Skip to main content

Experimental Models of Pituitary Tumorigenesis

  • Chapter
Diagnosis and Management of Pituitary Tumors
  • 229 Accesses

Abstract

Pituitary tumors can be induced by chemicals, irradiation, target organ ablation, and genetic manipulations. Despite the availability of these models, pituitary tumorigenesis is still obscure. Depending on the approach, different types of pituitary tumors can be induced, including hormone-secreting or “silent” ones. Conditions similar to those existing in patients with gigantism, amenorrhea, galactorrhea, infertility, Cushing’s disease, hypothyroidism, or hypogonadism are created, giving the opportunity not only to obtain a deeper insight into the process of tumorigenesis, but also to test therapeutic modalities. The mouse, especially since the introduction of transgenic technology, is now replacing the rat, which has been the preferred species for inducing different experimental conditions, including pituitary tumors. It is important to emphasize that pituitary tumors arising in rodents are not identical to human ones and that extrapolation of the experimental results to human beings has some limitations. These differences could be attributed not only to the distinct morphologic features of hormone-containing cells of the rodent and human pituitaries but also to differences in the pituitary regulatory mechanisms among species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cramer W, Horning ES. Experimental production by oestrin of pituitary tumors with hypopituitarism. Lancet 1936;1:247–249.

    Google Scholar 

  2. McEwen CS, Selye H, Colip JP. Some effects of prolonged administration of oestrin in rats. Lancet 1936; 1:775,776.

    Google Scholar 

  3. Zondek B. Tumors of the pituitary induced with follicular hormone. Lancet 1936;1:776–8.

    Google Scholar 

  4. Furth J, Clifton KH. Experimental pituitary tumors. In: Harris GW, Donovan BT, eds. The Pituitary Gland. University of California Press, Berkeley, 1966, p. 460.

    Google Scholar 

  5. Russfield AB. Tumors of endocrine glands and secondary sex organs. US Government Printing Office, Washington DC (Public Health Service Publication No 1332), 1966.

    Google Scholar 

  6. Gardner WU, Strong LC. Strain-limited development of tumors of the pituitary gland in mice receiving estrogens. Yale J Biol 1940; 12:543–549.

    PubMed  CAS  Google Scholar 

  7. Wiklund JA, Wertz N, Gorski J. A comparison of estrogen effects on uterine and pituitary growth and prolactin synthesis in F344 and Holtzman rats. Endocrinology 1982;109:1700–1707.

    Google Scholar 

  8. Lloyd RV. Estrogen-induced hyperplasia and neoplasia in the rat anterior pituitary gland. An immunohistochemical study. Am J Pathol 1983;113:198–206.

    PubMed  CAS  Google Scholar 

  9. Lloyd RV, Landefeld TD. Detection of prolactin messenger RNA in rat anterior pituitary by in situ hybridization. Am J Pathol 1986;125:35–44.

    PubMed  CAS  Google Scholar 

  10. Lloyd RV, Jin L, Fields K, Kulig E. Regulation of prolactin gene expression in a DMBA-estrogen-induced transplantable rat pituitary tumor. Am J Pathol 1990;137:1525–1537.

    PubMed  CAS  Google Scholar 

  11. Clifton KH, Meyer RK. Mechanisms of anterior pituitary tumor induction by estrogen. Anat Rec 1956;125:65–81.

    PubMed  CAS  Google Scholar 

  12. Ueda G, Tanizawa O, Hamanaka N, Nishiura H. Changes of growth hormone-containing cells during tumorigenesis and subpassages of estrogen-induced pituitary tumors in rats. Endocrinol Jpn 1970;17:447–452.

    PubMed  CAS  Google Scholar 

  13. McComb DJ, Ryan N, Horvath E, et al. Five different adenomas derived from the rat adenohypophysis: immunocytochemical and ultrastructural study. J Natl Cancer Inst 1981;66:1103–1111.

    PubMed  CAS  Google Scholar 

  14. Takemoto H, Yokoro K, Furth J, Cohen AI. Adrenotropic activity of mammosomatotropic tumors in rats and mice. I. Biologic aspects. Cancer Res 1962; 22:917–924.

    PubMed  CAS  Google Scholar 

  15. Lloyd HM, Meares JD, Jacobi J. Effects of oestrogen and bromocryptine on in vivo secretion and mitosis in prolactin cells. Nature 1975;255:497,498.

    PubMed  CAS  Google Scholar 

  16. Morel Y, Albaladejo V, Bouvier J, Andre J. Inhibition by 17 beta-estradiol of the growth of the rat pituitary transplantable tumor MtF4. Cancer Res 1982;42:1492–1497.

    PubMed  CAS  Google Scholar 

  17. Lloyd RV, Landefeld TD, Maslar I, Frohman LA. Diethylstil-bestrol inhibits tumor growth and prolactin production in rat pituitary tumors. Am J Pathol 1985;118:379–386.

    PubMed  CAS  Google Scholar 

  18. Trouillas J, Morel Y, Pharaboz MO, Cordier G, Girod C, Andre J. Morphofunctional modifications associated with the inhibition by estradiol of MtTF4 rat pituitary tumor growth. Cancer Res 1984;44:4046–4052.

    PubMed  CAS  Google Scholar 

  19. Jin L, Song JY, Lloyd RV. Estrogen stimulates both prolactin and growth hormone mRNAs expression in the MtT/F4 transplantable pituitary tumor. Proc Soc Exp Biol Med 1989;92:225–229.

    Google Scholar 

  20. Joly-Pharaboz MO, Fei ZL, Bouillard B, Andre J. Estradiol stimulation and inhibition of cell growth in new estrogen-sensitive cell lines and tumors established from the MtTF4 tumor. Cancer Res 1990;50:3786–3794.

    PubMed  CAS  Google Scholar 

  21. Wiklund J, Rutledge J, Gorski J. A genetic model for the inheritance of pituitary tumor susceptibility in F344 rats. Endocrinology 1981;109:1708–1714.

    PubMed  CAS  Google Scholar 

  22. Wendell DL, Herman A, Gorski J. Genetic separation of tumor growth and hemorrhagic phenotypes in an estrogen-induced tumor. Proc Natl Acad Sci USA 1996;93:8112–8116.

    PubMed  CAS  Google Scholar 

  23. Gregg D, Goedken E, Gaikin M, Wendell D, Gorski J. Decreased expression of carboxypeptidase E protein is correlated to estrogen-induction of rat pituitary tumors. Mol Cell Endocrinol 1996; 117:219–25.

    PubMed  CAS  Google Scholar 

  24. Cool DR, Normant E, Shen F, Chen H-C, Pannell L, Zhang Y, Loh YP. Carboxipeptidase E is a regulated secretory pathway sorting receptor: Genetic obliteration leads to endocrine disorders in CPE fat mice. Cell 1997;88:73–83.

    PubMed  CAS  Google Scholar 

  25. Brann DW, Hendry LB, Mahesh VB. Emerging diversities in the mechanism of action of steroid hormones [Review]. J Steroid Biochem Mol Biol 1995;52:113–133.

    PubMed  CAS  Google Scholar 

  26. Szijan I, Parma DL, Engel NI. Expression of c-myc and c-fos protooncogenes in the anterior pituitary gland of the rat. Effect of estrogen. Horm Metab Res 1992;24:154–157.

    PubMed  CAS  Google Scholar 

  27. Sarkar DK, Kim KH, Minami S. Transforming growth factor-beta 1 messenger RNA and protein expression in the pituitary gland: its action on prolactin secretion and lactotropic growth. Mol Endocrinol 1992;6:1825–1833.

    PubMed  CAS  Google Scholar 

  28. Qian X, Jin L, Grande JP, Lloyd RV. Transforming growth factor-beta and p27 expression in pituitary cells. Endocrinology 1996; 137:3051–3060.

    PubMed  CAS  Google Scholar 

  29. Roberts AB, Sporn MB. Transforming growth factors [Review]. Cancer Surveys 1985; 4:683–705.

    PubMed  CAS  Google Scholar 

  30. Pastorcic M, De A, Boyadjieva N, Vale W, Sarkar DK. Reduction in the expression and action of transforming growth factor beta 1 on lactotropes during estrogen-induced tumorigenesis in the anterior pituitary. Cancer Res 1995; 55:4892–4898.

    PubMed  CAS  Google Scholar 

  31. Stefaneanu L, Powell-Braxton L, Won W, Chandrashekar V, Bartke A. Somatotroph and lactotroph changes in the adenohypo-physes of mice with disrupted insulin-like growth factor I gene. Endocrinology 1999; 140;3881–3889.

    PubMed  CAS  Google Scholar 

  32. Michels KM, Lee W-H, Seltzer A, Saavedra JM, Bondy CA. Up-regulation of pituitary [I25I]insulin-like growth factor-I (IGF-I) binding and IGF binding protein-2 and IGF-I gene expression by estrogen. Endocrinology 1993;132:23–29.

    PubMed  CAS  Google Scholar 

  33. Banerjee SK, Sarkar DK, Weston AP, De A, Campbell DR. Overexpression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis. Carcinogenesis 1997;6:1155–1161.

    Google Scholar 

  34. Banerjee SK, Zoubine MN, Tran TM, Weston AP, Campbell DR. Overexpression vascular endothelial growth factor and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol 2000; 16:253–260.

    PubMed  CAS  Google Scholar 

  35. Heany AP, Horwitz GA, Wang Z, Singson R, Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 1999;11:1317–1321.

    Google Scholar 

  36. Vrontakis ME, Yamamoto T, Schroedter IC, Nagy JI, Friesen HG. Estrogen induction of galanin synthesis in the rat anterior pituitary gland demonstrated by in situ hybridization and immunohis-tochemistry. Neurosci Lett 1989;100:59–64.

    PubMed  CAS  Google Scholar 

  37. Kao KJ, Ramirez VD. Induction of pituitary and mammary tumors in male, “fale,” and Female rats by either DMB A, estradiol implant or combined treatment. Proc Soc Exp Biol Med 1979; 160: 296–301.

    PubMed  CAS  Google Scholar 

  38. Nilsson A, Bierke P, Haraldsson I, Broome-Karlsson A. Induction of pituitary tumours by combination of oestrogenic hormones and 90Sr. Acta Radiol—Oncol 1980;19:373–385.

    PubMed  CAS  Google Scholar 

  39. Furth J, Ueda G, Clifton KH. The pathophysiology of pituitaries and their tumors: Methodological advances. In: Busch H, ed. Methods in Cancer Research. Academic, New York, 1973, pp. 201–277.

    Google Scholar 

  40. Bates RW, Garrison MM, Morris HP. Comparison of two different transplantable mammotropic pituitary tumors. Hormone content and effect on host. Proc Soc Exp Biol Med 1966; 123: 67–70.

    PubMed  CAS  Google Scholar 

  41. Kovi J, Morris HP. Ultrastructure of a mammosomatotrophic and a nonfunctional transplantable pituitary tumor induced in rats by 2,4,6-trimethylaniline. J Nat Cancer Inst 1976;57:197–205.

    PubMed  CAS  Google Scholar 

  42. Judd AM, Login IS, Kovacs K, et al. Characterization of the MMQ cell, a prolactin-secreting clonal cell line that is responsive to dopamine. Endocrinology 1988;123:2341–2350.

    PubMed  CAS  Google Scholar 

  43. Ishii J, Katayama S, Itabashi A, Takahama M, Kawazu S. Salmon calcitonin induces pituitary tumor in rats. Endocrinol Jpn 1991; 38:705–709.

    PubMed  CAS  Google Scholar 

  44. Jameson JL, Weiss J, Polak JM, et al. Glycoprotein hormone alpha-subunit-producing pituitary adenomas in rats treated for one year with calcitonin. Am J Pathol 1992;140:75–84.

    PubMed  CAS  Google Scholar 

  45. Upton A, Furth J. Spontaneous and radiation-induced pituitary adenomas of mice. J Natl Cancer Inst 1955;15:1005–1021.

    PubMed  CAS  Google Scholar 

  46. Durbin PM, Asling CW, Johnston ME, Parrott MW, Jeung N, Williams MH, et al. The induction of tumors in the rat by astatine-211. RadiatRes 1958;9:378–397.

    CAS  Google Scholar 

  47. Van Dyke DC, Simpson ME, Koneff AA, Tobias CA. Long-term effects of deutron irradiation of the rat pituitary. Endocrinology 1959;64:240–257.

    Google Scholar 

  48. Furth J, Haran-Ghera N, Curtis HL, Buffett RF. Studies on the pathogenesis of neoplasms by ionizing radiation. I. Pituitary tumors. Cancer Res 1959;19:550–556.

    PubMed  CAS  Google Scholar 

  49. Furth J, Godsden EL, Upton AC. ACTH secreting transplantable pituitary tumors. Proc Soc Exp Biol Med 1953;84:253–254.

    PubMed  CAS  Google Scholar 

  50. Steelman SL, Kelly TL, Norgello H, Weber GF. Occurrence of melanocyte stimulating hormone (MSH) in a transplantable pituitary tumor. Proc Soc Exp Biol Med 1956;92:392–394.

    PubMed  CAS  Google Scholar 

  51. Buonassisi V, Sato G, Cohen Al. Hormone-producing cultures of adrenal and pituitary origin. Proc Natl Acad Sci 1962;48: 1184–1190.

    PubMed  CAS  Google Scholar 

  52. Spangelo BL, Gorospe WC. Role of the cytokines in the neuroen-docrine-immune system axis [Review]. Front Neuroendocrinol 1995;16:1–22.

    PubMed  CAS  Google Scholar 

  53. Bernhagen J, Calandra T, Mitchell RA, et al. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 1993;365:756–759.

    PubMed  CAS  Google Scholar 

  54. Ray DW, Ren SG, Melmed S. Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT pathway. J Clin Invest 1996;97: 1852–1859.

    PubMed  CAS  Google Scholar 

  55. Yokoro K, Furth J, Haran-Ghera N. Induction of mammotropic pituitary tumor by X-rays in rats and mice: the role of mam-motropes in development of mammary tumors. Cancer Res 1961;21:178–191.

    PubMed  CAS  Google Scholar 

  56. McLeod RM, Smith C, DeWitt GW. Hormonal properties of transplanted pituitary tumors and their relation to the pituitary gland. Endocrinology 1964;75:670–691.

    Google Scholar 

  57. Tashjian AH, Yasumura Y, Levine L, Sato GH, Parker ML. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 1968;82:348–352.

    Google Scholar 

  58. Hollander N, Hollander VP. Development of a somatotropic variant of the mammosomatotropic tumor MtT/W5. Proc Soc Exp Biol Med 1971;137:1157–1162.

    PubMed  CAS  Google Scholar 

  59. Ito A, Furth J, Moy P. Growth hormone-secreting variants of a mammotropic tumor. Cancer Res 1972;32:48–56.

    PubMed  CAS  Google Scholar 

  60. Frawley LS, Boockfor FR. Mammosomatotropes: presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 1991;12:337–355.

    PubMed  CAS  Google Scholar 

  61. Song JY, Jin L, Lloyd RV. Effects of estradiol on prolactin and growth hormone messenger RNAs in cultured normal and neo plastic (MtT/W15 and GH3) rat pituitary cells. Cancer Res 1989;49:1247–1253.

    PubMed  CAS  Google Scholar 

  62. Miller TL, Godfrey PA, Dealmeida VI, Mayo KE. The rat growth hormone-releasing hormone receptor gene: structure, regulation, and generation of receptor isoforms with different signaling properties. Endocrinology 1999;140:4152–4165.

    PubMed  CAS  Google Scholar 

  63. Cronin MJ, Faure N, Martial JA, Weiner RI. Absence of high affinity dopamine receptor in GH3 cells: a prolactin-secreting clone resistant to the inhibitory action of dopamine. Endocrinology 1980;106:718–723.

    PubMed  CAS  Google Scholar 

  64. Johnston JM, Wood DF, Bolaji EA, Johnston DG. The dopamine D2 receptor is expressed in GH3 cells. J Mol Endocrinol 1991;7:131–136.

    PubMed  CAS  Google Scholar 

  65. Johnston JM, Wood DF, Read S, Johnston DG. Dopamine regulates D2 receptor gene expression in normal but not in tumorous rat pituitary cells. Mol Cell Endocrinol 1993;92:63–68.

    PubMed  CAS  Google Scholar 

  66. Boockfor FR, Schwarz LK. Cultures of GH3 cells contain both single and dual hormone secretors. Endocrinology 1988;122:762–764.

    PubMed  CAS  Google Scholar 

  67. Missale C, Boroni F, Sigala S, Zanellato A, Dal Taso R, Balsari A, et al. Nerve growth factor directs differentiation of the bipotential cell line GH3 into the mammotroph phenotype. Endocrinology 1994;135:290–298.

    PubMed  CAS  Google Scholar 

  68. Qian X, Jin L, Lloyd RV. Expression and regulation of transforming growth factor b 1 in cultured normal and neoplastic rat pituitary cells. Endocr Pathol 1996;7:77–90.

    PubMed  CAS  Google Scholar 

  69. Mormede P, Baird A. Estrogens, cyclic adenosine 3’,5’-monophos-phate, and phorbol esters modulate the prolactin response of GH3 cells to basic fibroblast growth factor. Endocrinology 1988; 122:2265–2271.

    PubMed  CAS  Google Scholar 

  70. Prager D, Yamashita S, Melmed S. Insulin regulates prolactin secretion and messenger ribonucleic acid levels in pituitary cells. Endocrinology 1988;122:2946–2952.

    PubMed  CAS  Google Scholar 

  71. Fagin JA, Pixley S, Slanina S, Ong J, Melmed S. Insulin-like growth factor I gene expression in GH3 rat pituitary cells: messenger ribonucleic acid content, immunocytochemistry, and secretion. Endocrinology 1987;120:2037–2043.

    PubMed  CAS  Google Scholar 

  72. Newton CJ, Trapp T, Pagotto U, Renner U, Buric R, Stalla GK. The oestrogen receptor modulates growth of pituitary tumour cells in the absence of exogenous oestrogen. J Mol Endocrinol 1994; 12:303–312.

    PubMed  CAS  Google Scholar 

  73. Scammell JG, Burrage TG, Dannies PS. Hormonal induction of secretory granules in a pituitary tumor cell line. Endocrinology 1986;119:1543–1548.

    PubMed  CAS  Google Scholar 

  74. Furth J, Moy P, Hershman JM, Ueda G. Thyrotropic tumor syndrome. A multiglandular disease induced by sustained deficiency of thyroid hormones. Arch Pathol 1973; 96:217–226.

    PubMed  CAS  Google Scholar 

  75. Gorbman A. Tumorous growth in the pituitary and trachea following radiotoxic dosages of 1131. Proc Soc Exp Biol Med 1949; 71:237–240.

    PubMed  CAS  Google Scholar 

  76. Doniach I, Williams ED. Development of thyroid and pituitary tumors in the rat two years after partial thyroidectomy. Br J Cancer 1962;16:222–231.

    PubMed  CAS  Google Scholar 

  77. Moore GE, Backney EL, Bock FG. Production of pituitary tumors in mice by chronic administration of a thiouracil derivative. Proc Soc Exp Biol Med 1953;82:643–645.

    PubMed  CAS  Google Scholar 

  78. Furth J, Moy P, Schalch DS, Ueda G. Gonadotropic activities of thyrotropic tumors: demonstration by immunohistochemical staining. Proc Soc Exp Biol Med 1973;142:1180–1184.

    PubMed  CAS  Google Scholar 

  79. Gershengorn MC, Marcus-Samuels BE, Geras E. Estrogens increase the number of thyrotropin-releasing hormone receptors on mammotropic cells in culture. Endocrinology 1979;105:171–176.

    PubMed  CAS  Google Scholar 

  80. Chin WW, Habner JF, Martorana MA, Keutman HT, Kieffer JD, Maloof F. Thyroid-stimulating hormone: isolation and partial characterization of hormone and subunits from a mouse thyrotrope tumor. Endocrinology 1980;107:1384–1392.

    PubMed  CAS  Google Scholar 

  81. Ridgway EC, Kieffer JD, Ross DS, Downing MF, Mover H, Chin WW. Mouse pituitary tumor line secreting only the a-subunit of the glycoprotein hormones: development from a thyrotropic tumor. Endocrinology 1983;113:1597–1601.

    Google Scholar 

  82. Ross DS, Kieffer JD, Shupnik MA, Ridgway EC. Pure α-subunit producing tumor derived from a thyrotropic tumor: impaired regulation of α-subunit and its mRNA by thyroid hormone. Mol Cell Endocrinol 1985;39:161–165.

    PubMed  CAS  Google Scholar 

  83. Akerblom IE, Ridgway EC, Mellon PL. An α-subunit-secreting cell line derived from a mouse thyrotrope tumor. Mol Endocrinol 1990;4:589–596.

    PubMed  CAS  Google Scholar 

  84. Stefaneanu L, Kovacs K, Horvath E, Scheithauer BW. The adeno-hypophysis. In: Stefaneanu L, Sasano H, Kovacs K, eds. Molecular and Cellular Endocrine Pathology. Arnold, London, 2000, 75–118.

    Google Scholar 

  85. Dickie MM, Wooley GW. Spontaneous basophilic tumors of the pituitary glands in gonadectomized mice. Cancer Res 1949; 16:372–384.

    Google Scholar 

  86. Dickie MM, Lane PW. Adrenal tumors, pituitary tumors and other pathological changes in Fl hybrids of strain DE x DBA. Cancer Res 1956;16:48–52.

    PubMed  CAS  Google Scholar 

  87. Billestrup N, Swanson LW, Vale W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Nat Acad Sci USA 1986;83:6854–6857.

    PubMed  CAS  Google Scholar 

  88. Stefaneanu L, Kovacs K, Horvath E, Clark RG, Cronin MJ. Effect of intravenous infusion of growth hormone-releasing hormone (GRH) on the morphology of rat pituitary somatotrophs. Endocr Pathol 1993;4:131–139.

    Google Scholar 

  89. Billestrup N, Mitchell RL, Vale W, Verma IM. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells. Mol Endocrinol 1987;1:300–305.

    PubMed  CAS  Google Scholar 

  90. Mayo KE, Hammer RE, Swanson LW, Brinster RL, Rosenfeld MG, Evans RM. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol Endocrinol 1988;2:606–612.

    PubMed  CAS  Google Scholar 

  91. Stefaneanu L, Kovacs K, Horvath E, Asa SL, Losinski NE, Billestrup N, et al. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor: a histological, immu-nocytochemical, and electron microscopic investigation. Endocrinology 1989;125:2710–2718.

    PubMed  CAS  Google Scholar 

  92. Lloyd RV, Jin L, Chang A, Kulig E, Camper SA, Ross BD, et al. Morphologic effects of hGRH gene expression on the pituitary, liver, and pancreas of MT-hGRH transgenic mice. An in situ hybridization analysis. Am J Pathol 1992;141:895–906.

    PubMed  CAS  Google Scholar 

  93. Asa SL, Kovacs K, Stefaneanu L, et al. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 1992;131:2083–2089.

    PubMed  CAS  Google Scholar 

  94. Thiny MT, Antczak C, Fields K, Jin L, Lloyd RV. Effects of estrogen and dexamethasone on a transgenic pituitary cell line. Regulation of hormone and chromogranin/secretogranin expression. Lab Invest 1994;70:899–906.

    PubMed  CAS  Google Scholar 

  95. Brar AK, Brinster RL, Frohman LA. Immunohistochemical analysis of human growth hormone-releasing hormone gene expression in transgenic mice. Endocrinology 1989;125:801–809.

    PubMed  CAS  Google Scholar 

  96. Osamura R, Oda K, Utsunomiya H, Inada M, Umerura S, Shibuya M, et al. Immunohistochemical expression of Pit-1 protein in pituitary glands of human GRF transgenic mice: Its relationship with hormonal Expressions. Endocr J 1993;40:133–139.

    PubMed  CAS  Google Scholar 

  97. Joubert D, Benlot C, Lagoguey A, et al. Normal and growth hormone (GH)-secreting adenomatous human pituitaries release somatostatin and GH-releasing hormone. J Clin Endocrinol Metab 1989;68:572–577.

    PubMed  CAS  Google Scholar 

  98. Levy A, Lightman SL. Growth hormone-releasing hormone transcripts in human pituitary adenomas. J Clin Endocrinol Metab 1992;74:1474–1476.

    PubMed  CAS  Google Scholar 

  99. Wakabayashi I, Inokuchi K, Hasegawa O, Sugihara H, Minami S. Expression of growth hormone (GH)-releasing factor gene in GH-producing pituitary adenoma. J Clin Endocrinol Metab 1992; 74:357–361.

    PubMed  CAS  Google Scholar 

  100. Murphy D, Bishop A, Rindi G, et al. Mice transgenic for a vaso-pressin-SV40 hybrid oncogene develop tumors of the endocrine pancreas and the anterior pituitary. A possible model for human multiple endocrine neoplasia type 1. Am J Pathol 1987; 129: 552–566.

    PubMed  CAS  Google Scholar 

  101. Stefaneanu L, Rindi G, Horvath E, Murphy D, Polak JM, Kovacs K. Morphology of adenohypophysial tumors in mice transgenic for vasopressin-SV40 hybrid oncogene. Endocrinology 1992; 130:1789–1795.

    PubMed  CAS  Google Scholar 

  102. Sumi T, Stefaneanu L, Kovacs K, Asa SL, Rindi G. Immunohistochemical study of p 53 protein in human and animal pituitary tumors. Endocr Pathol 1993;4:95–99.

    Google Scholar 

  103. Windle JJ, Weiner RI, Mellon PL. Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol 1990;4:597–603.

    PubMed  CAS  Google Scholar 

  104. Schechter J, Windle JJ, Stauber C, Mellon PL. Neural tissue within anterior pituitary tumors generated by oncogene expression in transgenic mice. Neuroendocrinology 1992;56:300–311.

    PubMed  CAS  Google Scholar 

  105. Albarracin CT, Frosch MP, Chin WW. The gonadotropin-releas-ing hormone receptor gene promoter directs pituitary-specific oncogene expression in transgenic mice. Endocrinology 1999; 140:2415–2421.

    PubMed  CAS  Google Scholar 

  106. Maki K, Miyoshi I, Kon Y, Yamashita T, Sasaki N, Aoyama S, et al. Targeted pituitary tumorigenesis using the human thyrotropin b-subunit chain promoter in transgenic mice. Mol Cell Endocrinol 1994; 105:147–154.

    PubMed  CAS  Google Scholar 

  107. Lew D, Brady H, Klausing K, Yaginuma K, Theill LE, Stauber C, et al. GHF-1 -promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice. Genes Dev 1993;7:683–693.

    PubMed  CAS  Google Scholar 

  108. Helseth A, Haug E, Nesland JM, Siegal GP, Fodstad O, Bautch VL. Endocrine and metabolic characteristics of polyoma large T transgenic mice that develop ACTH-producing pituitary tumors. J Neurosurg 1995;82:879–885.

    PubMed  CAS  Google Scholar 

  109. Arbeit JM, Munger K, Howley PM, Hanahan D. Neuroepithelial carcinomas in mice transgenic with human papillomavirus type 16 E6/E7 ORFs. Am J Pathol 1993;142:1187–1197.

    PubMed  CAS  Google Scholar 

  110. McAndrew, Paterson A, Asa SL, McCathy KJ, Kudlow JE. Targeting of transforming growth factor-a expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 1995; 136: 4479–4488.

    PubMed  CAS  Google Scholar 

  111. Borgundvaag B, Kudlow JE, Mueller SG, George SR. Dopamine receptor activation inhibits estrogen stimulated transforming growth factor-a gene expression and growth in anterior pituitary. Endocrinology 1992;130:3453–3458.

    PubMed  CAS  Google Scholar 

  112. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992;359:295–300.

    PubMed  CAS  Google Scholar 

  113. Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER Jr. p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery 1996;38:763–870.

    Google Scholar 

  114. Harvey M, Vogel H, Lee EY, Bradley A, Donehower LA: Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995; 55:1146–1151.

    PubMed  CAS  Google Scholar 

  115. Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rbl(+/-) mice. Nat Genet 1998;4:360–364.

    Google Scholar 

  116. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, et al. Mice lacking p27(Kipl) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85:707–720.

    PubMed  CAS  Google Scholar 

  117. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kipl). Cell 1996; 85:721–732.

    PubMed  CAS  Google Scholar 

  118. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kipl)-deficient mice. Cell 1996;85:733–744.

    PubMed  CAS  Google Scholar 

  119. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y. CDK inhibitors pJ8(IND4c) and p27(Kipl) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998;18:2899–2911.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stefaneanu, L. (2001). Experimental Models of Pituitary Tumorigenesis. In: Thapar, K., Kovacs, K., Scheithauer, B.W., Lloyd, R.V. (eds) Diagnosis and Management of Pituitary Tumors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-217-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-217-3_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9693-2

  • Online ISBN: 978-1-59259-217-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics