Skip to main content

Production of Immunoglobulins and Monoclonal Antibodies Targeting Infectious Diseases

  • Chapter
Immunotherapy for Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 144 Accesses

Abstract

Infectious and parasitic diseases have been the major cause of death over the last centuries in developing countries. Similarly, in the past, viral and bacterial infections have killed tens of thousands of people in the large cities of Europe. The first success in overcoming the mortality related to infectious diseases was derived from observations that the serum from cows infected with smallpox protected against human poxviruses. In 1800, Jenner was the first to apply experimental inoculations of cowpox to human volunteers. Vaccination against smallpox, beginning in the 19th century, quickly restricted the disease in Europe and North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casadevall A. Antibody-based therapies for emerging infectious diseases. Emerging Infect Dis 1996; 2: 200–208.

    PubMed  CAS  Google Scholar 

  2. Schanz U, Hügle T, Gmür J. Additional inhibitory effects of intravenous immunoglobulins in combination with cyclosporine A on human T lymphocyte alloproliferative response in vitro [see comments]. Transplantation, 1996; 61: 1736–1740.

    PubMed  CAS  Google Scholar 

  3. Cohn EJ, Strong LE, Hughes WL, et al. Preparation and properties of of serum and plasma proteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J Am Chem Soc 1946; 68: 459–475.

    PubMed  CAS  Google Scholar 

  4. Brenner B. Clinical experience with Octagam, a solvent detergent (SD) virus inactivated intravenous gammaglobulin. Clin Exp Rheumatol 1996; 14 (suppl 15): S115 - S119.

    PubMed  Google Scholar 

  5. Crow ME. Intravenous immune globulin for prevention of bacterial infections in pediatric AIDS patients. Am J Health System Pharm 1995; 52: 803–811.

    CAS  Google Scholar 

  6. Haywood CT, McGeer A, Low DE. Clinical experience with 20 cases of group A streptococcus necrotizing fasciitis and myonecrosis: 1995 to 1997. Plast Reconstr Surg 1999; 103: 1567–1573.

    PubMed  CAS  Google Scholar 

  7. Tarantino MD, et al. Treatment of childhood acute immune thrombocytopenic purpura with anti-D immune globulin or pooled immune globulin [see comments]. J Pediatr 1999; 134: 21–26.

    PubMed  CAS  Google Scholar 

  8. Chapel HM, Lee M, Hargreaves R, et al. Randomised trial of intravenous immunoglobulin as prophylaxis against infection in plateau-phase multiple myeloma. The UK Group for Immunoglobulin replacement therapy in multiple myeloma [see comments]. Lancet 1994; 343: 1059–1063.

    PubMed  CAS  Google Scholar 

  9. Chapel HM, Lee M. The use of intravenous immune globulin in multiple myeloma. Clin Exp Immunol 1994; 97 (suppl 1): 21–24.

    PubMed  Google Scholar 

  10. Harris EN, Pierangeli SS. Utilization of intravenous immunoglobulin therapy to treat recurrent pregnancy loss in the antiphospholipid syndrome: a review. Scand J Rheumatol Suppl 1998; 107: 97–102.

    PubMed  CAS  Google Scholar 

  11. Mittendorf R, Williams MA. Rho(D) immunoglobulin (RhoGAM): how it came into being [see comments]. Obstet Gynecol 1991; 77: 301–303.

    PubMed  CAS  Google Scholar 

  12. Ottolini MG, Hemming VG. Prevention and treatment recommendations for respiratory syncytial virus infection. Background and clinical experience 40 years after discovery. Drugs 1997; 54: 867–884.

    PubMed  CAS  Google Scholar 

  13. Welliver RC. Respiratory syncytial virus immunoglobulin and monoclonal antibodies in the prevention and treatment of respiratory syncytial virus infection. Semin Perinatol 1998; 22: 87–95.

    PubMed  CAS  Google Scholar 

  14. Snydman DR. Use of immune globulin to prevent symptomatic cytomegalovirus disease in transplant recipients-a meta-analysis [letter; comment]. Clin Transplant 1995;. 9: 490–491.

    Google Scholar 

  15. Snydman DR. Antiviral antibodies in transplantation. Transplant Proc 1995; 27 (5 suppl 1): 10–12.

    PubMed  CAS  Google Scholar 

  16. Nymann T, et al. Prevention of hepatitis B recurrence with indefinite hepatitis B immune globulin (HBIG) prophylaxis after liver transplantation. Clin Transplant 1996; 10: 663–667.

    PubMed  CAS  Google Scholar 

  17. Chen PY, et al. Varicella-zoster virus infection in children with malignancy. Chung-Hua I Hsueh Tsa Chih [Chin Med J] 1994; 54: 417–423.

    CAS  Google Scholar 

  18. Tarlow MJ, Walters S. Chickenpox in childhood. A review prepared for the UK Advisory Group on Chickenpox on behalf of the British Society for the Study of Infection. J Infect 1998; 36 (suppl 1): 39–47.

    PubMed  Google Scholar 

  19. Lang J, et al. Suppressant effect of human or equine rabies immunoglobulins on the immunogenicity of post–exposure rabies vaccination under the 2–1–1 regimen: a field trial in Indonesia. MAS054 Clinical Investigator Group. Bull WHO 1998; 76: 491 – 495.

    PubMed  CAS  Google Scholar 

  20. Lang J, et al. Evaluation of the safety, immunogenicity, and pharmacokinetic profile of a new, highly purified, heat-treated equine rabies immunoglobulin, administered either alone or in association with a purified, Vero-cell rabies vaccine. Acta Trop 1998; 70: 317–333.

    PubMed  CAS  Google Scholar 

  21. Theodorakis J, et al. Aggressive treatment of the first acute rejection episode using first-line anti-lymphocytic preparation reduces further acute rejection episodes after human kidney transplantation. Transplant Int 1998; 11 (suppl 1): S86 - S89.

    Google Scholar 

  22. Eiermann TH, Lambrecht P, Zander AR. Monitoring anti-thymocyte globulin (ATG) in bone marrow recipients. Bone Marrow Transplant 1999; 23: 779–781.

    PubMed  CAS  Google Scholar 

  23. Fisher RI, et al. Objective regressions of T- and B-cell lymphomas in patients following treatment with anti-thymocyte globulin. Cancer Res 1982; 42: 2465–2469.

    PubMed  CAS  Google Scholar 

  24. Safadi R, et al. Beneficial effect of digoxin-specific Fab antibody fragments in oleander intoxication. Arch Intern Med 1995; 155: 2121–2125.

    PubMed  CAS  Google Scholar 

  25. Varriale P, Mossavi A. Rapid reversal of digitalis delirium using digoxin immune Fab therapy. Clin Cardiol 1995; 18: 351–352.

    PubMed  CAS  Google Scholar 

  26. Littaua R, Kurane I, Ennis FA. Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol 1990; 144: 3183–3186.

    PubMed  CAS  Google Scholar 

  27. Morens DM, Halstead SB. Measurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. J Gen Virol 1990; 71: 2909–2914.

    PubMed  Google Scholar 

  28. Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis 1994; 19: 500–512.

    PubMed  CAS  Google Scholar 

  29. Auewarakul P, et al. Analysis of neutralizing and enhancing antibodies to human immunodeficiency virus type 1 primary isolates in plasma of individuals infected with env genetic subtype B and E viruses in Thailand. Viral Immunol 1996; 9: 175–185.

    CAS  Google Scholar 

  30. Burke DS. Human HIV vaccine trials: does antibody-dependent enhancement pose a genuine risk? Perspect Biol Med 1992; 35: 511–530.

    PubMed  CAS  Google Scholar 

  31. Stamatatos L, et al. Binding of antibodies to virion-associated gp120 molecules of primary-like human immunodeficiency virus type 1 (HIV-1) isolates: effect on HIV-1 infection of macrophages and peripheral blood mononuclear cells. Virology 1997; 229: 360–369.

    PubMed  CAS  Google Scholar 

  32. Lee S, et al. Enhancement of human immunodeficiency virus type 1 envelope-mediated fusion by a CD4-gp120 complex-specific monoclonal antibody. J Virol 1997; 71: 6037–6043.

    PubMed  CAS  Google Scholar 

  33. Abraham E, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group [see comments]. Lancet 1998; 351: 929–933.

    PubMed  CAS  Google Scholar 

  34. Mulligan MS, et al. Inhibition of lung inflammatory reactions in rats by an anti-human IL-8 antibody. J Immunol 1993; 150: 5585–5595.

    PubMed  CAS  Google Scholar 

  35. Mündi Y, et al. Inhibition of tumor necrosis factor production and ICAM-1 expression by pentoxifylline: beneficial effects in sepsis syndrome. Res Exp Med 1995; 195: 297–307.

    Google Scholar 

  36. Owens R, et al. The in vivo and in vitro characterisation of an engineered human antibody to E-selectin. Immunotechnology 1997; 3: 107–116.

    PubMed  CAS  Google Scholar 

  37. Chmel H. Role of monoclonal antibody therapy in the treatment of infectious disease. Am J Hosp Pharm 1990; 47 (11 suppl 3): S11 - S15.

    PubMed  CAS  Google Scholar 

  38. Chmel H. Monoclonal antibody therapy. Compr Ther 1990; 16: 12–16.

    PubMed  CAS  Google Scholar 

  39. Finch RG. Design of clinical trials in sepsis: problems and pitfalls. J Antimicrob Chemother 1998; 41 (suppl A): 95–102.

    PubMed  CAS  Google Scholar 

  40. Meissner HC, et al. Safety and pharmacokinetics of an intramuscular monoclonal antibody (SB 209763) against respiratory syncytial virus (RSV) in infants and young children at risk for severe RSV disease. Antimicrob Agents Chemother 1999; 43: 1183–1188.

    PubMed  CAS  Google Scholar 

  41. Meissner HC, et al. Immunoprophylaxis with palivizumab, a humanized respiratory syncytial virus monoclonal antibody, for prevention of respiratory syncytial virus infection in high risk infants: a consensus opinion. Pediatr Infect Dis J 1999; 18: 223–231.

    PubMed  CAS  Google Scholar 

  42. Moore JP, et al. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J Virol 1994; 68: 5142–5155.

    PubMed  CAS  Google Scholar 

  43. Koup RA, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1994; 68: 4650–4655.

    PubMed  CAS  Google Scholar 

  44. Cao Y, et al. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection [see comments]. N Engl J Med 1995; 332: 201–208.

    PubMed  CAS  Google Scholar 

  45. Mofenson L, Wilfert C. The challenge of HIV infection in infants, children and adolescents. In: Pediatric AIDS, 3rd ed. Baltimore, MD: Williams & Wilkins, 1998, pp. 487–513.

    Google Scholar 

  46. Stoiber H, et al Inhibition of HIV-1 infection in vitro by monoclonal antibodies to the complement receptor type 3 (CR3): an accessory role for CR3 during virus entry? Mol Immunol 1997; 34:855–863.

    PubMed  CAS  Google Scholar 

  47. Kostrikis LG, et al. Quantitative analysis of serum neutralization of human immunodeficiency virus type 1 from subtypes A, B, C, D, E, F, and I: lack of direct correlation between neutralization serotypes and genetic subtypes and evidence for prevalent serum-dependent infectivity enhancement. J Virol 1996; 70: 445–458.

    PubMed  CAS  Google Scholar 

  48. Muster T, et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 1993; 67: 6642–6647.

    PubMed  CAS  Google Scholar 

  49. Schutten M, et al. Modulation of primary human immunodeficiency virus type 1 envelope glycoprotein-mediated entry by human antibodies. J Gen Virol 1997; 78: 999–1006.

    PubMed  CAS  Google Scholar 

  50. Franchini G, et al. Sequence of simian immunodeficiency virus and its relationship to the human immunodeficiency viruses. Nature 1987; 328: 539–543.

    PubMed  CAS  Google Scholar 

  51. Dunn CS, et al. High viral load and CD4 lymphopenia in rhesus and cynomolgus macaques infected by a chimeric primate lentivirus constructed using the env, rev, tat, and vpu genes from HIV-1 Lai. Virology 1996; 223: 351–361.

    PubMed  CAS  Google Scholar 

  52. Reimann KA, et al. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys. J Virol 1996; 70: 6922–6928.

    PubMed  CAS  Google Scholar 

  53. Shibata R, et al. Infection and pathogenicity of chimeric simian-human immunodeficiency viruses in macaques: determinants of high virus loads and CD4 cell killing. J Infect Dis 1997; 176: 362–373.

    PubMed  CAS  Google Scholar 

  54. Mascola JR, et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 2000; 2: 207–210.

    Google Scholar 

  55. Mascola JR, et al. Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 1999; 73: 4009–4018.

    PubMed  CAS  Google Scholar 

  56. Baba TW, et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 2000; 6: 1–7.

    Google Scholar 

  57. Conley AJ, et al. The consequence of passive administration of an anti-human immunodeficiency virus type 1 neutralizing monoclonal antibody before challenge of chimpanzees with a primary virus isolate. J Virol 1996; 70: 6751–6758.

    PubMed  CAS  Google Scholar 

  58. Poignard P, et al. Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity 1999; 10: 431–438.

    PubMed  CAS  Google Scholar 

  59. Kavanaugh AF. Anti-tumor necrosis factor-alpha monoclonal antibody therapy for rheumatoid arthritis. Rheum Dis Clin North Am 1998; 24: 593–614.

    PubMed  CAS  Google Scholar 

  60. Wendling D, et al. A randomized, double blind, placebo controlled multicenter trial of murine anti-CD4 monoclonal antibody therapy in rheumatoid arthritis. J Rheumatol 1998; 25: 1457–1461.

    PubMed  CAS  Google Scholar 

  61. Vitali C, Sciuto M, Bombardieri S. Immunotherapy in rheumatoid arthritis: a review. Int J Artific Organs 1993; 16 (suppl 5): 196–200.

    Google Scholar 

  62. Choy EH, et al. The pharmacokinetics and human anti-mouse antibody response in rheumatoid arthritis patients treated with a chimeric anti-CD4 monoclonal antibody [letter]. Br J Rheumatol 1998; 37: 801–802.

    PubMed  CAS  Google Scholar 

  63. Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 1999; 21: 309–318.

    PubMed  CAS  Google Scholar 

  64. McLaughlin P, et al. Clinical status and optimal use of rituximab for B-cell lymphomas. Oncology 1998; 12:1763–1769; discussion 1769–1770, 1775–1777.

    Google Scholar 

  65. Jensen M, et al. Rapid tumor lysis in a patient with B-cell chronic lymphocytic leukemia and lymphocytosis treated with an anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab). Ann Hematol 1998; 77: 89–91.

    PubMed  CAS  Google Scholar 

  66. Cosimi AB. Clinical development of Orthoclone OKT3. Transplant Proc 1987; 19 (2 suppl 1): 7–16.

    PubMed  CAS  Google Scholar 

  67. Cahn JY, et al. Treatment of acute graft-versus-host disease with methylprednisolone and cyclosporine with or without an anti-interleukin-2 receptor monoclonal antibody. A multicenter phase III study. Transplantation 1995; 60: 939–942.

    PubMed  CAS  Google Scholar 

  68. Kovarik J, et al. Disposition and immunodynamics of basiliximab in liver allograft recipients. Clin Pharmacol Ther 1998; 64: 66–72.

    PubMed  CAS  Google Scholar 

  69. Blaise D, et al. Prevention of acute GVHD by in vivo use of anti-interleukin-2 receptor monoclonal antibody (33B3.1): a feasibility trial in 15 patients. Bone Marrow Transplant 1991; 8: 105–111.

    PubMed  CAS  Google Scholar 

  70. Heslop HE, et al. In vivo induction of gamma interferon and tumor necrosis factor by interleukin-2 infusion following intensive chemotherapy or autologous marrow transplantation. Blood 1989; 74: 1374–1380.

    PubMed  CAS  Google Scholar 

  71. Racadot E, et al. Sequential use of three monoclonal antibodies in corticosteroid-resistant acute GVHD: a multicentric pilot study including 15 patients. Bone Marrow Transplant 1995; 15: 669–677.

    PubMed  CAS  Google Scholar 

  72. Abbs IC, et al. Sparing of first dose effect of monovalent anti-CD3 antibody used in allo-graft rejection is associated with diminished release of pro-inflammatory cytokines. Ther Immunol 1994; 1: 325–331.

    PubMed  CAS  Google Scholar 

  73. Pereira H, et al. [Abciximab (ReoPro) in primary angioplasty]. Revi Port Cardiol 1998; 17:903–907.

    CAS  Google Scholar 

  74. Bailey SR, O’Leary E, Chilton R. Angioscopic evaluation of site-specific administration of ReoPro [see comments]. Cathet Cardiovasc Diagn 1997; 42: 181–184.

    PubMed  CAS  Google Scholar 

  75. Blann AD, Miller JP, McCollum CN. von Willebrand factor and soluble E-selectin in the prediction of cardiovascular disease progression in hyperlipidaemia. Atherosclerosis 1997; 132: 151–156.

    PubMed  CAS  Google Scholar 

  76. Steinitz M, et al. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 1977; 269: 420–422.

    PubMed  CAS  Google Scholar 

  77. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–497.

    PubMed  Google Scholar 

  78. Ohlin M, et al. Human monoclonal antibodies against a recombinant HIV envelope antigen produced by primary in vitro immunization. Characterization and epitope mapping. Immunology 1989; 68: 325–331.

    PubMed  CAS  Google Scholar 

  79. Borrebaeck CA, Danielsson L, Müller SA. Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc Natl Acad Sci USA 1988; 85: 3995–3999.

    PubMed  CAS  Google Scholar 

  80. Zafiropoulos A, et al. Induction of antigen-specific isotype switching by in vitro immunization of human naive B lymphocytes. J Immunol Methods 1997; 200; 181–190.

    PubMed  CAS  Google Scholar 

  81. Duenas M, et al. In vitro immunization of naive human B cells yields high affinity immunoglobulin G antibodies as illustrated by phage display. Immunology 1996; 89: 1–7.

    PubMed  CAS  Google Scholar 

  82. Fresen KO, Hausen H. Establishment of EBNA-expressing cell lines by infection of Epstein-Barr virus (EBV)-genome-negative human lymphoma cells with different EBV strains. Int J Cancer 1976; 17: 161–166.

    PubMed  CAS  Google Scholar 

  83. Henderson E, et al. Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology 1977; 76: 152–163.

    PubMed  CAS  Google Scholar 

  84. Katsuki T, et al. Identification of the target cells in human B lymphocytes for transformation by Epstein-Barr virus. Virology 1977; 83: 287–294.

    PubMed  CAS  Google Scholar 

  85. Aman P, Ehlin-Henriksson B, Klein G. Epstein-Barr virus susceptibility of normal human B lymphocyte populations. J Exp Med 1984; 159: 208–220.

    PubMed  CAS  Google Scholar 

  86. Tornita M, Tsong TY. Selective production of hybridoma cells: antigenic-based preselection of B lymphocytes for electrofusion with myeloma cells. Biochim Biophys Acta 1990; 1055: 199–206.

    Google Scholar 

  87. Shirahata S, Katakura Y, Teruya K. Cell hybridization, hybridomas, and human hybridomas. Methods Cell Biol 1998; 57: 111–145.

    PubMed  CAS  Google Scholar 

  88. Jahn, S, et al. Strategies in the development of human monoclonal antibodies. Dev Biol Stand 1990; 71: 3–7.

    PubMed  CAS  Google Scholar 

  89. Stanbridge EJ. Cell fusion, genetic cartography, and malignancy [letter]. Lancet 1976; 1: 525.

    PubMed  CAS  Google Scholar 

  90. Stanbridge EJ. Suppression of malignancy in human cells. Nature 1976; 260: 17–20.

    PubMed  CAS  Google Scholar 

  91. Kawahara H, et al. A new human fusion partner, HK-128, for making human-human hybridomas producing monoclonal IgG antibodies. Cytotechnology 1990; 4: 139–143.

    PubMed  CAS  Google Scholar 

  92. Rioux JD, et al. Molecular characterization of the GM 4672 human lymphoblastoid cell line and analysis of its use as a fusion partner in the generation of human-human hybridoma autoantibodies. Hum Antibodies Hybridomas 1993; 4: 107–114.

    PubMed  CAS  Google Scholar 

  93. Hirata Y, Sugawara I. Characterization of mouse-human hybridoma as a useful fusion partner for the establishment of mouse-human-human hybridoma secreting anti-tetanus toxoid human monoclonal antibody of IgM or IgG class. Microbiol Immunol 1987; 31: 231–245.

    PubMed  CAS  Google Scholar 

  94. Grunow R, et al. The high efficiency, human B cell immortalizing heteromyeloma CB-F7. Production of human monoclonal antibodies to human immunodeficiency virus. J Immunol Methods 1988; 106: 257–265.

    PubMed  CAS  Google Scholar 

  95. Buchacher A, et al. Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res Hum Retroviruses 1994; 10: 359–369.

    PubMed  CAS  Google Scholar 

  96. Szybalski W. Use of the HPRT gene and the HAT selection technique in DNA-mediated transformation of mammalian cells: first steps toward developing hybridoma techniques and gene therapy. Bioessays 1992; 14: 495–500.

    PubMed  CAS  Google Scholar 

  97. Li X, Abdi K, Mentzer SJ. Hybridoma screening using an amplified fluorescence micro-assay to quantify immunoglobulin concentration. Hybridoma 1995; 14: 75–78.

    PubMed  Google Scholar 

  98. Bakkali L, et al. A rapid and sensitive chemiluminescence dot-immunobinding assay for screening hybridoma supernatants. J Immunol Methods 1994; 170: 177–184.

    PubMed  CAS  Google Scholar 

  99. Steinitz M, Rosen A, Klein G. An improved dot immunobinding assay for screening hybridoma supernatants. Non-purified antigen immobilized on nitrocellulose paper discs. J Immunol Methods 1991; 136: 119–123.

    PubMed  CAS  Google Scholar 

  100. Riechmann L, et al. Reshaping human antibodies for therapy. Nature 1988; 332: 323–327.

    PubMed  CAS  Google Scholar 

  101. Adair JR, et al. Humanization of the murine anti-human CD3 monoclonal antibody OKT3. Hum Antibodies Hybridomas 1994; 5: 41–47.

    PubMed  CAS  Google Scholar 

  102. Burton DR, Barbas CFR. Human antibodies from combinatorial libraries. Adv Immunol 1994; 57: 191–280.

    PubMed  CAS  Google Scholar 

  103. Hoogenboom HR. Mix and match: building manifold binding sites [news; comment]. Nature Biotechnol 1997; 15: 125–126.

    CAS  Google Scholar 

  104. Winter G, Harris WJ. Humanized antibodies. Immunol Today 1993; 14: 243–246.

    PubMed  CAS  Google Scholar 

  105. Low NM, Holliger PH, Winter G. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 1996; 260: 359–368.

    PubMed  CAS  Google Scholar 

  106. Burton DR, Barbas CFR. Human monoclonal antibodies: recent achievements. Hosp Pract 1994; 29: 111–119.

    CAS  Google Scholar 

  107. Knappik A, Plöckthun A. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng 1995; 8: 81–89.

    PubMed  CAS  Google Scholar 

  108. Pennell CA, Eldin P. In vitro production of recombinant antibody fragments in Pichia pastoris. Res Immunol 1998; 149: 599–603.

    PubMed  CAS  Google Scholar 

  109. Verma R, Boleti E, George AJ. Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods 1998; 216: 165–181.

    PubMed  CAS  Google Scholar 

  110. Tan W, Lam PH. Expression and purification of a secreted functional mouse/human chimaeric antibody against bacterial endotoxin in baculovirus-infected insect cells. Biotechnol Appl Biochem 1999; 30: 59–64.

    PubMed  CAS  Google Scholar 

  111. Carayannopoulos L, Max EE, Capra JD. Recombinant human IgA expressed in insect cells. Proc Natl Acad Sci USA 1994; 91: 8348–8352.

    PubMed  CAS  Google Scholar 

  112. Hasemann CA, Capra JD. High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system. Proc Natl Acad Sci USA 1990; 87: 3942–3946.

    PubMed  CAS  Google Scholar 

  113. Nesbit M, et al. Production of a functional monoclonal antibody recognizing human colorectal carcinoma cells from a baculovirus expression system. J Immunol Methods 1992; 151: 201–208.

    PubMed  CAS  Google Scholar 

  114. Ma JK, et al. Generation and assembly of secretory antibodies in plants [see comments]. Science 1995; 268: 716–719.

    PubMed  CAS  Google Scholar 

  115. Fiedler U, Conrad U. High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Biotechnology (NY) 1995; 13: 1090–1093.

    CAS  Google Scholar 

  116. Zeitlin L, et al. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 1998; 16: 1361–1364.

    PubMed  CAS  Google Scholar 

  117. Wright A, Morrison SL. Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse-human immunoglobulin G1. J Exp Med 1994; 180: 1087–1096.

    PubMed  CAS  Google Scholar 

  118. Page MJ, Sydenham MA. High level expression of the humanized monoclonal antibody Campath-1H in Chinese hamster ovary cells. Biotechnology (NY) 1991; 9: 61 68.

    Google Scholar 

  119. Kunert R, et al. Stable recombinant expression of the anti HIV-1 monoclonal antibody 2F5 after IgG3/IgGl subclass switch in CHO-cells. Biotechnol Bioeng 2000; 67: 97–103.

    PubMed  CAS  Google Scholar 

  120. Dorai H, et al. Mammalian cell expression of single-chain Fv (sFv) antibody proteins and their C-terminal fusions with interleukin-2 and other effector domains. Biotechnology (NY) 1994; 12: 890–897.

    CAS  Google Scholar 

  121. Wurm F, Bernard A. Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol 1999; 10: 156–159.

    PubMed  CAS  Google Scholar 

  122. Peakman TC, et al. Comparison of expression of a humanized monoclonal antibody in mouse NSO myeloma cells and Chinese hamster ovary cells. Hum Antibodies Hybridomas 1994; 5: 65–74.

    PubMed  CAS  Google Scholar 

  123. Ray N, Rivera R, Gupta R. Large scale production of humanized monoclonal antibody expressed in a GS-NSO cell line antibody. In: Carrondo MIT, Moreira JLP (eds). Animal Cell Technology: From Vaccines to Genetic Medicine. Kluwer: Academic Publishers, 1997, pp. 235–241.

    Google Scholar 

  124. Bebbington CR, et al. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology 1992; 10: 169–175.

    PubMed  CAS  Google Scholar 

  125. Urlaub G, Chasin LA. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci USA 1980; 77: 4216–4220.

    PubMed  CAS  Google Scholar 

  126. Simonsen CC, Levinson AD. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci USA 1983; 80: 2495–2499.

    PubMed  CAS  Google Scholar 

  127. McIvor RS, Simonsen CC. Isolation and characterization of a variant dihydrofolate reductase cDNA from methotrexate-resistant murine L5178Y cells. Nucleic Acids Res 1990; 18: 7025–7032.

    PubMed  CAS  Google Scholar 

  128. Borth N, et al. Analysis of changes during subclone development and ageing of human antibody-producing heterohybridoma cells by northern blot and flow cytometry. J Biotechnol 1999; 67: 57–66.

    PubMed  CAS  Google Scholar 

  129. Coller HA, Coller BS. Poisson statistical analysis of repetitive subcloning by the limiting dilution technique as a way of assessing hybridoma monoclonality. Methods Enzymol 1986; 121: 412–417.

    PubMed  CAS  Google Scholar 

  130. Underwood PA, Bean PA. Hazards of the limiting-dilution method of cloning hybridomas. J Immunol Methods 1988; 107: 119–128.

    PubMed  CAS  Google Scholar 

  131. Merten OW. Safety issues of animal products used in serum-free media. Dey Biol Stand 1999; 99: 167–180.

    CAS  Google Scholar 

  132. Bliem R. Impact of research and development on validation, GMP and registration of biopharmaceuticals. Pharm Eng 1995; May/June:48–54.

    Google Scholar 

  133. Bliem R, et al. Antibody production in packed bed reactors using serum-free and protein-free medium. Cytotechnology 1990; 4: 279–283.

    PubMed  CAS  Google Scholar 

  134. Reiter M, et al. Modular integrated fluidized bed bioreactor technology. Biotechnology, 1991; 9: 1100–1102.

    PubMed  CAS  Google Scholar 

  135. Bliem R, Konopitzky K, Katinger H. Industrial animal cell reactor systems: aspects of selection and evaluation. Adv Biochem Eng Biotechnol 1991; 44: 1–26.

    PubMed  CAS  Google Scholar 

  136. Xie L, Wang DI. Integrated approaches to the design of media and feeding strategies for fed-batch cultures of animal cells. Trends Biotechnol 1997; 15: 109–113.

    PubMed  CAS  Google Scholar 

  137. Ryu JS, Lee GM. Application of hypoosmolar medium to fed-batch culture of hybridoma cells for improvement of culture longevity. Biotechnol Bioeng 1999; 62: 120–123.

    PubMed  CAS  Google Scholar 

  138. Gaida T, et al. Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog 1996; 12: 73–76.

    PubMed  CAS  Google Scholar 

  139. Banik GG, Heath CA. Partial and total cell retention in a filtration-based homogeneous perfusion reactor. Biotechnol Prog 1995; 11: 584–588.

    PubMed  CAS  Google Scholar 

  140. Bliem R, et al. Performance characteristics of mammalian cell culture process operating continuously with protein-free medium. Appl Biochem Biotechnol 1990; 26: 217–229.

    PubMed  CAS  Google Scholar 

  141. Amersham PB. Evaluating virus removal/inactivation in a process to purify anti-HIV-1 human monoclonal antibody by expanded bed adsorption with STREAMLINE rProteinA. Application note, 1998.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kunert, R., Katinger, H. (2002). Production of Immunoglobulins and Monoclonal Antibodies Targeting Infectious Diseases. In: Jacobson, J.M. (eds) Immunotherapy for Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-171-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-171-8_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9681-9

  • Online ISBN: 978-1-59259-171-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics