbosa MS. p38–2, a novel mitogen-activated protein kinase with distinct properties. J Biol Chem 1997; 272:19, 509–19, 517.

    Google Scholar 

  69. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Dipadova F, Ulevitch RJ, Han J. Characterization of the structure and function of the fourth member of p38 group mitogenactivated protein kinases. J Biol Chem 1997; 272:30, 122–30, 128.

    Google Scholar 

  70. Zhou G, Qin BZ, Dixon JE. Components of a new human protein kinase signal transduction pathway. J Biol Chem 1995; 270:12, 665–12, 669.

    Google Scholar 

  71. Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 1996; 8: 205–215.

    Article  PubMed  CAS  Google Scholar 

  72. Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 1996; 74: 589–607.

    Article  PubMed  CAS  Google Scholar 

  73. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995; 9: 726–735.

    PubMed  CAS  Google Scholar 

  74. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ. cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993; 72: 269–278.

    Article  PubMed  CAS  Google Scholar 

  75. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR. A novel kinase cascade triggered by stress and heast shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1993; 78: 1027–1037.

    Article  Google Scholar 

  76. Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J, Kyriakis JM, Zon LI. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 1994; 372: 794–798.

    PubMed  CAS  Google Scholar 

  77. Moriguchi T, Toyoshima F, Gotoh Y, Iwamatsu A, Irie K, Mori E, Kuroyanagi N, Hagiwara M, Matsumoto K, Nishida E. Purification and identification of a major activator for p38 from osmotically shocked cells. Activation of mitogen-activated protein kinase kinase 6 by osmotic shock, tumor necrosis factor-alpha, and H2O2. J Biol Chem 1996; 271:26, 98126, 988.

    Google Scholar 

  78. Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ. Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc Natl Acad Sci USA 1997; 94: 7337–7342.

    Article  PubMed  CAS  Google Scholar 

  79. Beck EW, Huleihel M, Gunnell M, Bonner TI, Rapp UR. The complete coding sequence of the human A-raf-1 oncogene and transfornming activity of a human A-raf carrying retrovirus. Nucleic Acid Res 1987; 15: 595–609.

    Article  PubMed  CAS  Google Scholar 

  80. Jansen HW, Ruckert B, Lurz R, Bister K. Two unrelated cell-derived sequences in the genome of avian leukemia and carcinoma inducing retrovirus MH2. EMBO J 1983; 2: 1969 1975.

    Google Scholar 

  81. Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271:20, 608–20, 616.

    Google Scholar 

  82. Wood KW, Qi H, D’Arcangelo G, Armstrong RC, Roberts TM, Halegoua S. The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: A potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc Natl Acad Sci USA 1993; 90: 5016–5020.

    Article  PubMed  CAS  Google Scholar 

  83. Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation of cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21d’P’. Mol Cell Biol 1997; 17: 5598–5611.

    PubMed  CAS  Google Scholar 

  84. Sewing A, Wiseman B, Llyod AC, Land H. High-intensity Raf signal causes cell cycle arrest mediated by p21C’0. Mol Cell Biol 1997; 17: 5588–5597.

    PubMed  CAS  Google Scholar 

  85. Kolch W, Heidecker G, Lloyd P, Rapp UR. Raf-1 protein kinase is required for growth of NIH/3T3 cells. Nature 1991; 349: 426–428.

    Article  PubMed  CAS  Google Scholar 

  86. Jelinek T, Dent P, Sturgill TW, Weber MJ. Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation. Mol Cell Biol 1996; 16: 1027–1034.

    PubMed  CAS  Google Scholar 

  87. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ. Differential regulation of Raf-1, A-Raf and B-Raf by oncogenic Ras and tyrosine kinases. J Biol Chem 1997; 272: 4378–4383.

    Article  PubMed  CAS  Google Scholar 

  88. Howe LR, Levers SJ, Gomez N, Nakielny S, Cohen P, Marshall CJ. Activation of the MAP kinase pathway by the protein kinase raf. Cell 1992; 71: 335–342.

    Article  PubMed  CAS  Google Scholar 

  89. Marquardt B, Frith D, Stabel S. Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: Reconstitution of the signalling pathway in vitro. Oncogene 1994; 9: 3213–3218.

    CAS  Google Scholar 

  90. Hancock JF, Cadwallader K, Paterson H, Marshall CJ. CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 1991; 10: 4033–4039.

    PubMed  CAS  Google Scholar 

  91. Leevers SJ, Paterson HF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targetting Raf to the plasma membrane. Nature 1994; 369: 411–414.

    Article  PubMed  CAS  Google Scholar 

  92. Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJ. cAMP activates MAP kinase and Elk-1 through a B-Raf-and Rapl-dependent pathway. Cell 1997; 89: 73–82.

    Article  PubMed  CAS  Google Scholar 

  93. Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R. Binding of 14–3–3 proteins to the protein kinase Raf and effects on its activation. Science 1994; 265: 1713 – 1715.

    Article  PubMed  CAS  Google Scholar 

  94. Fu H, Xia K, Pallas DC, Cui C, Conroy K, Narsimhan RP, Mamon H, Collier RJ, Roberts TM. Interaction of the protein kinase Raf–1 with 14–3–3 proteins. Science 1994; 266: 126128.

    Google Scholar 

  95. Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14–3–3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 1996; 84: 889 – 897.

    Article  PubMed  CAS  Google Scholar 

  96. Yaffe MB, Rittinger K, Vollinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. The structural basis for 14–3–3: Phosphopeptide binding specificity. Cell 1997; 91: 961 – 971.

    Article  PubMed  CAS  Google Scholar 

  97. Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT. Activation of Raf–1 by 14–3–3 proteins. Nature 1994; 371: 612 – 614.

    Article  PubMed  CAS  Google Scholar 

  98. Irie K, Gotoh Y, Yashar BM, Errede B, Nishida E, Matsumoto K. Stimulatory effects of yeast and mammalian 14–3–3 proteins on the Raf protein kinase. Science 1994; 265: 1716 1719.

    Google Scholar 

  99. Clark GJ, Drugan JK, Rossman KL, Carpenter JW, Rogers–Graham K, Fu H, Der CJ, Campbell SL. 14–3–3Ç negatively regulates Raf–1 activity by interactions with the Raf–1 cysteine–rich domain. J Biol Chem 1997; 272:20, 990–20, 993.

    Google Scholar 

  100. Morrison DK, Cutler RE. The complexity of Raf-1 regulation. Curr Op Cell Biol 1997; 9: 174–179.

    Article  PubMed  CAS  Google Scholar 

  101. Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, Aitken A, Gamblin SJ. Structure of a 14–3–3 protein and implications for coordination of multiple signalling pathways. Nature 1995; 376: 188 – 191.

    Article  PubMed  CAS  Google Scholar 

  102. Catling AD, Reuter CW, Cox ME, Parsons SJ, Weber MJ. Partial purification of a mitogenactivated protein kinase kinase activator from bovine brain. Identification as B-Raf or a B-Raf-associated activity. J Biol Chem 1994; 269:30, 014–30, 021.

    Google Scholar 

  103. Lerosey I, Pizon B, Tavitian A, Gunzburg Jd. The cAMP-dependent protein kinase phosphorylates the rapi protein in vitro as well as in intact fibroblasts, but not the closely related rap2 protein. Bichem Biophys Res Comm 1991; 175: 430–436.

    Article  CAS  Google Scholar 

  104. Bogoyevitch MA, Marshall CJ, Sugden PH. Hypertrophic agonists stimulate the activities of the protein kinases c-Raf and A-Raf in cultured ventricular myocytes. J Biol Chem 1995; 270:26, 303–26, 310.

    Google Scholar 

  105. Posada J, Yew N, Ahn NG, Woude, G. F. V. and Cooper JA. Mos stimulates MAPK kinase in Xenopus Oocytes and activates a MAPK kinase kinase in vitro. Mol Cell Biol 1993; 13: 2546–2553.

    PubMed  CAS  Google Scholar 

  106. Resing KA, Mansour SJ, Hermann AS, Johnson RS, Candia JM, Fukasawa K, Woude, G. F. V. and Ahn NG. Determination of v-Mos-catalyzed phosphorylation sites and autophosphorylation sites on MAPK kinase kinase by ESI/MS. Biochemistry 1995; 34: 2610–2620.

    Article  PubMed  CAS  Google Scholar 

  107. Gebauer F, Richter JD. Synthesis and function of Mos: The control switch of vertebrate oocyte meiosis. BioEssays 1997; 19: 23–28.

    Article  PubMed  CAS  Google Scholar 

  108. Sagata N. What does Mos do in oocytes and somatic cells? BioEssays 1997; 19: 13–21.

    Article  PubMed  CAS  Google Scholar 

  109. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL. A divergence in the MAP kinase regulatory network defined by MEK kinase and raf. Science 260: 315–319.

    Google Scholar 

  110. Blank JL, Gerwins P, Elliott EM, Sather S, Johnson GL. Molecular cloning of mitogenactivated protein/ERK kinases (MEKK) 2 and 3. J Biol Chem 1996; 271: 5361–5368.

    Article  PubMed  CAS  Google Scholar 

  111. Gerwins P, Blank JL, Johnson GL. Cloning of a novel mitogen-activated protein kinase kinase kinase MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J Biol Chem 1997; 272: 8288–8295.

    Article  PubMed  CAS  Google Scholar 

  112. Fanger GR, Johnson NL, Johnson GL. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J 1997; 16: 4961–4972.

    Article  PubMed  CAS  Google Scholar 

  113. Russell M, Lange-Carter CA, Johnson GL. Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J Biol Chem 1995; 270:11, 757–11, 760.

    Google Scholar 

  114. Lange-Carter CA, Johnson GL. Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 1994; 265: 1458–1461.

    Article  PubMed  CAS  Google Scholar 

  115. Fanger GR, Widmann C, Porter AC, Sather S, Johnson GL, Vaillancourt RR. 14–3–3 proteins interact with specific MEK kinases. J Biol Chem 1998; 273: 3476 – 3483.

    Article  PubMed  CAS  Google Scholar 

  116. Yujiri T, Sather S, Johnson GL. Targeted disruption of the MEK kinase 1 gene defines its function as a dual MAPK kinase kinase for the selective activation of MAPKJnk and MAPKerk in response to specific stress stimuli and the mitogen lysophosphatidic acid. submitted

    Google Scholar 

  117. Cardone MH, Salvesen GS, Widmann C, Johnson GL, Frisch SM. The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 1997; 90: 315–323.

    Article  PubMed  CAS  Google Scholar 

  118. Widmann C, Gerwins P, Johnson NL, Jarpe MB, Johnson GL. MEKK1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis. Mol Cell Biol 1998; 18: 2416–2429.

    PubMed  CAS  Google Scholar 

  119. Faris M, Kokot N, Latinis K, Kasibhatla S, Green DR, Koretzky GA, Nel A. The c-Jun N-terminal kinase cascade plays a role in stress-induced apoptosis in Jurkat cells by up-regulating Fas ligand expression. J Immunol 1998; 160: 134–144.

    PubMed  CAS  Google Scholar 

  120. Takekawa M, Posas F, Saito H. A human homolog of yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. EMBO J 1997; 16: 4973–4982.

    Article  PubMed  CAS  Google Scholar 

  121. Wang XS, Diener K, Jannuzzi D, Trollinger D, Tan T, Lichenstein H, Zukowsi M, Yao Z. Molecular cloning and characterization of a novel protein kinase with a catalytic domain homologous to mitogen-activated protein kinase kinase kinase. J Biol Chem 1996; 271:31, 607–31, 611.

    Google Scholar 

  122. Ichijo H, Nishida E, Irie K, Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyanzono K, Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 singaling pathways. Science 1997; 275: 90–94.

    Article  PubMed  CAS  Google Scholar 

  123. Dorow DS, Devereux L, Dietzsch E, Kretser T. Identification of a new family of human epithelial protein kinases containing two leucin/isoleucine-zipper domains. Eur J Biochem 1993; 213: 701–710.

    Article  PubMed  CAS  Google Scholar 

  124. Ezoe K, Lee S, Strunk KM, Spritz RA. PTK1, a novel protein kinase required for proliferation of human melanocytes. Oncogene 1994; 9: 935–938.

    PubMed  CAS  Google Scholar 

  125. Gallo KA, Mark MR, Scadden DT, Wang Z, Gu Q, Godowski PJ. Identification and characterization of SPRK, a novel src-homology 3 domain-containing proline-rich kinase with serine/threonine kinase activity. J Biol Chem 1994; 269:15, 092–15, 100.

    Google Scholar 

  126. Holzman LB, Merritt SE, Fan B. Identification, molecular cloning, and characterization of dual leucine zipper bearing kinase. J Biol Chem 1994; 269:30, 808–30, 817.

    Google Scholar 

  127. Reddy UR, Pleasure D. Cloning of a novel putative protein kinase having a leucine zipper domain from human brain. Biochem Biophys Res Comm 1994; 202: 613–620.

    Article  PubMed  CAS  Google Scholar 

  128. Katoh M, Hirai M, Sugimura T, Terada M. Cloning and characterization of MST, a novel (putative) serine/threonine kinase with SH3 domain. Oncogene 1995; 10: 1447–1451.

    PubMed  CAS  Google Scholar 

  129. Hirai S, Izawa M, Osada S, Spyrou G, Olmo S. Activation of the JNK pathway by distantly related protein kinases, MEKK and MUK. Oncogene 1996; 12: 641–650.

    PubMed  CAS  Google Scholar 

  130. Graves JD, Gotoh Y, Drayes KE, Ambrose D, Han, D. K. M., Wright M, Chernoff J, Clark EA, Krebs EG. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mstl. EMBO J 1998; 17: 2224–2234.

    Article  PubMed  CAS  Google Scholar 

  131. Teramoto H, Coso OA, Miyata H, Igishi T, Miki T, Gutkind JS. Signaling from the small GTP-binding proteins Racl and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. J Biol Chem 1996; 271:27, 225–27, 228.

    Google Scholar 

  132. Rana A, Gallo K, Godowski P, Hirai S, Olmo S, Zon L, Kyriakis JM, Avruch J. The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J Biol Chem 1996; 271:19, 025–19, 028.

    Google Scholar 

  133. Burbelo PD, Drechsel D, Hall A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem 1995; 270:29, 071–29, 074.

    Google Scholar 

  134. Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenstrom P, Bridges P, Chant J, Hall A. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 1996; 87: 519–529.

    Article  PubMed  CAS  Google Scholar 

  135. Yamaguchi K, Shirakabe K, Shibuya H, Trie K, Oishi I, Ueno N, Taniguch T, Nishida E, Matsumoto K. Identification of a member of the MAPKKK family as a potiential mediator of TGF-(3 signal transduction. Science 1995; 270: 2008–2011.

    Article  PubMed  CAS  Google Scholar 

  136. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, trie K, Nishida E, Matsumoto K. TAB1: An activator of the TAK1 MAPKKK in TGF-f3 signal transduction. Science 1996; 272: 1179–1182.

    Article  PubMed  CAS  Google Scholar 

  137. Patriotis C, Makris A, Chernoff J, Tsichlis PN. Tpl-2 acts in conert with Ras and Raf-1 to activate mitogen-activated protein kinase. Proc Natl Acad Sci USA 1994; 91: 9755–9759.

    Article  PubMed  CAS  Google Scholar 

  138. Miyoshi J, Higashi T, Mukai H, Ohuchi T, Kakunaga T. Structure and transforming potential of the human cot oncogene encoding a putative protein kinase. Mol Cell Biol 1991; 11: 4088–4096.

    PubMed  CAS  Google Scholar 

  139. Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC. Activation of MEK-1 and SEK-1 by Tpl-2 protooncoprotein, a novel MAP kinase kinase kinase. EMBO J 1996; 15: 817–826.

    PubMed  CAS  Google Scholar 

  140. Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM. KSR, a novel protein kinase required for RAS signal transduction. Cell 1995; 83: 879–888.

    Article  PubMed  CAS  Google Scholar 

  141. Zhang Y, Yao B, Delikat S, Bayoumy S, Lichenstein H, Kolesnick R. Kinase suppressor of Ras is Ceramide-Activated Protein Kinase. Cell 1997; 89: 63–72.

    Article  PubMed  CAS  Google Scholar 

  142. Denouel-Galy A, Douville EM, Warne PH, Papin C, Laugier D, Calothy G, Downward J, Eychene A. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol 1997; 8: 46–55.

    Article  Google Scholar 

  143. Yu W, Fantl WJ, Harrowe G, Williams LT. Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol 1997; 8: 56–64.

    Article  Google Scholar 

  144. Manser E, Leung T, Salihuddin H, Zhao Z, Lim L. A brain serine/threonine protein kinase acivated by Cdc42 and Racl. Nature 1994; 367: 40–46.

    Article  PubMed  CAS  Google Scholar 

  145. Teo M, Manser E, Lim L. Identification and molecular cloning of a p21°a`42na`’-activated serine/threonine kinase that is rapidly activated by thrombin in platelets. J Biol Chem 1995; 270:26, 690–26, 697.

    Google Scholar 

  146. Martin GA, Bollag G, McCormick F, Aboe A. A novel serine kinase activated by rac1/ CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J 1995; 14: 1970–1978.

    PubMed  CAS  Google Scholar 

  147. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM. Rho family GTPases regulated p38 mitogen-activated protein kinase through the downstream mediator Pakl. J Biol Chem 1995; 270:23, 934–2, 3936.

    Google Scholar 

  148. Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam LA, Knaus UG. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem 1996; 271:25, 746–25, 749.

    Google Scholar 

  149. Tsakiridis T, Taha C, Grinstein S, Klip A. Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J Biol Chem 1996; 271:19, 664–19, 667.

    Google Scholar 

  150. Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J. Human p21-activated kianse (Pakl) regulates actin organization in mammalian cells. Curr Biol 1997; 7: 202–210.

    Article  PubMed  CAS  Google Scholar 

  151. Manser E, Huang H, Loo T, Chen X, Dong J, Leung T, Lim L. Expression of constitutively active a-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 1997; 17: 1129–1143.

    PubMed  CAS  Google Scholar 

  152. Daniels RH, Hall PS, Bokoch GM. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J 1998; 17: 754–764.

    Article  PubMed  CAS  Google Scholar 

  153. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997; 276: 1571–1574.

    Article  PubMed  CAS  Google Scholar 

  154. Westwick JK, Lambert QT, Clark GJ, Symons M, Aelst LV, Pestell RG, Der CJ. Rac regulation of transformation, gene expression, and actin organization by multiple, PAKindependent pathways. Mol Cell Biol 1997; 17: 1324–1335.

    Google Scholar 

  155. Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J, Field J. Kinase-deficient Pakl mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 1997; 17: 4454–4464.

    PubMed  CAS  Google Scholar 

  156. Katz P, Whalen G, Kehrl JH. Differential expression of a novel protein kinase in human B lymphocytes. J Biol Chem 1994; 269:16, 802–16, 809.

    Google Scholar 

  157. Pombo CM, Kehrl JH, Sanchez I, Katz P, Avruch J, Zon LI, Woodgett JR, Force T, Kyriakis JM. Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature 1995; 377: 750–754.

    Article  PubMed  CAS  Google Scholar 

  158. Hu MC, Qiu WR, Wang X, Meyer CF, Tan T. Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes Dey 1996; 10: 2251 2264.

    Google Scholar 

  159. Diener K, Wang XS, Chen C, Meyer CF, Keesler G, Zukowski M, Tan T, Yao Z. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc Natl Acad Sci USA 1997; 94: 9687–9692.

    Article  PubMed  CAS  Google Scholar 

  160. Tung RM, Blenis J. A novel human SPS1/STE20 homologue, KHS, activates Jun N-terminal kinase. Oncogene 1997; 14: 653–659.

    Article  PubMed  CAS  Google Scholar 

  161. Su Y, Han J, Xu S, Cobb M, Skolnik EY. NIK is a new Ste20-related kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved regulatory domain. EMBO J 1997; 16: 1279–1290.

    Article  PubMed  CAS  Google Scholar 

  162. Taylor LK, Wang HR, Erickson RL. Newly identified stress-responsive protein kinases, Krs-1 and Krs-2. Proc Natl Acad Sci USA 1996; 93: 10099–10104.

    Article  PubMed  CAS  Google Scholar 

  163. Schinkmann K, Blenis J. Cloning and characterization of a human STE20-like protein kinase with unusual cofactor requirements. J Biol Chem 1997; 272:28, 695–28, 703.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fanger, G.R., Schlesinger, T.K., Johnson, G.L. (2000). Control of MAPK Signaling by Ste20- and Ste11-Like Kinases. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics