Skip to main content

Abstract

A number of reviews have summarized important insights on the role played by various nervous system structures in the control of locomotion (1–8). These reviews have also highlighted the remarkable locomotor capacities of the spinal cord after a complete spinal transection, which removes all the ascending and descending pathways normally exerting important control over spinal cord functions. The purpose of this chapter is to focus specifically on the locomotor capabilities of the spinal cat, not so much to show that “spinal” locomotion resembles “normal” locomotion but rather to illustrate the extent to which the spinal cord can express and adapt its locomotor functions in the absence of these regulatory mechanisms. Does this spinal behavior represent the contribution of the spinal cord to normal locomotion? Probably not, because in all pathologic conditions, the central nervous system utilizes whatever circuitry is available to optimize its functions. It is possible that some mechanisms are less important in the normal cat but become essential for locomotion after spinalization, such as some sensory afferents. Thus, a better understanding of the “physiopathology” of locomotion after spinal cord injury in animal models is important both in highlighting some of the principles that may help understand normal locomotion and in increasing our understanding of some of the mechanisms of recovery of a motor function following a spinal trauma. Such knowledge is important for improving the design of various types of therapeutic approaches in spinal-cord-injured patients (9,10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grillner, S. (1981) Control of locomotion in bipeds, tetrapods, and fish, in Handbook of physiology. The nervous system II ( Brookhart, J. M. and Mountcastle, V. B., eds.), American Physiological Society, Bethesda, MD, pp. 1179–1236.

    Google Scholar 

  2. Armstrong, D. M. (1986) Supraspinal contributions to the initiation and control of locomotion in the cat. Prog. Neurobiol. 26, 273–361.

    Article  PubMed  CAS  Google Scholar 

  3. Pearson, K. G. (1993) Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci. 16, 265–297.

    Article  PubMed  CAS  Google Scholar 

  4. Grillner, S. and Dubuc, R. (1988) Control of locomotion in vertebrates: spinal and supraspinal mechanisms, in Functional recovery in neurological disease ( Waxman, S. G., ed.), Raven, New York, pp. 425–453.

    Google Scholar 

  5. Rossignol, S. and Dubuc, R. (1994) Spinal pattern generation. Curt: Opin. Neurobiol. 4, 894–902.

    Article  CAS  Google Scholar 

  6. Rossignol, S. (1996) Neural control of stereotypic limb movements, in Handbook of physiology, Section 12. Exercise: regulation and integration of multiple systems ( Rowell, L. B. and Sheperd, J. T. eds.), American Physiological Society, Oxford, pp. 173–216.

    Google Scholar 

  7. Shik, M. L. and Orlovsky, G. N. (1976) Neurophysiology of locomotor automatism. Physiol Rev. 56, 465–500.

    PubMed  CAS  Google Scholar 

  8. Gelfand, I. M., Orlovsky, G. N., and Shik, M. L. (1988) Locomotion and scratching in tetrapods, in Neural control of rhythmic movements in vertebrates ( Cohen, A. H., Rossignol, S., and Grillner, S. eds.), John Wiley & Sons, New York, pp. 167–199.

    Google Scholar 

  9. Barbeau, H. and Rossignol, S. (1994) Enhancement of locomotor recovery following spinal cord injury. Curr. Opin. Neurol. 7, 517–524.

    Article  PubMed  CAS  Google Scholar 

  10. Rossignol, S. and Barbeau, H. (1995) New approaches to locomotor rehabilitation in spinal cord injury. Ann. Neurol. 37, 555–556.

    Article  PubMed  CAS  Google Scholar 

  11. Sherrington, C. S. (1899) On the spinal animal. Med. Chir. Trans. 82, 449–486.

    PubMed  CAS  Google Scholar 

  12. Sherrington, C. S. (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. 40, 28–121.

    PubMed  CAS  Google Scholar 

  13. Sherrington, C. S. (1910) Remarks on the reflex mechanism of the step.Brain. 33, 1–25.

    Article  Google Scholar 

  14. Brown, T. G. (1911) The intrinsic factors in the act of progression in the mammal. Proc R. Soc Lond. [Biol.] 84, 308–319.

    Article  Google Scholar 

  15. Shurrager, P. S. and Dykman, R. A. (1951) Walking spinal carnivores. J. Comp. Physiol. Psychol. 44, 252–262.

    Article  PubMed  CAS  Google Scholar 

  16. Grillner, S. (1973) Locomotion in the spinal cat, in Control of posture and locomotion, vol. 7 in Advances in Behavioral Biology (Stein, R. B., Pearson, K. G., Smith, R. S., et al., Plenum, eds. ), New York, pp. 515–535.

    Google Scholar 

  17. Forssberg, H., Grillner, S., and Sjostrom, A. (1974) Tactile placing reactions in chronic spinal kittens. Acta Physiol. Scand. 92, 114–120.

    Article  PubMed  CAS  Google Scholar 

  18. Forssberg, H., Grillner, S., and Halbertsma, J. (1980) The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta Physiol. Scand. 108, 269–281.

    Article  PubMed  CAS  Google Scholar 

  19. Forssberg, H., Grillner, S., Halbertsma, J., et al. (1980) The locomotion of the low spinal cat: II. Interlimb coordination. Acta Physiol. Scand. 108, 283–295.

    Article  PubMed  CAS  Google Scholar 

  20. Rossignol, S., Lund, J. P., and Drew, T. (1988) The role of sensory inputs in regulating patterns of rhythmical movements in higher vertebrates. A comparison between locomotion, respiration and mastication, in Neural control of rhythmic movements in vertebrates ( Cohen, A., Rossignol, S., and Grillner, S., eds.), John Wiley & Sons, New York, pp. 201–283.

    Google Scholar 

  21. Smith, J. L., Smith, L. A., Zernicke, R. F., et al. (1982) Locomotion in exercised and non-exercised cats cordotomized at two or twelve weeks of age. Exp. Neurol. 76, 393–413.

    Article  PubMed  CAS  Google Scholar 

  22. Bregman, B. S. and Goldberger, M. E. (1983) Infant lesion effect: I. Development of motor behavior following neonatal spinal cord damage in cats. Dev. Brain Res. 9, 103–117.

    Article  Google Scholar 

  23. Robinson, G. A. and Goldberger, M. E. (1986) The development and recovery of motor function in spinal cats. I. The infant lesion effect. Exp. Brain Res. 62, 373–386.

    Article  PubMed  CAS  Google Scholar 

  24. McCouch, G. P. (1947) Reflex development in the chronically spinal cat and dog. J. Neurophysiol. 10, 425–428.

    PubMed  CAS  Google Scholar 

  25. Kozak, W. and Westerman, R. (1966) Basic patterns of plastic change in the mammalian nervous system. Symp. Soc. Exp. Biol. 20, 509–544.

    PubMed  CAS  Google Scholar 

  26. Afelt, Z. (1970) Reflex activity in chronic spinal cats. Acta Neurobiol. Exp. 30, 129–144.

    CAS  Google Scholar 

  27. Afelt, Z. (1974) Functional significance of ventral descending tracts of the spinal cord in the cat. Acta Neurobiol. Exp. 34, 393–407.

    CAS  Google Scholar 

  28. Ten Cate, J. (1962) Innervation of locomotor movements by the lumbosacral cord in birds and mammals. J. Exp. Biol. 39, 239–242.

    PubMed  Google Scholar 

  29. Forssberg, H. and Grillner, S. (1973) The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res. 50, 184–186.

    Article  PubMed  CAS  Google Scholar 

  30. Eidelberg, E., Story, J. L., Meyer, B. L., et al. (1980) Stepping by chronic spinal cats. Exp. Brain Res. 40, 241–246.

    Article  PubMed  CAS  Google Scholar 

  31. Barbeau, H. and Rossignol, S. (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 412, 84–95.

    Article  PubMed  CAS  Google Scholar 

  32. Bélanger, M., Drew, T., Provencher, J., et al. (1996) A comparison of treadmill locomotion in adult cats before and after spinal transection. J. Neurophysiol. 76, 471–491.

    PubMed  Google Scholar 

  33. Chau, C., Barbeau, H., and Rossignol, S. (1998) Early locomotor training with cloni-dine in spinal cats. J. Neurophysiol. 59, 392–409.

    Google Scholar 

  34. Chau, C., Barbeau, H., and Rossignol, S. (1998) Effects of intrathecal ai-and a2 noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J. Neurophysiol. 79, 2941–2963.

    PubMed  CAS  Google Scholar 

  35. Julien, C. and Rossignol, S. (1982) Electroneurographic recordings with polymer cuff electrodes in paralyzed cats. J. Neurosci. Methods 5, 267–272.

    Article  PubMed  CAS  Google Scholar 

  36. Roy, R. R., Hodgson, J. A., Lauretz, S. D., et al. (1992) Chronic spinal cord-injured cats: surgical procedures and management. Lab. Anim. Scie. 42, 335–343.

    CAS  Google Scholar 

  37. Philippson, M. (1905) L’autonomie et la centralisation dans le système nerveux des animaux. Tray. Lab. Physiol. Inst. Solvay (Bruxelles) 7, 1–208.

    Google Scholar 

  38. Brustein, E. and Rossignol, S. (1998) Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J. Neurophysiol. 80, 1245–1267.

    PubMed  CAS  Google Scholar 

  39. Giroux, N., Rossignol, S., and Reader, T. A. (1999) Autoradiographic study of al-, a2-Noradrenergic and Serotonin IA receptors in the spinal cord of normal and chronically transected cats. J. Comp. Neurol. 406, 402–414.

    Article  PubMed  CAS  Google Scholar 

  40. Wisleder, D., Zernicke, R. F., and Smith, J. L. (1990) Speed-related changes in hindlimb intersegmental dynamics during the swing phase of cat locomotion. Exp. Brain Res. 79, 651–660.

    Article  PubMed  CAS  Google Scholar 

  41. Halbertsma, J. M. (1983) The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol stand. Suppl. 521, 1–75.

    CAS  Google Scholar 

  42. Pierotti, D. J., Roy, R. R., Gregor, R. J., et al. (1989) Electromyographic activity of cat hindlimb flexors and extensors during locomotion at varying speeds and inclines. Brain Res. 481, 57–66.

    Article  PubMed  CAS  Google Scholar 

  43. Forssberg, H., Grillner, S., and Rossignol, S. (1975) Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 85, 103–107.

    Article  PubMed  CAS  Google Scholar 

  44. Forssberg, H., Grillner, S., and Rossignol, S. (1977) Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res. 132, 121–139.

    Article  PubMed  CAS  Google Scholar 

  45. Jankowska, E., Jukes, M. G., Lund, S., et al. (1967) The effects of DOPA on the spinal cord. 6. Half centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol scand. 70, 389–402.

    Article  PubMed  CAS  Google Scholar 

  46. Jankowska, E., Jukes, M. G., Lund, S., et al. (1967) The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol scand. 70, 369–388.

    Article  PubMed  CAS  Google Scholar 

  47. Grillner, S. and Zangger, P. (1979) On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261.

    Article  PubMed  CAS  Google Scholar 

  48. Pearson, K. G. and Rossignol, S. (1991) Fictive motor patterns in chronic spinal cats. J. Neurophysiol. 66, 1874–1887.

    PubMed  CAS  Google Scholar 

  49. Viala, D. and Valin, A. (1972) Reflexe à longue latence et activités à caractère locomoteur chez le chat spinal aigu sous DOPA. J. Physiol. (Paris) 65, 518A

    Google Scholar 

  50. Baev, K. V. (1977) Rhythmic discharges in hindlimb motor nerves of the decerebrate, immobolized cat induced by intravenous injection of DOPA. Neurophysiology 9, 165–167.

    Article  Google Scholar 

  51. Chandler, S. H., Baker, L. L., and Goldberg, L. J. (1984) Characterization of synaptic potentials in hindlimb extensor motoneurons during L-Dopa-induced fictive locomotion in acute and chronic spinal cats. Brain Res. 303, 91–100.

    Article  PubMed  CAS  Google Scholar 

  52. Barbeau, H. and Rossignol, S. (1991) Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res. 546, 250–260.

    Article  PubMed  CAS  Google Scholar 

  53. Rossignol, S., Barbeau, H., and Julien, C. (1986) Locomotion of the adult chronic spinal cat and its modification by monoaminergic agonists and antagonists, in Development and plasticity of the mammalian spinal cord, ( Fidia Research Series III, Goldberger, M., Gorio, A., and Murray, M. eds.), Liviana Press, Padova, pp. 323–345.

    Google Scholar 

  54. Rossignol, S., Chau, C., and Barbeau, H. (1995) Pharmacology of locomotion in chronic spinal cats, in Alpha and gamma motor systems ( Taylor, A., Gladden, M. H., and Durbaba, R., eds.), Plenum, New York, pp. 449–455.

    Chapter  Google Scholar 

  55. Kiehn, O., Hultborn, H., and Conway, B. A. (1992) Spinal locomotor activity in acutely spinalized cats induced by intrathecal application of noradrenaline. Neurosci. Lett. 143, 243–246.

    Article  PubMed  CAS  Google Scholar 

  56. Barbeau, H., Chau, C., and Rossignol, S. (1993) Noradrenergic agonists and loco-motor training affect locomotor recovery after cord transection in adult cats. Brain Res. Bull. 30, 387–393.

    Article  PubMed  CAS  Google Scholar 

  57. Rossignol, S., Chau, C., Brustein, E., et al. (1996) Locomotor capacities after complete and partial lesions of the spinal cord. Acta Neurobiol Exp. 56, 449–463.

    CAS  Google Scholar 

  58. Barbeau, H., Julien, C., and Rossignol, S. (1987) The effects of clonidine and yohimbine on locomotion and cutaneous reflexes in the adult chronic spinal cat. Brain Res. 437, 83–96.

    Article  PubMed  CAS  Google Scholar 

  59. Barbeau, H. and Rossignol, S. (1990) The effects of serotonergic drugs on the loco-motor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res. 514, 55–67.

    Article  PubMed  CAS  Google Scholar 

  60. Zomlefer, M. R., Provencher, J., Blanchette, G., et al. (1984) Electromyographic study of lumbar back muscles during locomotion in acute high decerebrate and in low spinal cats. Brain Res. 290, 249–260.

    Article  PubMed  CAS  Google Scholar 

  61. Grillner, S., McClellan, A., Sigvardt, K., et al. (1981) Activation of NMDA-receptors elicits “fictive locomotion” in lamprey spinal cord in vitro.Acta Physiol scand. 113, 549–551.

    Article  CAS  Google Scholar 

  62. Brodin, L., Grillner, S., and Rovainen, C. M. (1985) N-methyl-D-aspartate (NMDA), kainate and quisqualate receptors and the generation of fictive locomotion in the lamprey spinal cord. Brain Res. 325, 302–306.

    Article  PubMed  CAS  Google Scholar 

  63. Sigvardt, K. A., Grillner, S., Wallen, P., et al. (1985) Activation of NMDA receptors elicits fictive locomotion and bistable properties in the lamprey spinal cord. Brain Res. 336, 390–395.

    Article  PubMed  CAS  Google Scholar 

  64. Cazalets, J. R., Grillner, P., Menard, I., et al. (1990) Two types of motor rhythm induced by NMDA and amines in an in vitro spinal cord preparation of neonatal rat. Neurosci. Lett. 111, 116–121.

    Article  PubMed  CAS  Google Scholar 

  65. Cowley, K. C. and Schmidt, B. J. (1994) A comparison of motor patterns induced by N-methyl-D-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord. Neurosci. Lett. 171, 147–150.

    Article  PubMed  CAS  Google Scholar 

  66. Maclean, J., Cowley, K. C., and Schmidt, B. J. (1998) NMDA receptor-mediated oscillatory activity in the neonatal rat spinal cord is serotonin dependent. J. Neurophysiol. 79, 2804–2808.

    PubMed  CAS  Google Scholar 

  67. Douglas, J. R., Noga, B. R., Dai, X., et al. (1993) The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. J. Neurosci. 13, 990–1000.

    PubMed  CAS  Google Scholar 

  68. Chau C, Provencher J, Lebel F, et al. (1994) Effects of intrathecal injection of NMDA receptor agonist and antagonist on locomotion of adult chronic spinal cats. Soc. Neurosci. Abstr. 20, 573.

    Google Scholar 

  69. Giroux N, Brustein E, Chau C, et al. (1998) Differential effects of the noradrenergic agonist clonidine on the locomotion of intact, partially and completely spinalized adult cats, in Neuronal mechanisms for generating locomotor activity ( Kiehn, O., Harris-Warrick, R. M., Jordan, L. M., et al., eds.), The New York Academy of Sciences, New York, NY, pp. 517–520.

    Google Scholar 

  70. Rossignol, S., Chau, C., Brustein, E., et al. (1998) Pharmacological activation and modulation of the central pattern generator for locomotion in the cat, in Neuronal mechanisms for generating locomotor activity (Kiehn, O., Harris-Warrick, R. M., Jordan, L. M., et al., eds.), pp. 346–359.

    Google Scholar 

  71. Giroux N, Lebel F, Provencher J, et al. (1998) The effects of intrathecal administration of the noradrenergic antagonist yohimbine on locomotion in adult intact cats. Soc. Neurosci. Abstr. 24, 917.

    Google Scholar 

  72. Brustein, E. and Rossignol, S. (1999) Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. The effects of noradrenergic and serotoninergic drugs. J. Neurophysiol. 81, 1513–1530.

    PubMed  CAS  Google Scholar 

  73. Wikstrom, M., Hill, R., Hellgren, J., et al. (1995) The action of 5-HT on calcium-dependent potassium channels and on the spinal locomotor network in lamprey is mediated by 5-HT 1A-like receptors. Brain Res. 678, 191–199.

    Article  PubMed  CAS  Google Scholar 

  74. Cazalets, J. R., Sqalli-Houssaini, Y., and Clarac, F. (1992) Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J. Physiol. 455, 187–204.

    PubMed  CAS  Google Scholar 

  75. Edgerton, V. R., Johnson, D. J., Smith, L. A., et al. (1983) Effects of treadmill exercises on hindlimb muscles of the spinal cat, in Spinal cord reconstruction ( Kao, C. C., Bunge, R. P., and Reier, P. J. eds.), Raven, New York, pp. 435–444.

    Google Scholar 

  76. De Leon, R., Hodgson, J. A., Roy, R. R., et al. (1998) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J. Neurophysiol. 79, 1329–1340.

    PubMed  Google Scholar 

  77. De Leon, R., Hodgson, J. A., Roy, R. R., et al. (1998) Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J. Neurophysiol. 80, 83–91.

    PubMed  Google Scholar 

  78. Edgerton, V. R., de Guzman, C. P., Gregor, R. J., et al. (1991) Trainability of the spinal cord to generate hindlimb stepping patterns in adult spinalized cats, in Neuro-biological basis of human locomotion ( Shimamura, M., Grillner, S., and Edgerton, V. R. eds.), Japan Scientific Societies Press, Tokyo, pp. 411–423.

    Google Scholar 

  79. Hodgson, J. A., Roy, R. R., De Leon, R., et al. (1994) Can the mammalian lumbar spinal cord learn a motor task? Med. Sci. Sports Exer. 26, 1491–1497.

    CAS  Google Scholar 

  80. Lovely, R. G., Gregor, R. J., Roy, R. R., et al. (1986) Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 92, 421–435.

    Article  PubMed  CAS  Google Scholar 

  81. Lovely, R. G., Gregor, R. J., Roy, R. R., et al. (1990) Weight-bearing hindlimb stepping in treadmill-exercised adult spinal cat. Brain Res. 514, 206–218.

    Article  PubMed  CAS  Google Scholar 

  82. Carrier, L., Brustein, L., and Rossignol, S. (1997) Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity. J. Neurophysiol. 77, 1979–1993.

    PubMed  CAS  Google Scholar 

  83. Rossignol, S., Bouyer, L. J. G., Whelan, R J., et al. (1997) Chronic spinal cats can recover locomotor function following transection of an extensor nerve. Soc. Neurosci. Abstr. 23, 761.

    Google Scholar 

  84. Bouyer, L. J. G., and Rossignol, S. (1998) The contribution of cutaneous inputs to locomotion in the intact and the spinal cat. Ann. N.Y. Acad. Sci. 860, 508–512.

    Article  PubMed  CAS  Google Scholar 

  85. Freeman, L. W. (1952) Return of function after complete transection of the spinal cord of the rat, cat and dog. Ann. Surg. 136, 193–205.

    Article  PubMed  CAS  Google Scholar 

  86. Goldberger, M. E. (1986) Autonomous spinal motor function and the infant lesion effect, in Development and plasticity of the mammalian spinal cord, Fidia Research Series. ( Goldberger, M. E., Gorio, A., and Murray, M., eds.), Liviana Press, Padova, pp. 363–380.

    Google Scholar 

  87. Miller, S. and Van der Meche, F. G. A. (1976) Coordinated stepping of all four limbs in the high spinal cat. Brain Res. 109, 395–398.

    Article  PubMed  CAS  Google Scholar 

  88. Zangger, P. (1981) The effect of 4-aminopyridine on the spinal locomotor rhythm induced by L-Dopa. Brain Res. 215, 211–223.

    Article  PubMed  CAS  Google Scholar 

  89. Ranson, S. W. and Hinsey, J. C. (1930) Reflexes in the hind limbs of cats after tran-section of the spinal cord at various levels. Am. J. Physiol. 94, 471–495.

    Google Scholar 

  90. Baker, L. L., Chandler, S. H., and Goldberg, L. J. (1984) L-Dopa induced locomotorlike activity in ankle flexor and extensor nerves of chronic and acute spinal cats. Exp. Neurol. 86, 515–526.

    Article  PubMed  CAS  Google Scholar 

  91. Robinson, G. A. and Goldberger, M. E. (1986) The development and recovery of motor function in spinal cats. H. Pharmacological enhancement of recovery. Exp. Brain Res. 62, 387–400.

    Article  PubMed  CAS  Google Scholar 

  92. Giuliani, C. A. and Smith, J. L. (1987) Stepping behaviors in chronic spinal cats with one hindlimb deafferented. J. Neurosci. 7, 2537–2546.

    PubMed  CAS  Google Scholar 

  93. Rossignol, S., Bélanger, M., Barbeau, H., et al. (1989) Assessment of locomotor functions in the adult chronic spinal cat. Conference proceedings: criteria for assessing recovery of function: behavioral methods. APA, Springfield, NJ, pp. 10–11.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rossignol, S. et al. (2000). The Spinal Cat. In: Kalb, R.G., Strittmatter, S.M. (eds) Neurobiology of Spinal Cord Injury. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-200-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-200-5_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-126-4

  • Online ISBN: 978-1-59259-200-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics