Skip to main content

Immune Reconstitution with Antiretroviral Chemotherapy

  • Chapter
Immunotherapy for Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 142 Accesses

Abstract

Infection with HIV-1 results in the progressive loss of CD4+ T-lymphocytes and a variety of immune functions, leading ultimately to premature death in most untreated individuals. The introduction of potent combination antiretroviral chemotherapy for HIV-1 infection in the mid-1990s resulted in unprecedented decreases in HIV-1 replication and increases in CD4+ T-cell counts in many treated individuals. Simultaneous to the introduction of potent combination antiviral drug therapy, substantial declines in morbidity and mortality from HIV-1-associated illnesses have been observed. The study of immune reconstitution in the context of viral suppression has already provided some important insights into the immune pathogenesis of HIV-1. Many questions remain, however, concerning the extent and clinical significance of the immune reconstitution that occurs in the setting of antiretroviral drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammer SM, Katzenstein DA, Hughes MD, et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. AIDS Clinical Trials Group Study 175 Study Team. N Engl J Med 1996; 335: 1081–1090.

    PubMed  CAS  Google Scholar 

  2. Delta Coordinating Committee. Delta: a randomized double-blind controlled trial comparing combinations of zidovudine plus didanosine or zalcitabine with zidovudine alone in HIV-infected individuals. Lancet 1996; 348: 283–291.

    Google Scholar 

  3. Marschner IC, Collier AC, Coombs RW, et al. Use of changes in plasma levels of human immunodeficiency virus type 1 RNA to assess the clinical benefit of antiretroviral therapy. J Infect Dis 1998; 177: 40–47.

    PubMed  CAS  Google Scholar 

  4. Katzenstein DA, Hammer SM, Hughes MD, et al. The relation of virologic and immunologic markers to clinical outcomes after nucleoside therapy in HIV infected adults with 200 to 500 CD4 cells per cubic millimeter. AIDS Clinical Trials Group Study 175 Virology Study Team. N Engl J Med 1996; 335: 1091–1098.

    PubMed  CAS  Google Scholar 

  5. Collier AC, Coombs RW, Schoenfeld DA, et al. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. AIDS Clinical Trials Group. N Engl J Med 1996; 334: 1011–1017.

    PubMed  CAS  Google Scholar 

  6. Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997; 337: 725–733.

    PubMed  CAS  Google Scholar 

  7. Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 1997; 337: 734–739.

    PubMed  CAS  Google Scholar 

  8. D’Aquila RT, Hughes MD, Johnson VA, et al. Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV-1 infection. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1996; 124: 1019–1030.

    PubMed  Google Scholar 

  9. Riddler S, Stein D, Mayers D, et al. Durable clinical anti-HIV-1 activity (48 weeks) and tolerability (24 weeks) for DMP 266 in combination with indinavir (IDV): DMP 266–003, Cohort IV. In: Abstracts of the 35th Annual Meeting of the Infectious Diseases Society of America, San Francisco, CA, 1997 [Abstract 770].

    Google Scholar 

  10. Albrecht M, Katzenstein D, Bosch RJ, et al. ACTG 364: virologie efficacy of nelfinavir (NFV) and/or efavirenz (EFV) in combination with new nucleoside analogs in nucleoside experienced subjects. In: Proceedings of the XII World AIDS Conference, Geneva, Switzerland, 1998 [Abstract 122031.

    Google Scholar 

  11. Murphy RL, Gulick R, Smeaton L, et al. Treatment with indinavir, nevirapine, stavudine, and 3TC following therapy with an amprenavir-containing regimen [Abstract OP2.4]. AIDS 1998; 12 (suppl 4): 59.

    Google Scholar 

  12. Murphy RL, Gulick RM, DeGruttola V, et al. Treatment with amprenavir alone or amprenavir with zidovudine and lamivudine in adults with human immunodeficiency virus infection. AIDS Clinical Trials Group 347 Study Team. J Infect Dis 1999; 179: 808–816.

    PubMed  CAS  Google Scholar 

  13. Carpenter CC, Cooper DA, Fischl MA, et al. Antiretroviral therapy in adults. Updated recommendations of the international AIDS society-USA panel. JAMA 2000; 283: 381–390.

    PubMed  CAS  Google Scholar 

  14. Centers for Disease Control and Prevention. HIV/AIDS Surveillance Report, no. 10. Atlanta, GA: CDC, 1999, p. 38.

    Google Scholar 

  15. Jones JL, Hanson DL, Dworkin MS, et al. Surveillance for AIDS-defining opportunistic illnesses, 1992–1997. MMWR 1999; 48: 1–22.

    PubMed  Google Scholar 

  16. Patella FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338: 853–860.

    Google Scholar 

  17. Brodt HR, Kamps BS, Gute P, et al. Changing incidence of AIDS-defining illnesses in the era of antiretroviral combination therapy. AIDS 1997; 11: 1731–1738.

    PubMed  CAS  Google Scholar 

  18. Egger M, Hirschel B, Francioli P, et al. Impact of new antiretroviral combination therapies in HIV infected people in Switzerland: prospective multicentre study. BMJ 1997; 315: 1194–1199.

    PubMed  CAS  Google Scholar 

  19. Holtzer CD, Jacobson MA, Hadley WK, et al. Decline in the rate of specific opportunistic infections at San Francisco General Hospital (SFGH): 1994–1997 [Letter]. AIDS 1998; 12: 1931–1933.

    PubMed  CAS  Google Scholar 

  20. Mocroft A, Vella S, Benfield TL, et al. Changing patterns of mortality across Europe in patients infected with HIV-1. EuroSIDA Study Group. Lancet 1998; 352: 1725–1730.

    PubMed  CAS  Google Scholar 

  21. Correll PK, Law MG, McDonald AM, et al. HIV disease progression in Australia in the time of combination antiretroviral therapies. Med J Aust 1998; 169: 469–472.

    PubMed  CAS  Google Scholar 

  22. Hogg RS, Heath KV, Yip B, et al. Improved survival among HIV-infected individuals following initiation of antiretroviral therapy. JAMA 1998; 279: 450–454.

    PubMed  CAS  Google Scholar 

  23. Pezzotti P, Dal Maso L, Serraino D, et al. Has the spectrum of AIDS-defining illnesses been changing since the introduction of new treatments and combination of treatments? [Letter]. J Acquir Immun Defic Syndr Hum Retroviruses 1999; 20: 515–516.

    CAS  Google Scholar 

  24. Paul S, Gilbert HM, Ziecheck W, et al. The impact of potent antiretroviral therapy on the characteristics of hospitalized patients with HIV infection. AIDS 1999; 13: 415–418.

    PubMed  CAS  Google Scholar 

  25. Cameron DW, Heath-Chiozzi M, Danner S, et al. Randomized, placebo-controlled trial of ritonavir in advanced HIV-1 disease. The Advanced HIV Disease Ritonavir Study Group. Lancet 1998; 351: 543–549.

    PubMed  CAS  Google Scholar 

  26. Hirsh M for Protocol 039 (Indinavir) Study Group, Meibohm A, Rawlins S, et al. Indinavir (IDV) in combination with zidovudine (ZDV) and lamivudine (3TC) in ZDV-experienced patients with CD4 cell counts 50 cells/mm3. In: Abstracts of the 4th Conference on Retroviruses and Opportunistic Infections, Washington, DC, 1997 [Abstract #LB7].

    Google Scholar 

  27. Baqi M, Kucharczyk W, Walmsley SL. Regression of progressive multifocal leukoencephalopathy with highly active antiretroviral therapy [Letter]. AIDS 1997; 11: 1526–1527.

    PubMed  CAS  Google Scholar 

  28. Baldeweg T, Catalan J. Remission of progressive multifocal leukoencephalopathy after antiretroviral therapy. Lancet 1997; 349: 1554–1555.

    PubMed  CAS  Google Scholar 

  29. Domingo P, Guardiola JM, Iranzo A, et al. Remission of progressive multifocal leukoencephalopathy after antiretroviral therapy. Lancet 1997; 349: 1554–1555.

    PubMed  CAS  Google Scholar 

  30. Elliot B, Aromin I, Gold R, et al. 2.5 year remission of AIDS-associated progressive multifocal leukoencephalopathy with combined antiretroviral therapy [Letter]. Lancet 1997; 349: 850.

    PubMed  CAS  Google Scholar 

  31. Power C, Nath A, Aoki FY, Bigio MD. Remission of progressive multifocal leukoencephalopathy following splenectromy and antiretroviral therapy in a patient with HIV infection. N Engl J Med 1997; 336: 661–662.

    PubMed  CAS  Google Scholar 

  32. Cinque P, Casari S, Bertelli D. Progressive multifocal leukoencephalopathy, HIV, and highly active antiretroviral therapy. N Engl J Med 1998; 339: 848–849.

    PubMed  CAS  Google Scholar 

  33. Albrecht H, Hoffmann C, Degen O, et al. Highly active antiretroviral therapy significantly improves the prognosis of patients with HIV-associated progressive multifocal leukoencephalopathy. AIDS 1998; 12: 1149–1154.

    PubMed  CAS  Google Scholar 

  34. Can A, Marriott D, Field A, Vasak E, et al. Treatment of HIV-1-associated microsporidiosis and cryptosporidiosis with combination antiretroviral therapy. Lancet 1998; 351: 256–261.

    Google Scholar 

  35. Goguel J, Katlama C, Sarfati C, et al. Remission of AIDS-associated intestinal microsporidiosis with combined antiretroviral therapy. In: Abstracts of the 37th Inter-science Conference on Antimicrobial Agents and Chemotherapy. Toronto, Canada, 1997 [Abstr. #I-32].

    Google Scholar 

  36. Zingman BS. Resolution of refractory AIDS-related mucosal candidiasis after initiation of didanosine plus saquinavir. N Engl J Med 1996; 334: 1674–1675.

    PubMed  CAS  Google Scholar 

  37. Valdez H, Gripshover BM, Salata RA, et al. Resolution of azole-resistant oropharyngeal candidiasis after initiation of potent combination antiretroviral therapy [Letter]. AIDS 1998; 12: 538.

    PubMed  CAS  Google Scholar 

  38. Hicks CB, Myers SA, Giner J. Resolution of intractable molluscum contagiosum in a human immunodeficiency virus infected patient after institution of antiretroviral therapy with ritonavir. Clin Infect Dis 1997; 24: 1023–1025.

    PubMed  CAS  Google Scholar 

  39. Hurni MA, Bohlen L, Furrer H, et al. Complete regression of giant molluscum contagio-sum lesions in an HIV-infected patient following combined antiretroviral therapy with saquinavir, zidovudine and lamivudine. AIDS 1997; 11: 1784–1785.

    PubMed  CAS  Google Scholar 

  40. Murphy M, Armstrong D, Sepkowitz KA, et al. Regression of AIDS related Kaposi’s sarcoma following treatment with an HIV-1 protease inhibitor. AIDS 1997; 11: 261–262.

    PubMed  CAS  Google Scholar 

  41. Conant MA, Opp KM, Poretz D, et al. Reduction of Kaposi’s sarcoma lesions following treatment of AIDS with ritonavir. AIDS 1997; 11: 1300–1301.

    PubMed  CAS  Google Scholar 

  42. Parra R, Leal M, Delgado J, et al. Regression of invasive AIDS-related Kaposi’s sarcoma following antiretorviral therapy. Clin Infect Dis 1998; 26: 218–219.

    PubMed  CAS  Google Scholar 

  43. Uthayakumar S, Birthistle K, Dalton R, Hay PE. Cytomegalovirus retinitis after initiation of highly active antiretroviral therapy. Lancet 1997; 350: 588–589.

    PubMed  CAS  Google Scholar 

  44. Jabs DA, Bolton SG, Dunn JP, et al. Discontinuing anticytomegalovirus therapy in patients with immune reconstitution after combination antiretroviral therapy. Am J Ophthalmol 1998; 126: 817–822.

    PubMed  CAS  Google Scholar 

  45. Whitcup S, Fortin E, Lindblad A, et al. Discontinuation of anticytomegalovirus therapy in patients with HIV infection and cytomegalovirus retinitis. JAMA 1999; 282: 1633–1637.

    PubMed  CAS  Google Scholar 

  46. Aberg JA, Yajko DM, Jacobson MA. Eradication of AIDS-related disseminated mycobacterium avium complex infection after 12 months of antimycobacterial therapy combined with highly active antiretroviral therapy. J Infect Dis 1998; 178: 1446–1449.

    PubMed  CAS  Google Scholar 

  47. Weverling GJ, Mocroft A, Ledergerber B, et al. Discontinuation of Pneumocystis carinii pneumonia prophylaxis after start of highly active antiretroviral therapy in HIV-1 infection. EuroSIDA Study Group. Lancet 1999; 353: 1293–1298.

    PubMed  CAS  Google Scholar 

  48. Schneider MME, Borleffs JCC, Stolk RP, et al. Discontinuation of Pneumocystis carinii pneumonia prophylaxis in HIV-1 infected patients treated with highly active antiretroviral therapy. Lancet 1999; 353: 201–203.

    PubMed  CAS  Google Scholar 

  49. Dworkin M, Hanson D, Jones J, et al. The risk for Pneumocystis carinii pneumonia (PCP) and disseminated nontuberculous mycobacteriosis (dMb) after an antiretroviral therapy (ART) associated increase in the CD4+ T lymphocyte count. In: Abstracts of the 6th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, 1999 [Abstract No. 692].

    Google Scholar 

  50. Lopez JC, Pena JM, Miro JM, et al. Discontinuation of PCP prophylaxis (PRO) is safe in HIV-infected patients (PTS) with immunological recovery with HAART. Preliminary results of an open randomized and multicenter clinical trial (GESIDA 04/98). In: Abstracts of the 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, 1999 [Abstract No. LB7].

    Google Scholar 

  51. Furrer H, Egger M, Opravil M, et al. Discontinuation of primary prophylaxis against Pneumocystis carinii pneumonia in HIV-1-infected adults treated with combination antiretroviral therapy. Swiss Cohort Study. N Engl J Med 1999; 340: 1301–1306.

    PubMed  CAS  Google Scholar 

  52. Currier JS, Williams PL, Koletar SL, et al. Discontinuation of Mycobacterium avium complex prophylaxis in patients with antiretroviral therapy-induced increases in CD4+ cell count. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2000; 133: 493–503.

    PubMed  CAS  Google Scholar 

  53. El-Sadr WM, Burman WJ, Grant LB, et al. Discontinuation of prophylaxis for Mycobacterium avium complex disease in HIV-infected patients who have a response to antiretroviral therapy. Terry Beim Community Programs for Clinical Research on AIDS. N Engl J Med 2000; 243: 1085–1092.

    Google Scholar 

  54. Furrer H, Telenti A, Rossi M, Ledergerber B. Discontinuing or withholding primary prophylaxis against Mycobacterium avium in patients on successful antiretroviral combination therapy. The Swiss HIV Cohort Study. AIDS 2000; 14: 1409–1412.

    PubMed  CAS  Google Scholar 

  55. Anonymous. 1999 USPHS/IDSA guidelines for the prevention of opportunistic infections in persons infected with human immunodeficiency virus. MMWR 1999; 48: 1–59.

    Google Scholar 

  56. Jacobson MA, Zegans M, Pavan PR, et al. Cytomegalovirus retinitis after highly active antiretroviral therapy. Lancet 1997; 349: 1443–1445.

    PubMed  CAS  Google Scholar 

  57. Gilquin J, Piketty C, Thomas V, et al. Acute cytomegalovirus infection in AIDS patients with CD4 counts above 100 X 10(6) cells/1 following combination antiretroviral therapy including protease inhibitors [Letter]. AIDS 1997; 11: 1659–1660.

    PubMed  CAS  Google Scholar 

  58. Karavellas MP, Lowder CY, Macdonald JC, Avila CP, Freeman WR. Immune recovery vitritis associated with inactive cytomegalovirus retinitis: a new syndrome. Arch Ophthalmol 1998; 116: 169–175.

    PubMed  CAS  Google Scholar 

  59. Mayo J, Collazos J, Martinez E. Progressive multifocal leukoencephalopathy following initiation of highly active antiretroviral therapy. AIDS 1998; 12: 1720–1722.

    PubMed  CAS  Google Scholar 

  60. Kotecha N, George MJ, Smithe TW, et al. Enhancing progressive multifocal leukoencephalopathy: an indicator of improved immune status? Am J Med 1998; 105: 541–543.

    PubMed  CAS  Google Scholar 

  61. Race EM, Adelson-Mitty JA, Kriegel GR, et al. Focal mycobacterial lymphadenitis following initiation of protease-inhibitor therapy in patients with advanced HIV-1 disease. Lancet 1998; 351: 252–255.

    PubMed  CAS  Google Scholar 

  62. Chien JW, Johnson JL. Paradoxical reactions in HIV and pulmonary TB. Chest 1998; 114: 933–936.

    PubMed  CAS  Google Scholar 

  63. Foudraine NA, Hovenkamp E, Notermans DW, et al. Immunopathology as a result of highly active antiretroviral therapy in HIV-1-infected patients. AIDS 1999; 13: 177–184.

    PubMed  CAS  Google Scholar 

  64. Carr A, Cooper DA. Restoration of immunity to chronic hepatitis B infection in HIV-infected patient on protease inhibitor. Lancet 1997; 349: 995–996.

    PubMed  CAS  Google Scholar 

  65. Vento S, Garofano T, Renzini C, et al. Enhancement of hepatitis C virus replication and liver damage in HIV-coinfected patients on antiretroviral combination therapy [Letter]. AIDS 1998; 12: 116–117.

    PubMed  CAS  Google Scholar 

  66. Zietz C, Bogner JR, Goebel FD, et al. An unusual cluster of cases of Castleman’s disease during highly active antiretroviral therapy for AIDS (letter). N Engl J Med 1999; 340: 1923–1924.

    PubMed  CAS  Google Scholar 

  67. Law MG, de Winter L, McDonald A, et al. AIDS diagnoses at higher CD4 counts in Australia following the introduction of highly active antiretroviral treatment. AIDS 1999; 13: 263–269.

    PubMed  CAS  Google Scholar 

  68. Miller V, Mocroft A, Reiss P, et al. Relations among CD4 lymphocyte count nadir, antiretroviral therapy, and HIV-1 disease progression: results from the EuroSIDA study. Ann Intern Med 1999; 130: 570–577.

    PubMed  CAS  Google Scholar 

  69. Ledergerber B, Egger M, Erard V, et al. AIDS-related opportunistic illnesses occurring after initiation of potent antiretroviral therapy: the Swiss HIV cohort study. JAMA 1999; 282: 2220–2226.

    PubMed  CAS  Google Scholar 

  70. Johnson SC, Benson CA, Johnson DW, Weinberg A. Recurrence of cytomegalovirus retinitis in a human immunodeficiency virus-infected patient, despite potent antiretroviral therapy and apparent immune reconstitution. Clin Infect Dis 2001; 32: 815–819.

    PubMed  CAS  Google Scholar 

  71. Jones JL, Hanson DL, Dworkin MS, et al. Effect of antiretroviral therapy on recent trends in selected cancers among HIV-infected persons. Adult/Adolescent Spectrum of HIV Disease Project. J Acquir Immun Defic Syndr 1999; 21:Suppl 1: 11–17.

    Google Scholar 

  72. Sparano JA, Anand K, Desai J, et al. Effect of highly active antiretroviral therapy on the incidence of HIV-associated malignancies at an urban medical center. J Acquir Immun Defic Syndr 1999; 21:Suppl 1: S18 - S22.

    Google Scholar 

  73. Rabkin CS, Testa MA, Huang J, Von Roenn JH. Kaposi’s sarcoma and non-Hodgkin’s lymphoma incidence trends in AIDS clinical trial group study participants. J Acquir Immun Defic Syndr 1999; 21: S31 - S33.

    CAS  Google Scholar 

  74. Jacobson LP, Yamashita TE, Detels R, et al. Impact of potent antiretroviral therapy on the incidence of Kaposi’s sarcoma and non-Hodgkin’s lymphomas among HIV-1-infected individuals. Multicenter AIDS Cohort Study. J Acquir Immun Defic Syndr 1999; 21:Suppl 1: S34 - S41.

    Google Scholar 

  75. Grulich AE. AIDS-associated non-Hodgkin’s lymphoma in the era of highly active antiretroviral therapy. J Acquir Immun Defic Syndr 1999; 21:Suppl 1: S27 - S30.

    Google Scholar 

  76. Dolan M.J., Clerici M., Blatt S.P., et al. In vitro T cell function, delayed type hypersensitivity skin testing, and CD4+ T cell subset phenotyping independently predict survival time in patients infected with human immunodeficiency virus. J Infect Dis 1995; 172: 79–87.

    PubMed  CAS  Google Scholar 

  77. Connick E, Lederman MM, Kotzin BL, et al. Immune reconstitution in the first year of potent antiretroviral therapy and its relationship to virologic response. J Infect Dis 2000; 181: 358–363.

    PubMed  CAS  Google Scholar 

  78. Autran B, Carcelain G, Li TS, et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112–116.

    PubMed  CAS  Google Scholar 

  79. Pakker NG, Roos M, Leeuwen R, et al. Patterns of T-cell repopulation, virus load reduction, and restoration of T-cell function in HIV-infected persons during therapy with different antiretroviral agents. J Acquir Immun Defic Syndr Hum Retroviruses 1997; 16: 318–326.

    CAS  Google Scholar 

  80. Li TS, Tubiana R, Katlama C, et al. Long-lasting recovery in CD4 T-cell function and viral-load reduction after highly active antiretroviral therapy in advanced HIV-1 disease. Lancet 1998; 351: 1682–1686.

    PubMed  CAS  Google Scholar 

  81. Pakker NG, Notermans DW, de Boer RI, et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nat Med 1998; 4: 208–214.

    PubMed  CAS  Google Scholar 

  82. Gray CM, Schapiro JM, Winters MA, et al. Changes in CD4+ and CD8+ T cell subsets in response to highly active antiretroviral therapy in HIV type 1-infected patients with prior protease inhibitor experience. AIDS Res Hum Retroviruses 1998; 14: 561–569.

    PubMed  CAS  Google Scholar 

  83. Giorgi JV, Majchrowicz MA, Johnson TD, et al. Immunologic effects of combined protease inhibitor and reverse transcriptase inhibitor therapy in previously treated chronic HIV-1 infection. AIDS 1998; 12: 1833–1844.

    PubMed  CAS  Google Scholar 

  84. Bisset LR, Cone RW, Huber W, et al. Highly active antiretroviral therapy during early HIV infection reverses T-cell activation and maturation abnormalities. AIDS 1998; 12: 2115–2123.

    PubMed  CAS  Google Scholar 

  85. Wu H, Connick E, Kuritzkes DR, et al. Multiple CD4+ cell kinetic patterns and their relationships with baseline factors and virologic responses in HIV-1 patients receiving HAART. AIDS Res Human Retroviruses 2001; 13: 1231–1240.

    Google Scholar 

  86. Renaud M, Katlama C, Mallet A, et al. Determinants of paradoxical CD4 cell reconstitution after protease inhibitor-containing antiretroviral regimen. AIDS 1999; 13: 669–676.

    PubMed  CAS  Google Scholar 

  87. Lederman MM, Connick E, Landay A, et al. Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS clinical trials group protocol 315. J Infect Dis 1998; 178: 70–79.

    PubMed  CAS  Google Scholar 

  88. Drusano GL, Stein DS. Mathematical modeling of the interrelationship of CD4 lymphocyte count and viral load changes induced by the protease inhibitor indinavir. Antimicrob Agents Chemother 1998; 42: 358–361.

    PubMed  CAS  Google Scholar 

  89. Lederman MM, McKinnis R, Kelleher D, et al. Cellular restoration in HIV infected persons treated with abacavir and a protease inhibitor: age inversely predicts naïve CD4 cell count increase. AIDS 2000; 14: 2635–2642.

    PubMed  CAS  Google Scholar 

  90. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373: 117–122.

    PubMed  CAS  Google Scholar 

  91. Ho DD, Neumann AU, Perelson AS. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373: 123–126.

    PubMed  CAS  Google Scholar 

  92. Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271: 1582–1586.

    PubMed  CAS  Google Scholar 

  93. Haase AT, Nehry K, Zupancic M, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 1996; 274: 985–989.

    PubMed  CAS  Google Scholar 

  94. Andersson J, Fehniger TE, Patterson BK, et al. Early reduction of immune activation in lymphoid tissue following highly active HIV therapy. AIDS 1998; 12: F123 - F129.

    PubMed  CAS  Google Scholar 

  95. Bucy RP, Hockett RD, Derdeyn CA, et al. Initial increase in blood CD4+ lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J Clin Invest 1999; 103: 1391–1398.

    PubMed  CAS  Google Scholar 

  96. Badley AD, Dockrell DH, Algeciras A, et al. In vivo analysis of Fas/FasL interactions in HIV-infected patients. J Clin Invest 1998; 102: 79–87.

    PubMed  CAS  Google Scholar 

  97. Zhang Z, Notermans DW, Sedgewick G, et al. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proc Natl Acad Sci 1998; 95: 1154–1159.

    PubMed  CAS  Google Scholar 

  98. Hellerstein M, Hanley MB, Cesar D, et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med 1999; 5: 83–89.

    PubMed  CAS  Google Scholar 

  99. Connors M, Kovacs JA, Krevat S, et al. HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nat Med 1997; 3: 533–540.

    PubMed  CAS  Google Scholar 

  100. Gorochov G, Neumann AU, Kereveur A, et al. Perturbation of CD4+ and CD8+ T-cell repertoires during progression to AIDS and regulation of the CD4+ repertoire during antiviral therapy. Nat Med 1998; 4: 215–221.

    PubMed  CAS  Google Scholar 

  101. Kostense S, Raaphorst FM, Notermans DW, et al. Diversity of the T-cell receptor BV repertoire in HIV-1-infected patients reflects the biphasic CD4+ T-cell repopulation kinetics during highly active antiretroviral therapy. AIDS 1998; 12: F235 - F240.

    PubMed  CAS  Google Scholar 

  102. Hakim FT, Cepeda R, Kaimei S, et al. Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 1997; 90: 3789–3798.

    PubMed  CAS  Google Scholar 

  103. Bell EB, Sparshott SM. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature 1990; 348: 163–166.

    PubMed  CAS  Google Scholar 

  104. Walker RE, Carter CS, Muul L, et al. Peripheral expansion of pre-existing T cells is an important means of CD4+ T-cell regeneration in HIV-infected adults. Nat Med 1998; 4: 852–856.

    PubMed  CAS  Google Scholar 

  105. Douek DC, McFarland RD, Keiser PH, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998; 396: 690–695.

    PubMed  CAS  Google Scholar 

  106. McCune JM, Hanley MB, Cesar D, et al. Factors influencing T-cell turnover in HIV-1seropositive patients. J Clin Invest 2000; 105: 565–616.

    Google Scholar 

  107. Hazenberg MD, Otto SA, Cohen Stuart JW, et al. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nature Med 2000; 6: 1036–1042.

    PubMed  CAS  Google Scholar 

  108. Notermans DW, Pakker NG, Hamann D, et al Immune reconstitution after 2 years of successful potent antiretroviral therapy in previously untreated human immunodeficiency virus type 1-infected adults. J Infect Dis 1999; 180: 1050–1056.

    PubMed  CAS  Google Scholar 

  109. Valdez H, Connick E, Lederman M, et al. T-lymphocyte changes after 3 years of controlled viral replication. In: 8th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, 2001 [Abstract 372].

    Google Scholar 

  110. Grabar S, Le Moing V, Goujard C, et al. Clinical outcome of patients with HIV-1 infection according to immunologic and virologic response after 6 months of highly active antiretroviral therapy. Ann Intern Med 2000; 133: 401–410.

    PubMed  CAS  Google Scholar 

  111. Clerici M, Stocks NI, Zajac RA, et al. Detection of three distinct patterns of T helper cell dysfunction in asymptomatic human immunodeficiency virus-seropositive patients: independence of CD4+ cell numbers and clinical staging. J Clin Invest 1989; 84: 1892–1899.

    PubMed  CAS  Google Scholar 

  112. Dolan MI, Clerici M, Blatt SP, et al. In vitro T cell function, delayed type hypersensitivity skin testing, and CD4+ T cell subset phenotyping independently predict survival time in patients infected with human immunodeficiency virus. J Infect Dis 1995; 172: 79–87.

    PubMed  CAS  Google Scholar 

  113. Rinaldo CR Jr, Liebmann JM, Huang XL, et al. Prolonged suppression of human immunodeficiency virus type 1 (HIV-1) viremia in persons with advanced disease results in enhancement of CD4 T cell reactivity to microbial antigens but not to HIV-1 antigens. J Infect Dis 1999; 179: 329–336.

    PubMed  Google Scholar 

  114. Komanduri KV, Viswanathan MN, Wieder ED, et al. Restoration of cytomegalovirusspecific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nat Med 1998; 4: 953–956.

    PubMed  CAS  Google Scholar 

  115. Pontesilli O, Kerkhof-Garde S, Notermans DW, et al. Functional T cell reconstitution and human immunodeficiency virus- 1-specific cell-mediated immunity during highly active antiretroviral therapy. J Infect Dis 1999; 180: 76–86.

    PubMed  CAS  Google Scholar 

  116. Al-Harthi L, Siegel J, Spritzler J, Pottage J, Agnoli M, Landay A. Maximum suppression of HIV replication leads to the restoration of HIV-specific responses in early HIV disease. AIDS 2000; 14: 761–770.

    PubMed  CAS  Google Scholar 

  117. Valdez H, Smith K, Landay A, et al. Response to immunization with recall and neoantigens after prolonged administration of an HIV-1 protease inhibitor-containing regimen. AIDS 2000; 14: 11–21.

    PubMed  CAS  Google Scholar 

  118. Blatt SP, Hendrix CW, Butzin CA, et al. Delayed-type hypersensitivity skin testing predicts progression to AIDS in HIV-infected patients. Ann Intern Med 1993; 119: 177–184.

    PubMed  CAS  Google Scholar 

  119. Thompson NJ, Glasroth J, Sinder D, et al. The booster phenomenon in serial tuberculin testing. Am Rev Respir Dis 1979; 119: 587–597.

    PubMed  CAS  Google Scholar 

  120. Fleming C, Cilento J, Steger K, McNamara E, Pelton S, Craven D. Immunogenicity of revaccination with penumococcal vaccine in HIV-infected patients on combination antiretroviral therapy. In: 7th Conference on Retroviruses and Opportunistic Infections. San Francisco, 2000 [Abstract 249].

    Google Scholar 

  121. Weiss PJ, Wallace MR, Oldfield EC, O’Brien J, Janoff EN. Response of recent human immunodeficiency virus seroconverters to the penumococcal polysaccharide vaccine and Haemophilus influenzae type b conjugate vaccine. J Infect Dis 1995; 171: 1217–1222.

    PubMed  CAS  Google Scholar 

  122. Angel JB, Parato KG, Kumar A, et al. Progressive human immunodeficiency virus-specific immune recovery with prolonged viral suppression. J Infect Dis 2001; 183: 546–554.

    PubMed  CAS  Google Scholar 

  123. Andre P, Klenerman P, Groettrup M, et al. An inhibitor of HIV-1 protease blocks proteasome activity, antigen presentation and CD8 T cell responses. Proc Natl Acad Sci USA 1998; 95: 13120–13125.

    PubMed  CAS  Google Scholar 

  124. Wahren B, Morfeldt-Mansson L, Biberfeld G, et al. Characteristics of the cell-mediated immune response in human immunodeficiency virus infection. J Virol 1987; 61: 2017–2023.

    PubMed  CAS  Google Scholar 

  125. Berzofsky JA, Bensussan A, Cease KB, et al. Antigenic peptides recognized by T lymphocytes from AIDS viral envelope-immune human. Nature 1988; 334: 706–708.

    PubMed  CAS  Google Scholar 

  126. Krowka JF, Stites DP, Jain S, et al. Lymphocyte proliferative responses to human immunodeficiency virus antigens in vitro. J Clin Invest 1989; 83: 1198–1203.

    PubMed  CAS  Google Scholar 

  127. Schwartz D, Sharma U, Busch M, et al. Absence of recoverable infectious virus and unique immune responses in an asymptomatic HIV+ long term survivor. AIDS Res Hum Retroviruses 1994; 10: 1703–1711.

    PubMed  CAS  Google Scholar 

  128. Rosenberg ES, Billingsley JM, Caliendo AM, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997; 278: 1447–1450.

    PubMed  CAS  Google Scholar 

  129. Plana M, Garcia F, Gallart T, et al. Lack of T-cell proliferate response to HIV-1 antigens after 1 year of highly active antiretroviral treatment in early HIV-1 disease. Immunology Study Group of Spanish EARTH-1 Study. Lancet 1998; 352: 1194–1195.

    PubMed  CAS  Google Scholar 

  130. Ruiz L, Martinez-Picado J, Romeu J, et al. Structured treatment interruption in chronically HIV-1 infected patients after long-term viral suppression. AIDS 2000; 14: 397–403.

    PubMed  CAS  Google Scholar 

  131. Haslett PA, Nixon DF, Shen Z, et al. Strong human immunodeficiency virus (HIV)specific CD4+ T cell responses in a cohort of chronically infected patients are associated with interruptions in anti-HIV chemotherapy. J Infect Dis 2000; 181: 1264–1272.

    PubMed  CAS  Google Scholar 

  132. Pitcher CJ, Quittner C, Peterson DM, et al. HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat Med 1999; 5: 518–525.

    PubMed  CAS  Google Scholar 

  133. Ogg GS, Jin X, Bonhoeffer S, et al. Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. J Virol 1999; 73: 797–800.

    PubMed  CAS  Google Scholar 

  134. Gray CM, Lawrence J, Schapiro JM, et al. Frequency of class I HLA-restricted anti-HIV CD8+ T cells in individuals receiving highly active antiretroviral therapy (HAART). J Immunol 1999; 162: 1780–1788.

    PubMed  CAS  Google Scholar 

  135. Kalams SA, Goulder PJ, Shea AK, et al. Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J Virol 1999; 73: 6721–6728.

    PubMed  CAS  Google Scholar 

  136. Moilet L, Li T-S, Samri A, et al. Dynamics of HIV-specific CD8+ T lymphocytes with changes in viral load. J Immunol 2000; 165: 1692–1704.

    Google Scholar 

  137. Morris L, Binley JM, Clas BA, et al. HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med 1998; 188: 233–245.

    PubMed  CAS  Google Scholar 

  138. Rosenberg ES, Altfeld M, Poon SH, et al. Immune control of HIV-1 after early treatment of acute infection. Nature 2000; 407: 523–526.

    PubMed  CAS  Google Scholar 

  139. Barassi C, De Santis C, Pastori C, et al. Early production of HIV-1 neutralising antibodies in patients following highly active antiretroviral treatment (HAART) during primary HIV infection. J Biol Regul Homeostatic Agents 2000; 14: 68–74.

    CAS  Google Scholar 

  140. Wrin T, Crawford L, Sawyer L, et al. Neutralizing antibody responses to autologous and heterologous isolates of human immunodeficiency virus. J Acquir Immun Defic Syndr Hum Retrovirol 1994; 7: 211–219.

    CAS  Google Scholar 

  141. Dalod M, Harzic M, Pellegrin I, et al. Evolution of cytotoxic T lymphocyte responses to human immunodeficiency virus type 1 in patients with symptomatic primary infection receiving antiretroviral triple therapy. J Infect Dis 1998; 178: 61–69.

    PubMed  CAS  Google Scholar 

  142. Markowitz M, Vesanen M, Tenner-Racz K, et al. The effect of commencing combination antiretroviral therapy soon after human immunodeficiency virus type 1 infection on viral replication and antiviral immune responses. J Infect Dis 1999; 179: 527–537.

    PubMed  CAS  Google Scholar 

  143. Rosenberg ES, Walker BD. HIV type 1-specific helper T cells: a critical host defense. AIDS Res Hum Retroviruses 1998; 14:Suppl 2: S143 - S147.

    Google Scholar 

  144. Ortiz GM, Nixon DF, Trkola A, et al. HIV-1-specific immune responses in subjects who temporarily contain virus replication after discontinuation of highly active antiretroviral therapy. J Clin Invest 1999; 104: 677–678.

    Google Scholar 

  145. Neuman AU, Tubiana R, Calvez V, et al. HIV-1 rebound during interruption of highly active antiretroviral therapy has no deleterious effect on reinitiated treatment. Comet Study Group. AIDS 1999; 13: 677–683.

    Google Scholar 

  146. Hel Z, Venzon D, Poudyal M, et al. Viremia control following antiretroviral treatment and therapeutic immunization during primary SIV251 infection of macaques. Nat Med 2000; 6: 1140–1146.

    PubMed  CAS  Google Scholar 

  147. Lucas GM, Chaisson RE, Moore RD. Highly active antiretroviral therapy in a large urban clinic: risk factors for virologic failure and adverse drug reactions. Ann Intern Med 1999; 131: 81–87, 1999.

    Google Scholar 

  148. Little SK, Daar ES, D’Aquila RT, et al. Reduced antiretroviral drug susceptibility among patients with primary HIV infection. JAMA 1999; 282: 1142–1149.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Connick, E. (2002). Immune Reconstitution with Antiretroviral Chemotherapy. In: Jacobson, J.M. (eds) Immunotherapy for Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-171-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-171-8_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9681-9

  • Online ISBN: 978-1-59259-171-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics