Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 287 Accesses

Abstract

Integrins fulfill a multitude of functions in embryonic cell migration and tissue organization, inflammation, wound repair, tumor cell invasion, and a variety of other biological and pathological processes. Over the past decade, it has become clear that integrins play central roles not only in adhesion and cell migration, but also in the regulation of growth, gene expression, and differentiation. Concepts of integrins have evolved from considering these receptors as simple cell surface binding moieties for extracellular adhesion molecules to the realization that they also serve complex roles as activators or modulators of signal transduction. As summarized in Fig. 1, integrins can stimulate a surprising range of signal transduction pathways. Integrin—ligand interactions trigger or modulate a variety of kinases, lipid signaling pathways, ion fluxes, and gene transcription events, as well as helping to organize the cytoskeleton. This broad repertoire of responses is consistent with the current view that integrins are central mediators of information transfer between cells and the extracellular matrix, and sometimes other cells, both at the physical/structural level and at the level of signal transduction. Research on integrin signaling has been expanding rapidly (a few of the many recent reviews in the area include refs. 1–9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hynes RO. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell, 1992; 69: 11–25.

    Article  PubMed  CAS  Google Scholar 

  2. Clark EA, Brugge JS. Integrins and signal transduction pathways: The road taken. Science 1995; 268: 233–239.

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz MA, Schaller MD, Ginsberg MH. Integrins-emerging paradigms of signal-transduction. Annu Rev Cell Dey Biol 1995; 11: 549–599.

    Article  CAS  Google Scholar 

  4. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84:345–357.

    Google Scholar 

  5. Ruoslahti E, and Obrink B. Common principles in cell adhesion. Exp Cell Res 1996; 227: 1–11.

    Article  PubMed  CAS  Google Scholar 

  6. Humphries MJ. Integrin activation: The link between ligand binding and signal transduction. Curr Opin Cell Biol 1996; 8: 632–640.

    Article  PubMed  CAS  Google Scholar 

  7. Lafrenie RM, Yamada KM. Integrin-dependent signal transduction.J Cell Biochem 1996;61:543–553.

    Google Scholar 

  8. Giancotti FG. Integrin signaling: Specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 1997; 9: 691–700.

    Article  PubMed  CAS  Google Scholar 

  9. Yamada KM, ed. Mini-review series: integrin signaling. Matrix Biol 1997; 16:137–200.

    Google Scholar 

  10. Sastry SK, Horwitz AF. Integrin cytoplasmic domains: Mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling. Curr Opin Cell Biol 1993; 5: 819–831.

    Article  PubMed  CAS  Google Scholar 

  11. LaFlamme SE, Homan SM, Bodeau AL, Mastrangelo AM. Integrin cytoplasmic domains as connectors to the cell’s signal transduction apparatus. Matrix Biol 1997; 16: 153–163.

    Article  PubMed  CAS  Google Scholar 

  12. Hynes RO. Genetic analyses of cell-matrix interactions in development. Curr Opin Genet Dey 1994; 4: 569–574.

    Article  CAS  Google Scholar 

  13. Beauvais-Jouneau A, Thiery JP. Multiple roles for integrins during development. Biol Cell 1997; 89: 5–11.

    Article  Google Scholar 

  14. Yamada KM. Adhesive recognition sequences. J Biol Chem 1991; 266:12, 809–12, 812.

    Google Scholar 

  15. Ruoslahti E. RGD and other recognition sequences for integrins. Ann Rev Cell Dey Biol 1996; 12: 697–715.

    Article  CAS  Google Scholar 

  16. Eble JA, Golbik R, Mann K, Kuhn K. The alpha 1 beta 1 integrin recognition site of the basement membrane collagen molecule [alpha 1(IV)]2 alpha 2(IV). EMBO J 1993; 12: 4795–4802.

    PubMed  CAS  Google Scholar 

  17. Aota S, Nomizu M, Yamada KM. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 1994; 269:24, 75624, 761.

    Google Scholar 

  18. Leahy DJ, Aukhil I, Erickson HP. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 1996; 84: 155164.

    Google Scholar 

  19. Copie V, Tornita Y, Akiyama SK, Aota S, Yamada KM, Venable RM, Pastor RW, Krueger S, Torchia DA. Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: Comparison with the human fibronectin crystal structure. J Mol Biol 1998; 277: 663–682.

    Article  PubMed  CAS  Google Scholar 

  20. Mould AP, Askari JA, Aota Si, Yamada KM, Irie A, Takada Y, Mardon HJ, Humphries MJ. Defining the topology of integrin alphas betal-fibronectin interactions using inhibitory anti-alphas and anti-betal monoclonal antibodies. Evidence that the synergy sequence of fibronectin is recognized by the amino-terminal repeats of the alphas subunit. J Biol Chem 1997; 272:17, 283–17, 292.

    Google Scholar 

  21. Akiyama SK, Yamada SS, Yamada KM, LaFlamme SE. Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J Biol Chem 1994; 269:15, 961–15, 964.

    Google Scholar 

  22. Lukashev ME, Sheppard D, Pytela R. Disruption of integrin function and induction of tyrosine phosphorylation by the autonomously expressed beta 1 integrin cytoplasmic domain. J Biol Chem 1994; 269:18, 311–18, 314.

    Google Scholar 

  23. Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L, Aukhil I, Juliano RL. Integrinmediated activation of MAP kinase is independent of FAK: Evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol 1997; 136: 1385–1395.

    Article  PubMed  CAS  Google Scholar 

  24. LaFlamme SE, Akiyama SK, Yamada KM. Regulation of fibronectin receptor distribution. J Cell Biol 1992; 117: 437–447.

    Article  PubMed  CAS  Google Scholar 

  25. Hemler ME, Kassner PD, Chan BM. Functional roles for integrin alpha subunit cytoplasmic domains. Cold Spring Harbor Symp Quant Biol 1992; 57: 213–220.

    Article  PubMed  CAS  Google Scholar 

  26. Sastry SK, Lakonishok M, Thomas DA, Muschler J, Horwitz AF. Integrin alpha subunit ratios, cytoplasmic domains, and growth factor synergy regulate muscle proliferation and differentiation. J Cell Biol 1996; 133: 169–184.

    Article  PubMed  CAS  Google Scholar 

  27. Fornaro M, Languino LR. Alternatively spliced variants: A new view of the integrin cytoplasmic domain. Matrix Biol 1997; 16: 185–193.

    Article  PubMed  CAS  Google Scholar 

  28. Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: The platelet paradigm. Blood 1998; 91: 2645–2657.

    PubMed  CAS  Google Scholar 

  29. Marcantonio EE, David FS. Integrin receptor signaling: The propagation of an alpha-helix model. Matrix Biol 1997; 16: 179–184.

    Article  PubMed  CAS  Google Scholar 

  30. Bazzoni G, Hemler ME. Are changes in integrin affinity and conformation overemphasized? Trends Biochem Sci 1998; 23: 30–34.

    Article  PubMed  CAS  Google Scholar 

  31. Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 1995; 131: 791–805.

    Article  PubMed  CAS  Google Scholar 

  32. Chicurel ME, Singer RH, Meyer CJ, Ingber DE. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 1998; 392: 730–733.

    Article  PubMed  CAS  Google Scholar 

  33. Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH, Brugge JS. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem 1994; 269:14, 738–14, 745.

    Google Scholar 

  34. Schlaepfer DD, Jones KC, Hunter T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: Summation of both c-Src-and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 1998; 18: 2571 2585.

    Google Scholar 

  35. Miyamoto S, Akiyama SK, Yamada KM. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 1995; 267: 883–885.

    Article  PubMed  CAS  Google Scholar 

  36. Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 1995; 6: 1349–1365.

    PubMed  CAS  Google Scholar 

  37. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 1996; 135: 1633–1642.

    Article  PubMed  CAS  Google Scholar 

  38. Yamada KM, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 1995; 7: 681–689.

    Article  PubMed  CAS  Google Scholar 

  39. Burridge K, Turner CE, Romer LH. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly. J Cell Biol 1992; 119: 893–903.

    Article  PubMed  CAS  Google Scholar 

  40. Defilippi P, Venturino M, Gulino D, Duperray A, Boquet P, Fiorentini C, Volpe G, Palmieri M, Silengo L, Tarone G. Dissection of pathways implicated in integrin-mediated actin cytoskeleton assembly. Involvement of protein kinase C, Rho GTPase, and tyrosine phosphorylation. J Biol Chem 1997; 272:21, 726–21, 734.

    Google Scholar 

  41. Yamada KM, Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 1997; 9: 76–85.

    Article  PubMed  CAS  Google Scholar 

  42. Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin alphalIb beta3. J Cell Biol 1998; 141: 1685–1695.

    Article  PubMed  CAS  Google Scholar 

  43. Lash JW, Linask KK, Yamada KM. Synthetic peptides that mimic the adhesive recognition signal of fibronectin: Differential effects on cell-cell and cell-substratum adhesion in embryonic chick cells. Dey Biol 1987; 123: 411–420.

    Article  CAS  Google Scholar 

  44. Monier-Gavelle F, Duband JL. Cross talk between adhesion molecules: Control of Ncadherin activity by intracellular signals elicited by beta1 and beta3 integrins in migrating neural crest cells. J Cell Biol 1997; 137: 1663–1681.

    Article  PubMed  CAS  Google Scholar 

  45. Schwartz MA, Brown EJ, Fazeli B. A 50-kDa integrin-associated protein is required for integrin-regulated calcium entry in endothelial cells. J Biol Chem 1993; 268:19, 93119, 934.

    Google Scholar 

  46. Ticchioni M, Deckert M, Mary F, Bernard G, Brown EJ, Bernard A. Integrin-associated protein (CD47) is a comitogenic molecule on CD3-activated human T cells. J Immunol 1997; 158: 677–684.

    PubMed  CAS  Google Scholar 

  47. Yebra M, Parry GCN, Stromblad S, Mackman N, Rosenberg S, Mueller BM, Cheresh DA. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alpha v betas-directed cell migration. J Biol Chem 1996; 271:29, 393–29, 399.

    Google Scholar 

  48. Planus E, Barlovatz-Meimon G, Rogers RA, Bonavaud S, Ingber DE, Wang N. Binding of urokinase to plasminogen activator inhibitor type-1 mediates cell adhesion and spreading. J Cell Sci 1997; 110: 1091–1098.

    PubMed  CAS  Google Scholar 

  49. Berditchevski F, Zutter MM, Hemler ME. Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol Biol Cell 1996; 7: 193–207.

    PubMed  CAS  Google Scholar 

  50. Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME. Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol 1996; 157: 2039–2047.

    PubMed  CAS  Google Scholar 

  51. Nagel W, Zeitlmann L, Schilcher P, Geiger C, Kolanus J, Kolanus W. Phosphoinositide 3-OH kinase activates the beta2 integrin adhesion pathway and induces membrane recruitment of cytohesin-1. J Biol Chem 1998; 273:14, 853–14, 861.

    Google Scholar 

  52. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 1996; 379: 91–96.

    Article  PubMed  CAS  Google Scholar 

  53. Wu C, Keightley SY, Leung-Hagesteijn C, Radeva G, Coppolino M, Goicoechea S, McDonald JA, Dedhar S. Integrin-linked protein kinase regulates fibronectin matrix assembly, E-cadherin expression, and tumorigenicity. J Biol Chem 1998; 273: 528–536.

    Article  PubMed  CAS  Google Scholar 

  54. Schaller MD, Otey CA, Hildebrand JD, Parsons JT. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 1995; 130: 1181 1187.

    Google Scholar 

  55. Chang DD, Wong C, Smith H, Liu J. ICAP-1, a novel betal integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of betal integrin. J Cell Biol 1997; 138: 1149–1157.

    Article  PubMed  CAS  Google Scholar 

  56. Sharma CP, Ezzell RM, Arnaout MA. Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18. J Immunol 1995; 154: 3461–3470.

    PubMed  CAS  Google Scholar 

  57. Shattil SJ, O’Toole T, Eigenthaler M, Thon V, Williams M, Babior BM, Ginsberg MH. Beta 3-endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin beta 3 subunit. J Cell Biol 1995; 131: 807–816.

    Article  PubMed  CAS  Google Scholar 

  58. Schaapveld RQJ, Borradori L, Geerts D, van Leusden MR, Kuikman I, Nievers MG, Niessen CM, Steenbergen RDM, Snijders PJF, Sonnenberg A. Hemidesmosome formation is initiated by the beta4 integrin subunit, requires complex formation of beta4 and HD1/ Plectin, and involves a direct interaction between beta4 and the bullous pemphigoid antigen 180. J Cell Biol 1998; 142: 271–284.

    Article  PubMed  CAS  Google Scholar 

  59. Naik UP, Patel PM, Parise LV. Identification of a novel calcium-binding protein that interacts with the integrin alphallb cytoplasmic domain. J Biol Chem 1997; 272: 4651–4654.

    Article  PubMed  CAS  Google Scholar 

  60. Schaffner-Reckinger E, Gouon V, Melchior C, Plancon S, Kieffer N. Distinct involvement of beta3 integrin cytoplasmic domain tyrosine residues 747 and 759 in integrin-mediated cytoskeletal assembly and phosphotyrosine signaling. J Biol Chem 1998; 273:12, 62312, 632.

    Google Scholar 

  61. Jenkins AL, Nannizzi-Alaimo L, Silver D, Sellers JR, Ginsberg MH, Law DA, Phillips DR. Tyrosine phosphorylation of the beta3 cytoplasmic domain mediates integrin-cytoskeletal interactions. J Biol Chem 1998; 273:13, 878–13, 885.

    Google Scholar 

  62. Richardson A, Parsons JT. Signal transduction through integrins: A central role for focal adhesion kinase? BioEssays 1995; 17: 229–236.

    Article  PubMed  CAS  Google Scholar 

  63. Guan JL. Focal adhesion kinase in integrin signaling. Matrix Biol 1997; 16: 195–200.

    Article  PubMed  CAS  Google Scholar 

  64. Hanks SK, Polte TR. Signaling through focal adhesion kinase BioEssays 1997; 19: 137–145.

    Article  PubMed  CAS  Google Scholar 

  65. Guan JL, Shalloway D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 1992; 358: 690–692.

    Article  PubMed  CAS  Google Scholar 

  66. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995; 377: 539–544.

    Article  PubMed  CAS  Google Scholar 

  67. Cary LA, Chang JF, Guan JL. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 1996; 109: 1787–1794.

    PubMed  CAS  Google Scholar 

  68. Gilmore AP, Romer LH Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol Biol Cell 1996; 7: 1209–1224.

    PubMed  CAS  Google Scholar 

  69. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993; 119: 1079–1091.

    PubMed  CAS  Google Scholar 

  70. Schlaepfer DD, Hunter T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 1996; 16: 5623–5633.

    PubMed  CAS  Google Scholar 

  71. Schlaepfer DD, Broome MA, Hunter T. Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: Involvement of the Grb2, p130cas, and Nck adaptor proteins. Mol Cell Biol 1997; 17: 1702–1713.

    PubMed  CAS  Google Scholar 

  72. Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994; 372: 786–791

    PubMed  CAS  Google Scholar 

  73. Schlaepfer DD, Hunter T. Focal adhesion kinase overexpression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J Biol Chem 1997; 272:13, 189–13, 195.

    Google Scholar 

  74. Clark EA, Hynes RO. Ras activation is necessary for integrin-mediated activation of extracellular signal-regulated kinase 2 and cytosolic phospholipase A2 but not for cytoskeletal organization. J Biol Chem 1996; 271:14, 814–14, 818.

    Google Scholar 

  75. Chen Q, Lin TH, Der CJ, Juliano RL. Integrin-mediated activation of mitogen-activated protein (MAP) or extracellular signal-related kinase kinase (MEK) and kinase is independent of Ras. J Biol Chem 1996; 271:18, 122–18, 127.

    Google Scholar 

  76. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 1996; 87: 733–743.

    Article  PubMed  CAS  Google Scholar 

  77. Wary KK, Mariotti A, Zurzolo C, Giancotti FG. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 1998; 94: 625–634.

    Article  PubMed  CAS  Google Scholar 

  78. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf- 1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 1997; 17: 4406–4418.

    PubMed  CAS  Google Scholar 

  79. Cary LA, Han DC, Polte TR, Hanks SK, Guan JL. Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 1998; 140: 211–221.

    Article  PubMed  CAS  Google Scholar 

  80. Jockusch BM, Bubeck P, Giehl K, Kroemker M, Moschner J, Rothkegel M, Rudiger M, Schluter K, Stanke G, Winkler J. The molecular architecture of focal adhesions. Annu Rev Cell Dev Biol 1995; 11: 379–416.

    Article  PubMed  CAS  Google Scholar 

  81. Toker A. The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr Opin Cell Biol 1998; 10: 254–261.

    Article  PubMed  CAS  Google Scholar 

  82. Hotchin NA, Hall A. Regulation of the actin cytoskeleton, integrins and cell growth by the Rho family of small GTPases. Cancer Sury 1996; 27: 311–322.

    CAS  Google Scholar 

  83. McNamee HP, Ingber DE, Schwartz MA. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J Cell Biol 1993; 121: 673–678.

    Article  PubMed  CAS  Google Scholar 

  84. Clark EA, King WG, Brugge JS, Symons M, Hynes RO. Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol 1998; 142: 573–586.

    Article  PubMed  CAS  Google Scholar 

  85. Cybulsky AV, Carbonetto S, Cyr MD, McTavish AJ, Huang Q. Extracellular matrix-stimulated phospholipase activation is mediated by beta 1-integrin. Am J Physiol 1993; 264: C323–32.

    PubMed  CAS  Google Scholar 

  86. Kanner SB, Grosmaire LS, Ledbetter JA, Damle NK. Beta 2-integrin LFA-1 signaling through phospholipase C-gamma 1 activation. Proc Natl Acad Sci USA 1993; 90: 70997103.

    Google Scholar 

  87. Chun JS, Ha MJ, Jacobson BS. Differential translocation of protein kinase C epsilon during HeLa cell adhesion to a gelatin substratum. J Biol Chem 1996; 271:13, 00813, 012.

    Google Scholar 

  88. Auer KL, Jacobson BS. Beta 1 integrins signal lipid second messengers required during cell adhesion. Mol Biol Cell 1995; 6: 1305–1313.

    PubMed  CAS  Google Scholar 

  89. Vuori K, Ruoslahti E. Activation of protein kinase C precedes alpha 5 beta 1 integrinmediated cell spreading on fibronectin. J Biol Chem 1993; 268:21, 459–21, 462.

    Google Scholar 

  90. Lewis JM, Cheresh DA, Schwartz MA. Protein kinase C regulates alpha v beta 5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J Cell Biol 1996; 134: 1323–1332.

    Article  PubMed  CAS  Google Scholar 

  91. Schwartz MA, Lechene C, Ingber DE. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc Natl Acad Sci USA 1991; 88: 7849–7853.

    Article  PubMed  CAS  Google Scholar 

  92. Schwartz MA, Ingber DE, Lawrence M, Springer TA, Lechene C. Multiple integrins share the ability to induce elevation of intracellular pH. Exp Cell Res 1991; 195: 533–535.

    Article  PubMed  CAS  Google Scholar 

  93. Damsky CH, Werb Z. Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information. Curr Opin Cell Biol 1992; 4: 772–781.

    Article  PubMed  CAS  Google Scholar 

  94. Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 1994; 79: 507–513.

    Article  PubMed  CAS  Google Scholar 

  95. Cybulsky AV, McTavish AJ, Cyr MD. Extracellular matrix modulates epidermal growth factor receptor activation in rat glomerular epithelial cells. J Clin Invest 1994; 94: 68–78.

    Article  PubMed  CAS  Google Scholar 

  96. Vuori K, Ruoslahti E. Association of insulin receptor substrate-1 with integrins. Science 1994; 266: 1576–1578.

    Article  PubMed  CAS  Google Scholar 

  97. Renshaw MW, Ren XD, Schwartz MA. Growth factor activation of MAP kinase requires cell adhesion. EMBO J 1997; 16: 5592–5599.

    Article  PubMed  CAS  Google Scholar 

  98. MacPherson IA, Montagnier L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 1964; 23: 291–294.

    Article  PubMed  CAS  Google Scholar 

  99. Freedman VH, Shin SI. Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. 1974; Cell 3: 355–359.

    Google Scholar 

  100. Bottazzi ME, Assoian RK. The extracellular matrix and mitogenic growth factors control G1 phase cyclins and cyclin-dependent kinase inhibitors. Trends Cell Biol 1997; 7: 348352.

    Google Scholar 

  101. Howe A, Aplin AE, Alahari SK, Juliano RL. Integrin signaling and cell growth control. Curr Opin Cell Biol 1998; 10: 220–231.

    Article  PubMed  CAS  Google Scholar 

  102. Elledge SJ. Cell cycle checkpoints: Preventing an identity crisis. Science 1996; 274: 1664 1672.

    Google Scholar 

  103. Morgan DO. Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997; 13: 261–291.

    Article  PubMed  CAS  Google Scholar 

  104. Fang F, Orend G, Watanabe N, Hunter T, Ruoslahti E. Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 1996; 271: 499–502.

    Article  PubMed  CAS  Google Scholar 

  105. Schulze A, Zerfass-Thome K, Berges J, Middendorp S, Jansen-Durr P, Henglein B. Anchorage-dependent transcription of the cyclin A gene. Mol Cell Biol 1996; 16: 4632–4638.

    PubMed  CAS  Google Scholar 

  106. Zhu XY, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK. Adhesion-dependent cell-cycle progression linked to the expression of cyclin D1, activation of cyclin E-CDK2, and phosphorylation of the retinoblastoma protein. J Cell Biol 1996; 133: 391–403.

    Article  PubMed  CAS  Google Scholar 

  107. Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 1993; 262: 1572–1575.

    Article  PubMed  CAS  Google Scholar 

  108. Chen Y, Knudsen ES, Wang JY. Cells arrested in G1 by the v-Abl tyrosine kinase do not express cyclin A despite the hyperphosphorylation of RB. J Biol Chem 1996; 271:19, 63719, 640.

    Google Scholar 

  109. Kang JS, Krauss RS. Ras induces anchorage-independent growth by subverting multiple adhesion-regulated cell cycle events. Mol Cell Biol 1996; 16: 3370–3380.

    PubMed  CAS  Google Scholar 

  110. Vojtek AB, Der CJ. Increasing complexity of the ras signaling pathway. J Biol Chem 1998; 273:19, 925–19, 928.

    Google Scholar 

  111. Fraser A, Evan G. A license to kill. Cell 1996; 85: 781–784.

    Article  PubMed  CAS  Google Scholar 

  112. Chao DT, Korsmeyer SJ. BCL-2 family: Regulators of cell death. Annu Rev Immunol 1198; 16: 395–419.

    Article  Google Scholar 

  113. Ko U, Prives C. p53: Puzzle and paradigm. Genes Dev 1996; 10: 1054–1072.

    Article  PubMed  CAS  Google Scholar 

  114. Meredith JE, Schwartz MA. Integrins, adhesion and apoptosis. Trends Cell Biol 1997; 7: 146–150.

    Article  PubMed  CAS  Google Scholar 

  115. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9: 701–706.

    Article  PubMed  CAS  Google Scholar 

  116. Cardone MH, Salvesen GS, Widmann C, Johnson G, Frisch SM. The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 1997; 90: 315–323.

    Article  PubMed  CAS  Google Scholar 

  117. Frisch SM, Vuori K, Kelaita D, Sicks S. A role for Jun-N-terminal kinase in anoikis; suppression by bc1–2 and crmA. J Cell Biol 1996; 135: 1377–1382.

    Article  PubMed  CAS  Google Scholar 

  118. Khwaja A, Downward J. Lack of correlation between activation of Jun-NH2-terminal kinase and induction of apoptosis after detachment of epithelial cells. J Cell Biol 1997; 139: 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  119. Zhang Z, Vuori K, Reed JC, Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bc1–2 expression. Proc Natl Acad Sci USA 1995; 92: 6161–6165.

    Article  PubMed  CAS  Google Scholar 

  120. Boudreau N, Sympson CJ, Werb Z, Bissell MJ. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 1995; 267: 891–893.

    Article  PubMed  CAS  Google Scholar 

  121. Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 1996; 98: 426–433.

    Article  PubMed  CAS  Google Scholar 

  122. Day ML, Foster RG, Day KC, Zhao X, Humphrey P, Swanson P, Postigo AA, Zhang SH, Dean DC. Cell anchorage regulates apoptosis through the retinoblastoma tumor suppressor/E2F pathway. J Biol Chem 1997; 272: 8125–8128.

    Article  PubMed  CAS  Google Scholar 

  123. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997; 276: 1425–1428.

    Article  PubMed  CAS  Google Scholar 

  124. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 1997; 94: 849–854.

    Article  PubMed  CAS  Google Scholar 

  125. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134: 793–799.

    Article  PubMed  CAS  Google Scholar 

  126. Belkin AM, Retta SF. 131D integrin inhibits cell cycle progression in normal myoblasts and fibroblasts. J Biol Chem 1998; 273:15,234–15,240.

    Google Scholar 

  127. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997; 9: 180–186.

    Article  PubMed  CAS  Google Scholar 

  128. Pages G, Lenormand P, L’Allemain G, Chambard JC, Meloche S, Pouyssegur J. Mitogenactivated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 1993; 90: 8319–8323.

    Article  PubMed  CAS  Google Scholar 

  129. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG. Transforming p2 1 ras mutants and c-Ets-2 activate the cyclin DI promoter through distinguishable regions. J Biol Chem 1995; 270:23, 589–23, 597.

    Google Scholar 

  130. Eliceiri BP, Klemke R, Stromblad S, Cheresh DA. Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 1998; 140: 1255–1263.

    Article  PubMed  CAS  Google Scholar 

  131. Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM. NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol 1998; 141: 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  132. Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997; 16: 2783–2793.

    Article  PubMed  CAS  Google Scholar 

  133. Brown EJ, Schreiber SL. A signaling pathway to translational control. Cell 1996; 86: 517–520.

    Article  PubMed  CAS  Google Scholar 

  134. Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 1993; 13: 7358–7363.

    PubMed  CAS  Google Scholar 

  135. Malik RK, Parsons JT. Integrin-dependent activation of the p70 ribosomal S6 kinase signaling pathway. J Biol Chem 1996; 271:29, 785–29, 791.

    Google Scholar 

  136. Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 1996; 87: 1069–1078.

    Article  PubMed  CAS  Google Scholar 

  137. Hungerford JE, Compton MT, Matter ML, Hoffstrom BG, Otey CA. Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. J Cell Biol 1996; 135: 1383–1390.

    Article  PubMed  CAS  Google Scholar 

  138. Wen LP, Fahrni JA, Troie S, Guan JL, Orth K, Rosen GD. Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 1997; 272:26, 056–26, 061.

    Google Scholar 

  139. Wang JY. Abl tyrosine kinase in signal transduction and cell-cycle regulation. Curr Opin Genet Dey 1993; 3: 35–43.

    Article  CAS  Google Scholar 

  140. Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JY. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc Natl Acad Sci USA 1996; 93:15, 174–15, 179.

    Google Scholar 

  141. Jackson P, Baltimore D, Picard D. Hormone-conditional transformation by fusion proteins of c-Abl and its transforming variants. EMBO J 1993; 12: 2809–2819.

    PubMed  CAS  Google Scholar 

  142. McWhirter JR, Wang JY. Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol Cell Biol 1991; 11: 1553 1565.

    Google Scholar 

  143. Lewis JM, Schwartz MA. Integrins regulate the association and phosphorylation of paxillin by c-Abl. J Biol Chem 1998; 273:14, 225–14, 230.

    Google Scholar 

  144. Radeva G, Petrocelli T, Behrend E, Leung-Hagesteijn C, Filmus J, Slingerland J, Dedhar S. Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. J Biol Chem 1997; 272:13, 937–13, 944.

    Google Scholar 

  145. Novak A, Hsu SC, Leung-Hagesteijn C, Radeva G, Papkoff J, Montesano R, Roskelley C, Grosschedl R, Dedhar S. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci USA 1998; 95: 4374–4379.

    Article  PubMed  CAS  Google Scholar 

  146. Cadigan KM, Nusse R. Wnt signaling: A common theme in animal development. Genes Dey. 1997; 11: 3286–3305.

    Article  CAS  Google Scholar 

  147. Kheradmand F, Werner E, Tremble P, Symons M, Werb Z. Role of Rac 1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 1998; 280: 898–902.

    Article  PubMed  CAS  Google Scholar 

  148. Lafrenie RM, Bernier SM, Yamada KM. Adhesion to fibronectin or collagen I gel induces rapid, extensive, biosynthetic alterations in epithelial cells. J Cell Physiol 1998; 175: 163–173.

    Article  PubMed  CAS  Google Scholar 

  149. Ramos JW, Whittaker CA, DeSimone DW. Integrin-dependent adhesive activity is spatially controlled by inductive signals at gastrulation. Development 1996; 122: 2873–2883.

    PubMed  CAS  Google Scholar 

  150. Blystone SD, Graham IL, Lindberg FP, Brown EJ. Integrin alpha v beta 3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor alpha 5 beta 1. J Cell Biol 1994; 127: 1129–1137.

    Article  PubMed  CAS  Google Scholar 

  151. Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH. Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 1995; 129: 867–879.

    Article  PubMed  CAS  Google Scholar 

  152. Diaz-Gonzalez F, Forsyth J, Steiner B, Ginsberg MH. Trans-dominant inhibition of integrin function. Mol Biol Cell 1996; 7: 1939–1951.

    PubMed  CAS  Google Scholar 

  153. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 1998; 280: 1614–1617.

    Article  PubMed  CAS  Google Scholar 

  154. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 13, 375–13, 378.

    Google Scholar 

  155. Gu J, Tamura M, Yamada KM. Tumor suppressor PTEN inhibits integrin-and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol 1998; 143: 1375–1383.

    Article  PubMed  CAS  Google Scholar 

  156. Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 1999; 146: 389–403.

    Article  PubMed  CAS  Google Scholar 

  157. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.

    Article  PubMed  CAS  Google Scholar 

  158. Davies MA, Lu Y, Sano T, Fang X, Tang P, LaPushin R, Koul D, Bookstein R, Stokoe D, Yung WK, Mills GB, Steck PA. Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res 1998; 58: 5285–5290.

    PubMed  CAS  Google Scholar 

  159. Tamura M, Gu J, Danen EH, Takino T, Miyamoto S, Yamada KM. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 1999; 274:20, 693–20, 703.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yamada, K.M., Danen, E.H.J. (2000). Integrin Signaling. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics