Skip to main content

Molecular Pathology of Pituitary Tumors

  • Chapter
Diagnosis and Management of Pituitary Tumors
  • 227 Accesses

Abstract

Molecular biological methods have been used to study pituitary disorders in recent years. Techniques, such as Southern and Northern hybridization, in situ hybridization (ISH), polymerase chain reaction (PCR), single-strand confirmation polymorphism (SSCP) analysis, and clonal analysis, have been used to examine normal and neoplastic pituitary tissues. These methods have contributed greatly to advances in the understanding of pituitary disorders. This chapter will review some basic molecular biological techniques and illustrate their applications to the study of pituitary disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lloyd RV, Iacangelo A, Eiden LE, Cano M, Jin L, Grimes M. Chromogranin A and B messenger ribonucleic acids in pituitary and other normal and neoplastic human endocrine tissues. Lab Invest 1989;60:548–556.

    PubMed  CAS  Google Scholar 

  2. Singer RH, Lawrence JB, Villnave C. Optimization of in situ hybridization using isotopic and non-isotopic detection methods. Biotechniques 1986;4:230–259.

    CAS  Google Scholar 

  3. Gee CE, Roberts JL. In situ hybridization histochemistry; a technique for the study of gene expression in single cells. DNA 1983;2:157–163.

    Article  PubMed  CAS  Google Scholar 

  4. Hankin RC, Lloyd RV. Detection of messenger RNA in routinely processed tissue sections with biotinylated oligonucleotide probes. Am J Clin Pathol 1989;92:166–171.

    PubMed  CAS  Google Scholar 

  5. Bagasra O, Seshamma T, Pomerantz RJ. Polymerase chain reaction in situ: intracellular amplification and detection of HIV-1 pro viral DNA and other specific genes. J Immunol Methods 1993;158:131–145.

    Article  PubMed  CAS  Google Scholar 

  6. Chen RH, Fuggle SV. In situ cDNA polymerase chain reaction. A novel technique for detecting mRNA expression. Am J Pathol 1993;143:1527–1534.

    PubMed  CAS  Google Scholar 

  7. Nuovo GJ, MacConnell P, Forde A, Delvonne P. Detection of human papilloma virus DNA in formalin-fixed tissues by in situ hybridization after amplification by polymerase chain reaction. Am J Pathol 1991;139:845–854.

    Google Scholar 

  8. Jin L, Qian X, Lloyd RV. Comparison of mRNA expression detected by in situ PCR and in situ hybridization in endocrine cells. Cell Vision 1995;2:314–321.

    CAS  Google Scholar 

  9. Pixley S, Weiss M, Melmed S. Identification of human growth hormone messenger ribonucleic acid in pituitary adenoma cells by in situ hybridization. J Clin Endocrinol Metab 1987;65:575–580.

    Article  PubMed  CAS  Google Scholar 

  10. Lloyd RV, Cano M, Chandler WF, Barkan AL, Horvath E, Kovacs K. Human growth hormone and prolactin secreting pituitary adenomas analyzed by in situ hybridization. Am J Pathol 1989;134:605–613.

    PubMed  CAS  Google Scholar 

  11. Lloyd RV. Analysis of human pituitary tumors by in situ hybridization. Pathol Res Pract 1988;183:558–560.

    Article  PubMed  CAS  Google Scholar 

  12. Levy A, Lightman SL. Quantitative in situ hybridization histochemistry studies on growth hormone (GH) gene expression in acromegalic somatotrophs: effects of somatostatin, GH-releasing factor and Cortisol. J Mol Endocrinol 1988;1:19–26.

    Article  PubMed  CAS  Google Scholar 

  13. Levy A, Lightman SL. Relationship between somatostatin and growth hormone messenger ribonucleic acid in human pituitary adenomas: an in situ hybridization histochemistry study. Clin Endocrinol 1990;32:661–668.

    Article  CAS  Google Scholar 

  14. Kovacs K, Lloyd RV, Horvath E, Asa SL, Stefaneanu L, Killinger DW, et al. Silent somatotroph adenomas of the human pituitary. A morphologic study of three cases including immunocytochemistry, electron microscopy, in vitro examination and in situ hybridization. Am J Pathol 1989;134:345–353.

    PubMed  CAS  Google Scholar 

  15. Trouillas J, Sassolas G, Loras B, Velkeniers B, Raccurt M, Chotard L, et al. Somatotropic adenomas without acromegaly. Pathol Res Pract 1991;187:943–949.

    Article  PubMed  CAS  Google Scholar 

  16. Saeger W, Uhlig H, Baz E, Fehr S, Ludecke DK. In situ hybridization for different mRNA in GH-secreting and in inactive pituitary adenomas. Pathol Res Pract 1991;187:559–563.

    Article  PubMed  CAS  Google Scholar 

  17. Stefaneanu L, Kovacs K, Lloyd RV, Scheithauer BW, Young WF Jr, Sano T, et al. Pituitary lactotrophs and somatotrophs in pregnancy: a correlative in situ hybridization and immunocytochemical study. Virchows Arch [B] 1992;62:291–296.

    Article  CAS  Google Scholar 

  18. Kovacs K, Stefaneanu L, Horvath E, Lloyd RV, Lancranjan I, Buchfelder M, et al. Effect of dopamine agonist medication and prolactin-producing pituitary adenomas: A morphological study including immunocytochemistry, electron microscopy and in situ hybridization. Virchows Arch [A] Pathol Anat Histopathol 1991; 418:439–446.

    Article  CAS  Google Scholar 

  19. Lloyd RV, Fields K, Jin L, Horvath E, Kovacs K. Analysis of endocrine active and clinically silent corticotropic adenomas by in situ hybridization. Am J Pathol 1990;137:479–488.

    PubMed  CAS  Google Scholar 

  20. Stefaneanu L, Kovacs K, Horvath E, Lloyd RV. In situ hybridization study of pro-opiomelanocortin (POMC) gene expression in human pituitary corticotrophs and their adenomas. Virchows Arch [A] 1991;419:107–113.

    Article  CAS  Google Scholar 

  21. Nagaya T, Seo H, Kuwayama A, Sakurai T, Tsukamoto N, Nakane T, et al. Proopiomelanocortin gene expression in silent corticotroph cell adenoma and Cushing’s disease. J Neurosurg 1990;72:262–267.

    Article  PubMed  CAS  Google Scholar 

  22. de Keyzer Y, Bertagna X, Luton JP, Kahn A. Variable modes of proopiomelanocortin gene transcription in human tumors. Mol Endocrinol 1989;3:215–223.

    Article  PubMed  Google Scholar 

  23. McNicol AM, Farquharson MA, Walker E. Non-isotopic in situ hybridization with digoxigenin and alkaline-phosphatase-labeled oligodeoxynucleotide probes. Applications in pituitary gland. Pathol Res Pract 1991;187:556–558.

    Article  PubMed  CAS  Google Scholar 

  24. Fehn M, Farquharson MA, Sautner P, Saeger W, Ludecke DK, McNicol AM. Demonstration of pro-opiomelanocortin mRNA in pituitary adenomas and para-adenomatous gland in Cushing’s disease and Nelson’s Syndrome. J Pathol 1993;169:335–339.

    Article  PubMed  CAS  Google Scholar 

  25. Mengod G, Vivanco MM, Christnacher A, Probst A, Palacios JM. Study of pro-opiomelanocortin mRNA expression in human postmortem pituitaries. Mol Brain Res 1991;10:129–137.

    Article  PubMed  CAS  Google Scholar 

  26. Lopez JF, Palkovits M, Arato M, Mansour A, Akil H, Watson SJ. Localization and quantification of pro-opiomelanocortin mRNA and glucocorticoid receptor mRNA in pituitaries of suicide victims. Neuroendocrinology 1992;56:491–501.

    Article  PubMed  CAS  Google Scholar 

  27. Lloyd RV, Jin L, Fields K, Chandler WF, Horvath E, Stefaneanu L, et al. Analysis of pituitary hormones and chromogranin A mRNAs in null cell adenomas, oncocytomas and gonadotroph adenomas by in situ hybridization. Am J Pathol 1991;139:553–564.

    PubMed  CAS  Google Scholar 

  28. Baz E, Saeger W, Uhlig H, Fehr S, Ludecke DK. HGH, PRL and (3HCG/pLH gene expression in clinically inactive pituitary adenomas detected by in situ hybridization. Virchows Arch [A] 1991;418:405–410.

    Article  CAS  Google Scholar 

  29. Sakurai T, Seo H, Yamamoto N, Nagaya T, Nakane T, Kuwayama A, et al. Detection of mRNA of prolactin and ACTH in clinically nonfunctioning pituitary adenomas. J Neurosurg 1988;69:653–659.

    Article  PubMed  CAS  Google Scholar 

  30. Lloyd RV, Jin L. Analysis of chromogranin/secretogranin messenger RNAs in human pituitary adenomas. Diagn Mol Pathol 1994; 3:38–45.

    Article  PubMed  CAS  Google Scholar 

  31. Song JY, Jin L, Chandler WF, England BG, Smart JB, Landefeld TD, et al. Gonadotropin-releasing hormone regulates gonadotropin beta-subunit and chromogranin B mRNA in cultured chromogranin A positive pituitary adenomas. J Clin Endocrinol Metab 1990; 71:622–630.

    Article  PubMed  CAS  Google Scholar 

  32. Kilar F, Muhr C, Funa K. In situ hybridization histochemistry of mRNAs for hormones and chromogranins in normal pituitary tissue and pituitary adenoma. Acta Endocrinol 1991;125:628–636.

    PubMed  CAS  Google Scholar 

  33. Jin L, Chandler WF, Smart JB, England BG, Lloyd RV. Differentiation of human pituitary adenomas determines the pattern of chromogranin/secretogranin messenger ribonucleic acid expression. J Clin Endocrinol Metab 1993;76:728–735.

    Article  PubMed  CAS  Google Scholar 

  34. Levy A, Lightman SL. Growth hormone releasing hormone transcripts in human pituitary adenomas. J Clin Endocrinol Metab 1992;74:1474–1476.

    Article  PubMed  CAS  Google Scholar 

  35. Pagesy P, Li JY, Berthet M, Peillon F. Evidence of gonadotropin-releasing hormone mRNA in the rat anterior pituitary. Mol Endocrinol 1992;6:523–528.

    Article  PubMed  CAS  Google Scholar 

  36. Li JY, Pagesy P, Berthet M, Racadot O, Kujas M, Racadot J, et al. Somatostatin cells in human somatotropic adenoma. Virchows Arch [A] 1992;420:95–101.

    Article  CAS  Google Scholar 

  37. Lloyd RV, Jin L, Chandler WF, Horvath E, Stefaneanu L, Kovacs K. Pituitary specific transcription factor messenger ribonucleic acid expression in adenomatous and non-tumorous human pituitary tissues. Lab Invest 1993;69:570–575.

    PubMed  CAS  Google Scholar 

  38. Asa SL, Puy LA, Lew AM, Sundmark VC, Elsholtz HP. Cell type-specific expression of the pituitary transcription activator pit-1 in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1993;77:1275–1280.

    Article  PubMed  CAS  Google Scholar 

  39. Vogelstein B, Fearon ER, Hamilton SR, Feinberg AP. Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science 1985;227:642–645.

    Article  PubMed  CAS  Google Scholar 

  40. Hicks DG, LiVolsi VA, Neidich JA, Puck JM, Kant JA. Clonal analysis of solitary follicular nodules in the thyroid. Am J Pathol 1990;137:553–562.

    PubMed  CAS  Google Scholar 

  41. Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell 1986;44:535–543.

    Article  PubMed  CAS  Google Scholar 

  42. Lyon MF. X-chromosome inactivation and developmental patterns in mammals. Biol Rev Cambridge Philosophic Soc 1972;47:1–35.

    Article  CAS  Google Scholar 

  43. Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H. Clonal analysis of human breast cancer by means of polymerase chain reaction. Cancer Res 1992;52:6594–6597.

    PubMed  CAS  Google Scholar 

  44. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of Hpa II and Hhal sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 1992;51:1229–1239.

    PubMed  CAS  Google Scholar 

  45. Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 1990;71: 1427–1433.

    Article  PubMed  CAS  Google Scholar 

  46. Jacoby LB, Hedley-Whyte T, Pulaski K, Seizinger BR, Martuza RL. Clonal origin of pituitary adenomas. J Neurosurg 1990;73:731–735.

    Article  PubMed  CAS  Google Scholar 

  47. Alexander JM, Biller BM, Bikkal H, Zervas NT, Arnold A, Klibanski A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990;86:336–340.

    Article  PubMed  CAS  Google Scholar 

  48. Asa SL, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 1998;19:798–827.

    Article  PubMed  CAS  Google Scholar 

  49. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987; 155: 335–350.

    Article  PubMed  CAS  Google Scholar 

  50. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the a chain of Gs and stimulate adenylyl cyclase in human pituitary tumors. Nature 1989;340: 692–696.

    Article  PubMed  CAS  Google Scholar 

  51. Alvaro V, Levy L, Dubray C, Roche A, Peillon F, Querat B, et al. Invasive human pituitary tumors express a point-mutated a-protein kinase-C. J Clin Endocrinol Metab 1993;77:1125–1129.

    Article  PubMed  CAS  Google Scholar 

  52. Spada A, Arosio M, Bochicchio D, Bazzoni N, Vallar L, Bassetti M, et al. Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab 1990;71:1421–1426.

    Article  PubMed  CAS  Google Scholar 

  53. Wakabayashi I, Inokuchi K, Hasegawa O, Sugihara H, Minami S. Expression of growth hormone (GH)-releasing factor gene in GH-producing pituitary adenoma. J Clin Endocrinol Metab 1992; 74:357–361.

    Article  PubMed  CAS  Google Scholar 

  54. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Itakura M. Rare mutations of the Gs alpha subunit gene in human endocrine tumors. Mutation detection by polymerase chain reaction-primer-introduced restriction analysis. Cancer 1993;72:1386–1393.

    Article  PubMed  CAS  Google Scholar 

  55. Kamijo T, Phillips JA III. Detection of molecular heterogeneity in GH-1 gene deletions by analysis of polymerase chain reaction amplification products. J Clin Endocrinol Metab 1992;74:786–789.

    Article  PubMed  CAS  Google Scholar 

  56. Vnencak-Jones CL, Phillips JA, De Fen W. Use of polymerase chain reaction in detection of growth hormone gene deletions. J Clin Endocrinol Metab 1990;70:1550–1553.

    Article  PubMed  CAS  Google Scholar 

  57. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1989;86:2766–2770.

    Article  PubMed  CAS  Google Scholar 

  58. Drews RT, Gravel RA, Collu R. Identification of G protein a subunit mutations in human growth hormone (GH)- and GH/prolactin-secret-ing pituitary tumors by single-strand conformation polymorphism (SSCP) analysis. Mol Cell Endocrinol 1992;87:125–129.

    Article  PubMed  CAS  Google Scholar 

  59. Herman V, Drazin NZ, Gonsky R, Melmed S. Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 1993;77:50–55.

    Article  PubMed  CAS  Google Scholar 

  60. Pei L, Melmed S, Scheithauer BW, Kovacs K, Prager D. H-ras mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 1994;78:842–846.

    Article  PubMed  CAS  Google Scholar 

  61. Cryns VL, Alexander JM, Klibanski A, Arnold A. The retinoblastoma gene in human pituitary tumors. J Clin Endocrinol Metab 1993;77:644–646.

    Article  PubMed  CAS  Google Scholar 

  62. Zhu J, Leon SP, Beggs AH, Busque L, Gilliland DG, Black PM. Human pituitary adenomas show no loss of heterozygosity at the retinoblastoma gene locus. J Clin Endocrinol Metab 1994;78: 922–927.

    Article  PubMed  CAS  Google Scholar 

  63. Karga HJ, Alexander JM, Hedley-Whyte ET, Klibansky A, Jameson JL. Ras mutation in human pituitary tumors. J Clin Endocrinol Metab 1992;74:914–919.

    Article  PubMed  CAS  Google Scholar 

  64. Rock JP, Babu VR, Drumheller T, Chason J. Cytogenetic findings in pituitary adenoma: Results of a pilot study. Surg Neurol 1993;40:224–229.

    Article  PubMed  CAS  Google Scholar 

  65. Thakker RV, Pook MA, Wooding C, Boscaro M, Scanarini M, Clayton RN. Association of somatotrophinomas with loss of alleles on chromosome II and with gsp mutations. J Clin Invest 1993;91: 2815–2821.

    Article  PubMed  CAS  Google Scholar 

  66. Boggild MD, Jenkinson S, Pistorello M, Boscaro M, Scanarini M, McTernan P, et al. Molecular genetic studies of sporadic pituitary tumors. J Clin Endocrinol Metab 1994;78:387–392.

    Article  PubMed  CAS  Google Scholar 

  67. Daniel M, Aviram A, Adams EF, Buchfelder M, Barkai G, Fahlbusch R, et al. Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 1998;83: 1801–1805.

    Article  Google Scholar 

  68. Lloyd RV, Jin L, Qian X, Kulig E. Aberrant p27Kipl expression in endocrine and other tumors. Am J Pathol 1997;150:401–407.

    PubMed  CAS  Google Scholar 

  69. Woloschak M, Yu A, Post KD. Frequent inactivation of the pl6 gene in human pituitary tumors by gene methylation. Mol Carcinogenesis 1997;19:221–224.

    Article  CAS  Google Scholar 

  70. Cai WY, Alexander JM, Hedley-Whyte ET, et al. Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994;78:89–93.

    Article  PubMed  CAS  Google Scholar 

  71. Williamson EA, Daniels M, Foster S, et al. Giα alpha and gi2 alpha mutations in clinically non-functioning pituitary tumours. Clin Endocrinol 1994;41:815–820.

    Article  CAS  Google Scholar 

  72. Williamson EA, Ince PG, Harrison D, et al. G-protein mutations in human pituitary adrenocorticotrophic hormone-secreting adenomas. Eur J Clin Invest 1995;25:128–131.

    Article  PubMed  CAS  Google Scholar 

  73. Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WF, Prager D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 1995;55:1613–1616.

    PubMed  CAS  Google Scholar 

  74. Adams EF, Lei T, Buchfelder M, Petersen B, Fahlbusch R. Biochemical characteristics of human pituitary somatotrophinomas with and without gsp mutations: in vitro cell culture studies. J Clin Endocrinol Metab 1995;80:2077–2081.

    Article  PubMed  CAS  Google Scholar 

  75. Ezzat S, Melmed S. The role of growth factors in the pituitary. J Endocrinol Invest 1990;13:691–698.

    PubMed  CAS  Google Scholar 

  76. Silverlight JJ, Prysor-Jones RA, Jenkins JS. Basic fibroblast growth factor in human pituitary tumors. Clin Endocrinol 1990;32:669–676.

    Article  CAS  Google Scholar 

  77. Halper J, Parnell PG, Carter BJ, Reu P, Scheithauer BW. Presence of growth factors in human pituitary. Lab Invest 1992;66:639–645.

    PubMed  CAS  Google Scholar 

  78. Jin L, Song J, Chandler WF, England BG, Smart JB, Barkan A, et al. Hybridization studies of cultured human pituitary PRL- and GH-producing adenoma cells: Effects of thyrotropin-releasing hormone, somatostatin and phorbol ester. Endocr Pathol 1990;1:25–36.

    Article  Google Scholar 

  79. Birman P, Michard M, Li JY, Peillon F, Bression D. Epidermal growth factor-binding sites, present in normal human and rat pitu-itaries, are absent in human pituitary adenomas. J Clin Endocrinol Metab 1987;65:275–281.

    Article  PubMed  CAS  Google Scholar 

  80. Fagin JA, Pixley S, Slanina S, Ong J, Melmed S. Insulin-like growth factor I gene expression in GH3 rat pituitary cells: Messenger ribonucleic acid content, immunocytochemistry and secretion. Endocrinology 1987;120:2037–2043.

    Article  PubMed  CAS  Google Scholar 

  81. Atkin SL, Landolt AM, Jeffreys RV, Hipkin L, Radcliffe J, Squire CR, et al. Differential effects of insulin-like growth factor 1 on the hormonal product and proliferation of glycoprotein-secreting human pituitary adenomas. J Clin Endocrinol Metab 1993;77:1059–1066.

    Article  PubMed  CAS  Google Scholar 

  82. Chaidarun SS, Eggo MC, Stewart PM, Barber PC, Sheppard MC. Role of growth factors and estrogen as modulators of growth, differentiation and expression of gonadotropin subunit genes in primary cultured sheep pituitary cells. Endocrinology 1994;134:935–944.

    Article  PubMed  CAS  Google Scholar 

  83. Pabo CO, Sauer RT. Transcription factors: structural families and principles of DNA recognition. Ann Rev Biochem 1992;61:1053–1095.

    Article  PubMed  CAS  Google Scholar 

  84. Papavassilious AG. Molecular medicine. Transcription factors. N Engl J Med 1995;332:45–47.

    Article  Google Scholar 

  85. Vellanoweth RL, Suprakar PC, Roy AK. Transcription factors in development growth and aging. Lab Invest 1994;70:784–799.

    PubMed  CAS  Google Scholar 

  86. Nakamura S, Ohtsaru A, Takamura N, Kitange G, Tokunaga Y, et al. Prop-1 gene expression in human pituitary tumors. J Clin Endocrinol Metab 1999;84:2581–2584.

    Article  PubMed  CAS  Google Scholar 

  87. Castrillo JL, Theill LE, Karin M. Function of the homeodomain protein GHF-1 in pituitary cell proliferation. Science 1991;253:199.

    Article  Google Scholar 

  88. Hoggard N, Callaghan K, Levy A, Davis JR. Expression of Pit-1 and related proteins in diverse human pituitary adenomas. J Mol Endocrinol 1993;11:283–290.

    Article  PubMed  CAS  Google Scholar 

  89. Voss JW, Rosenfeld MG. Anterior pituitary development: short tales from dwarf mice. Cell 1992;70:527–530.

    Article  PubMed  CAS  Google Scholar 

  90. Lloyd RV, Jin L, Chandler WF, Horvath E, Stefaneanu L, Kovacs K. Pituitary specific transcription factor messenger ribonucleic acid expression in adenomatous and nontumorous human pituitary tissues. Lab Invest 1993;69:570–575.

    PubMed  CAS  Google Scholar 

  91. Sanno N, Inada K, Utsunomiya H, Umemura S, Itoh Y, Matsuno A, et al. Expression for pit-1 product in human pituitaries: histochemi-cal studies using an antibody against synthetic human pit-1 protein. Med Sci Res 1994;22:685–687.

    CAS  Google Scholar 

  92. Ohta K, Nobukani Y, Mitsubuchi H, Fujimoto S, Matsuo N, Inagaki H, et al. Mutations in the pit-1 gene in children with combined pituitary hormone deficiency. Biochem Biophys Res Commun 1992;189:851–855.

    Article  PubMed  CAS  Google Scholar 

  93. Pfaffle RW, DiMattia GE, Parks JS, Brown MR, Wit JM, Jansen M, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science (Washington) 1992; 257:1118–1121.

    Article  CAS  Google Scholar 

  94. Radovick S, Nations M, Du Y, Berg LA, Weintraub BD, Wondisford FE. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science (Washington) 1992;257:1115–1118.

    Article  CAS  Google Scholar 

  95. Tatsumi K, Miyai K, Natomi T, Kaibe K, Amino N, Mizuno Y, et al. Cretinism with combined hormone deficiency caused by a mutation in the Pit-1 gene. Nature Genet 1992;1:56–58.

    Article  PubMed  CAS  Google Scholar 

  96. Struthers RS, Vale WW, Arias C, Sawchenko PE, Montminy MR. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a nonphosphorylatable CREB mutant. Nature 1991;350:622–624.

    Article  PubMed  CAS  Google Scholar 

  97. Prezant TR, Levine J, Melmed S. Molecular characterization of the MenI tumor suppressor gene in sporadic pituitary tumors. J Clin Endocrinol Metab 1998;83:1388–1391.

    Article  PubMed  CAS  Google Scholar 

  98. Zhuang Z, Ezzat SZ, Vortmeyer AO, West R, Oldfield EH, Park W-S, et al. Mutations of the MEN I tumor suppressor gene in pituitary tumors. Cancer Res 1997;57:5446–5451.

    PubMed  CAS  Google Scholar 

  99. Farrell WE, Clayton RN. Molecular biology of human pituitary adenomas. Ann Med 1998;30:192–198.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lloyd, R.V. (2001). Molecular Pathology of Pituitary Tumors. In: Thapar, K., Kovacs, K., Scheithauer, B.W., Lloyd, R.V. (eds) Diagnosis and Management of Pituitary Tumors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-217-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-217-3_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9693-2

  • Online ISBN: 978-1-59259-217-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics