Skip to main content

Host Cell-Directed Approaches for Treating HIV and Restoring Immune Function

  • Chapter
Immunotherapy for Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 142 Accesses

Abstract

Despite a number of recent therapeutic advances, there remains an urgent need for new approaches to treat HIV infection, the causative agent of AIDS. In this chapter, treatment strategies are reviewed that target host cell interactions or immune responses, rather than acting as direct antiviral agents. Certain treatments that target host factors—such as cytokines, chemokines, immunomodulators, or therapeutic vaccination—will probably prove to be effective adjuvants to conventional antiviral therapy in the future and may even hold the potential to alter the natural history of HIV infection in some individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piatak M, Saag MS, Yang LC, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 1993; 259: 1749–1754.

    PubMed  CAS  Google Scholar 

  2. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373: 117–122.

    PubMed  CAS  Google Scholar 

  3. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373: 123–126.

    PubMed  CAS  Google Scholar 

  4. Mellors JW, Rinaldo CR, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996; 272: 1167–1170.

    PubMed  CAS  Google Scholar 

  5. Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997; 337: 725–733.

    PubMed  CAS  Google Scholar 

  6. Gulick RM, Mellors J, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 1997; 337: 734–739.

    PubMed  CAS  Google Scholar 

  7. Palella FJ Jr, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338: 853–860.

    PubMed  Google Scholar 

  8. Wong JK, Gunthard HF, Havlir DV, et al. Reduction of HIV-1 in blood and lymph nodes following potent antiretroviral therapy and the virologic correlates of treatment failure. Proc Natl Acad Sci USA 1997; 94: 12574–12579.

    PubMed  CAS  Google Scholar 

  9. Hockett RD, Kilby JM, Derdeyn CA, et al. Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J Exp Med 1999; 189: 1545–1554.

    PubMed  CAS  Google Scholar 

  10. Zhang L, Ramratnam B, Tenner-Racz K, et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 1999; 340: 1605–1613.

    PubMed  CAS  Google Scholar 

  11. Wong JK, Hezareh M, Gunthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997; 278: 1291–1295.

    PubMed  CAS  Google Scholar 

  12. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997; 278: 1295–1300.

    PubMed  CAS  Google Scholar 

  13. Derdeyn CA, Kilby JM, Miralles GD, et al. Detection of HIV-1 latent and persistent active infection in blood lymphocytes in HIV-1 infection. J Infect Dis 1999; 180: 1851–1862.

    PubMed  CAS  Google Scholar 

  14. Michael NL, Brown AE, Volgt RF, et al. Rapid disease progression without seroconversion following primary HIV-1 infection-evidence for highly susceptible human hosts. J Infect Dis 1997; 24: 175.

    Google Scholar 

  15. Saulsbury FT. The clinical course of HIV infection in genetically identical children. J Infect Dis 1997; 24: 971–974.

    CAS  Google Scholar 

  16. Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–377.

    PubMed  CAS  Google Scholar 

  17. Paxton WA, Martin SR, Tse D, et al. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 1996; 2: 412–417.

    PubMed  CAS  Google Scholar 

  18. Bernard NF, Yannakis CM, Lee JS, Tsoukas CM. Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte activity in HIV-exposed seronegative persons. J Infect Dis 1999; 179: 538–547.

    PubMed  CAS  Google Scholar 

  19. Goh WC, Markee J, Akridge RE, et al. Protection against human immunodeficiency virus type 1 infection in persons with repeated exposure: evidence for T cell immunity in the absence of inherited CCR5 coreceptor defects. J Infect Dis 1999; 179: 548–557.

    PubMed  CAS  Google Scholar 

  20. Rowland-Jones SL, Dong T, Fowke KR, et al. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J Clin Invest 1998; 102: 1758–1765.

    PubMed  CAS  Google Scholar 

  21. Cao Y, Qin L, Zhang L, Safrit J, Ho DD. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 1995; 332: 201–208.

    PubMed  CAS  Google Scholar 

  22. Pantaleo G, Menzo S, Vaccarezza M, et al. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N Engl J Med 1995; 332: 209–216.

    PubMed  CAS  Google Scholar 

  23. Kaslow RA, Carrington M, Apple R, et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med 1996; 2: 405–411.

    PubMed  CAS  Google Scholar 

  24. Keet IP, Tang J, Klein MR, et al. Consistent associations of HLA class I and II and transporter gene products with progression of HIV type 1 infection in homosexual men. J Infect Dis 1999; 180: 299–309.

    PubMed  CAS  Google Scholar 

  25. Kilby JM, Hopkins S, Venetta TM, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 1998; 4: 1302–1307.

    PubMed  CAS  Google Scholar 

  26. Ogg GS, Jin X, Bonhoeffer S, et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 1998; 279: 2103–2106.

    PubMed  CAS  Google Scholar 

  27. Musey L, Hughes J, Schacker T, Shea T, Corey L, McElrath MJ. Cytotoxic-T-cell responses, viral load, and disease progression in early human immundeficiency virus 1 infection. N Engl J Med 1997; 337: 1267–1274.

    PubMed  CAS  Google Scholar 

  28. Jin X, Bauer DE, Tuttleton SE, et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 1999; 189: 991–998.

    PubMed  CAS  Google Scholar 

  29. Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8(+) lymphocytes. Science 1999; 283: 857–860.

    PubMed  CAS  Google Scholar 

  30. Ho DD. Toward HIV eradication or remission: the tasks ahead. Science 1998; 280: 1866–1867.

    PubMed  CAS  Google Scholar 

  31. Bucy RP. Immune clearance of HIV-1 replication active cells: a model of two patterns of steady state HIV infection. AIDS Res Hum Retroviruses 1999; 15: 223–227.

    PubMed  CAS  Google Scholar 

  32. Richman D. The challenge of immune control of immunodeficiency virus. J Clin Invest 1999; 104: 677–678.

    PubMed  CAS  Google Scholar 

  33. Fisher RA, Bertonis JM, Meier W. HIV infection is blocked in vitro by recombinant soluble CD4. Nature 1988; 331: 76–78.

    PubMed  CAS  Google Scholar 

  34. Hussey RE, Richardson NE, Kowalski M. A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 1988; 331: 78–81.

    PubMed  CAS  Google Scholar 

  35. Deen KC, McDougal JS, Inacker R. A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 1988; 331: 82–84.

    PubMed  CAS  Google Scholar 

  36. Traunecker A, Luke W, Karajalainen K. Soluble CD4 molecules neutralize HIV-1. Nature 1988; 331: 84–86.

    PubMed  CAS  Google Scholar 

  37. Kahn JO, Allan JD, Hodges TL. The safety and pharmacokinetics of recombinant soluble CD4 (rCD4) in subjects with AIDS and AIDS-related complex. Ann Intern Med 1990; 112: 254–261.

    PubMed  CAS  Google Scholar 

  38. Baba M, Pauwels R, Balzarini J. Mechanisms of inhibitory effect of dextran sulfate and heparin on replication of HIV in vitro. Proc Natl Acad Sci USA 1988; 85: 6132–6136.

    PubMed  CAS  Google Scholar 

  39. Baba M, Snoeck R, Pauwels R. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including HSV, CMV, VSV, and HIV. Antimicrob Agents Chemother 1988; 32: 1742–1745.

    PubMed  CAS  Google Scholar 

  40. Mitsuya H, Looney DJ, Kuno S. Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science 1988; 240: 646–649.

    PubMed  CAS  Google Scholar 

  41. Abrams DI, Kuno S, Wong R. Oral dextran sulfate (ÚA001) in the treatment of the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Ann Intern Med 1989; 110: 183–188.

    PubMed  CAS  Google Scholar 

  42. Lorentsen KJ, Hendrix CW, Collins JM. Dextran sulfate is poorly absorbed after oral administration. Ann Intern Med 1989; 111: 561–566.

    PubMed  CAS  Google Scholar 

  43. Flexnor C, Barditch-Crovo PA, Kornhauser DM. Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in human immunodeficiency infection. Antimicrob Agents Chemother 1991; 35: 2544–2550.

    Google Scholar 

  44. Cocchi F, Devico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811–1815.

    PubMed  CAS  Google Scholar 

  45. Pal R, Garzino-Demo A, Markham PD, et al. Inhibition of HIV-1 infection by the beta chemokine MDC. Science 1997; 278: 695–698.

    PubMed  CAS  Google Scholar 

  46. Arenzana-Seisedos F, Virelizier JL, Rousset D. HIV blocked by chemokine antagonist. Nature 1996; 383: 400.

    Google Scholar 

  47. Simmons G, Clapham PR, Picard L. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 1997; 276: 276–279.

    PubMed  CAS  Google Scholar 

  48. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–673.

    PubMed  CAS  Google Scholar 

  49. Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381: 661–666.

    PubMed  CAS  Google Scholar 

  50. Oberlin E, Amara A, Bachelerie, F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382: 833–835.

    PubMed  CAS  Google Scholar 

  51. Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996; 382: 829–833.

    PubMed  CAS  Google Scholar 

  52. Derdeyn CA, Costello C, Kilby JM, et al. Correlation between circulating SDF-1 levels and CD4 cell count in human immunodeficiency virus type-1 infected individuals. AIDS Res Hum Retroviruses 1999; 15: 1063–1071.

    PubMed  CAS  Google Scholar 

  53. Chen JD, Bai X, Yang AG. Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nat Med 1997; 3: 1110–1116.

    PubMed  CAS  Google Scholar 

  54. Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 1996; 273: 1856–1862.

    PubMed  CAS  Google Scholar 

  55. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    PubMed  CAS  Google Scholar 

  56. Klausner JD, Makonkawkeyoon L, Akarasewi P, et al. The effect of thalidomide on the pathogenesis of HIV-1 and M. tuberculosis infection. J Acquir Immun Defic Syndr Hum Retrovirol 1996; 11: 247–257.

    CAS  Google Scholar 

  57. Donzella G, Schols D, Lin S. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 1998; 4: 72–77.

    PubMed  CAS  Google Scholar 

  58. Murakami T, Nakajima T, Koyanagi Y. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 1997; 186: 1389–1393.

    PubMed  CAS  Google Scholar 

  59. Arakaki R, Tamamaura H, Premanathan M. T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J Virol 1999; 73: 1719–1723.

    PubMed  CAS  Google Scholar 

  60. Wild C, Greenwell T, Matthews T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. Aids Res Hum Retroviruses 1993; 9: 1051–1053.

    PubMed  CAS  Google Scholar 

  61. Lalezari J, Eron J, Carlson M. Safety, pharmacokinetics, and antiviral activity of T-20 as a single agent in heavily pre-treated patients. In: 6th Conference on Retroviruses and Opportunistic Infections, 1999 (Abstract LB 13).

    Google Scholar 

  62. Rimsky LT, Shugar DC, Matthews T. Determinants of HIV-1 resistance to gp41-derived inhibitory peptides. J Virol 1998; 72: 986–992.

    PubMed  CAS  Google Scholar 

  63. Wei X, Kilby JM, Hopkins S, Saag MS, Shaw G. HIV-1 selection in response to inhibition of virus fusion and entry. In: 6th Conference on Retroviruses and Opportunistic Infections, 1999 (Abstract 611).

    Google Scholar 

  64. Pantaleo G, Graziosi C, Fauci AS. The immunopathogenesis of human immunodeficiency virus infection. N Engl J Med 1993; 328: 327–335.

    PubMed  CAS  Google Scholar 

  65. Kovacs JA, Baseler M, Dewar RJ, et al. Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N Engl J Med 1995; 332: 567–575.

    PubMed  CAS  Google Scholar 

  66. O’Brien WA, Grovit-Ferbas K, Namazi A, et al. Human immunodeficiency virus-type 1 replication can be increased in peripheral blood of seropositive patients after influenza vaccination. Blood 1995; 86: 1082–1089.

    PubMed  Google Scholar 

  67. Brichacek B, Swindells S, Janoff EN, Pirruccello S, Stevenson M. Increased plasma human immunodeficiency virus type 1 burden following antigenic challenge with pneumococcal vaccine. J Infect Dis 1996; 174: 1191–1199.

    PubMed  CAS  Google Scholar 

  68. Stanley SK, Ostrowski MA, Justement JS, et al. Effect of immunization with a common recall antigen on viral expression in patients infected with human immunodeficiency virus type 1. N Engl J Med 1996; 334: 1222–1230.

    PubMed  CAS  Google Scholar 

  69. Donovan RM, Bush CE, Markowitz NP, Baxa DM, Saravolatz LD. Changes in virus load markers during AIDS-associated opportunistic diseases in HIV-infected persons. J Infect Dis 1996; 174: 401–403.

    PubMed  CAS  Google Scholar 

  70. Sulkowski MS, Chaisson RE, Karp CL, Moore RD, Margolick JB, Quinn TC. The effect of acute infectious diseases on plasma HIV-1 viral load and the expression of serologic markers of immune activation among HIV-infected adults. J Infect Dis 1998; 178: 1642–1648.

    PubMed  CAS  Google Scholar 

  71. Dezube BJ, Lederman MM, Spritzler JG, et al. High-dose pentoxifylline in patients with AIDS: inhibition of tumor necrosis factor production. J Infect Dis 1995; 171: 1628–1632.

    PubMed  CAS  Google Scholar 

  72. Landman D, Sarai A, Sathe SS. Use of pentoxifylline therapy for patients with AIDS-related wasting: pilot study. Clin Infect Dis 1994; 18: 97–99.

    PubMed  CAS  Google Scholar 

  73. Reyes-Teran G, Sierra-Madero JG, Martinez del Cerro V, et al. Effects of thalidomide on HIV-associated wasting syndrome: a randomized, double-blind, placebo-controlled clinical trial. AIDS 1996; 10: 1501–1507.

    PubMed  CAS  Google Scholar 

  74. Kilby JM, Tabereaux PB, Mulanovich V, Shaw GM, Bucy RP, Saag MS. Effects of tapering doses of oral prednisone on viral load among HIV-infected patients with unexplained weight loss. AIDS Res Hum Retroviruses 1997; 13: 1533–1537.

    PubMed  CAS  Google Scholar 

  75. Andrieu JM, Lu W, Levy R. Sustained increases in CD4 cell counts in asymptomatic human immunodeficiency virus type 1-seropositive patients treated with prednisolone for 1 year. J Infect Dis 1995; 171: 523–530.

    PubMed  CAS  Google Scholar 

  76. Pakker NG, Notermans DW, deBoer RJ, et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nat Med 1998; 2: 208–214.

    Google Scholar 

  77. Bucy RP, Hockett RD, Derdeyn CA, et al. Initial increase in blood CD4(+) lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J Clin Invest 1999; 103: 1391–1398.

    PubMed  CAS  Google Scholar 

  78. Dieli F, Friscia G, Di Sano C, et al. Sequestration of T lymphocytes to body fluids in tuberculosis: reversal of anergy following chemotherapy. J Infect Dis 1999; 180: 225–228.

    PubMed  CAS  Google Scholar 

  79. Mackall CL, Fleisher TA, Brown MR, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 1995; 332: 143–149.

    PubMed  CAS  Google Scholar 

  80. Moreland LW, Bucy RP, Koopman WJ. Regeneration of T cells after chemotherapy. N Engl J Med 1995; 332: 1651–1652.

    PubMed  CAS  Google Scholar 

  81. Autran B, Carcelain G, Li TS, et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112–116.

    PubMed  CAS  Google Scholar 

  82. Lewin SR, Vesanen M, Kostrikis L, et al. Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J Virol 1999; 73: 6099–6103.

    PubMed  CAS  Google Scholar 

  83. Pialoux G, Raffi F, Brun-Vezinet F, et al. A randomized trial of three maintenance regimens given after three months of induction therapy with zidovudine, lamivudine, and indinavir in previously untreated HIV-1-infected patients. N Engl J Med 1998; 339: 1269–1276.

    PubMed  CAS  Google Scholar 

  84. Reijers MH, Weverling GJ, Jurriaans S, et al. Maintenance therapy after quadruple induction therapy in HIV-1 infected individuals. Lancet 1998; 352: 185–190.

    PubMed  CAS  Google Scholar 

  85. Kovacs JA, Vogel S, Albert JM, et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 1996; 335: 1350–1356.

    PubMed  CAS  Google Scholar 

  86. Jacobson EL, Pilaro F, Smith KA. Rational interleukin-2 therapy for HIV positive individuals: daily low doses enhance immune function without toxicity. Proc Natl Acad Sci USA 1996; 93: 10405–10410.

    PubMed  CAS  Google Scholar 

  87. Arno A, Ruiz L, Juan M, et al. Efficacy of low-dose subcutaneous interleukin-2 to treat advanced HIV-1 in persons with 250 CD4 T cells and undetectable viral load. J Infect Dis 1999; 180: 56–60.

    PubMed  CAS  Google Scholar 

  88. McCune JM, Loftus R, Schmidt DK, et al. High prevalence of thymic tissue in adults with HIV-1 infection. J Clin Invest 1998; 101: 2301–2308.

    PubMed  CAS  Google Scholar 

  89. Carroll RG, Riley JL, Levine BL, et al. Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+T cells. Science 1997; 276: 273–276.

    PubMed  CAS  Google Scholar 

  90. Chun TW, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 1997; 94: 13193–13197.

    PubMed  CAS  Google Scholar 

  91. Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS. Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci USA 1998; 95: 8869–8873.

    PubMed  CAS  Google Scholar 

  92. Hartung T, Pitrak DL, Foote MA, Shatzen EM, Verral SC, Wendel A. Filgrastim restores interleukin-2 production in blood from patients with advanced HIV infection. J Infect Dis 1998; 178: 686–692.

    PubMed  CAS  Google Scholar 

  93. Miles SA. Hematopoietic growth factors as adjuvants to antiretroviral therapy. AIDS Res Hum Retroviruses 1992; 8: 1073–1080.

    PubMed  CAS  Google Scholar 

  94. Szelc CM, Mitcheltree C, Roberts RL Stiehm ER. Deficient polymorphonuclear cells and mononuclear cell antibody-dependent cellular cytotoxicity in pediatric and adult HIV infection. J Infect Dis 1992; 166: 486–493.

    PubMed  CAS  Google Scholar 

  95. Chun TW, Engel D, Mizell SB, et al. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active antiretroviral therapy. Nat Med 1999; 5: 651–655.

    PubMed  CAS  Google Scholar 

  96. Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1994; 68: 4650–4655.

    PubMed  CAS  Google Scholar 

  97. Borrow P, Lewicki H, Wei X, et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 1997; 3: 205–211.

    PubMed  CAS  Google Scholar 

  98. Rosenberg ES, Billingsley JM, Caliendo AM, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997; 278: 1447–1450.

    PubMed  CAS  Google Scholar 

  99. Daar ES, Bai J, Hausner MA, Majchrowicz M, Tamaddon M, Giorgi JV. Acute HIV syndrome after discontinuation of antiretroviral therapy in a patient treated before seroconversion. Ann Intern Med 1998; 128: 827–829.

    PubMed  CAS  Google Scholar 

  100. Corey L, McElrath MJ, Weinhold K, et al. Cytotoxic T cell and neutralizing antibody responses to HIV-1 envelope with a combination vaccine regimen. J Infect Dis 1998; 177: 301–309.

    PubMed  CAS  Google Scholar 

  101. Clements-Mann ML, Weinhold K, Matthews TJ, et al. Immune responses to HIV-1 induced by canarypox expressing HIV-1MN gp120, HIV-1SF2 recombinant gpl 20, or both vaccines in seronegative adults. J Infect Dis 1998; 177: 1230–1246.

    PubMed  CAS  Google Scholar 

  102. Vila J, Nugier F, Bargues G, et al. Absence of viral rebound after treatment of HIV-infected patients with didanosine and hydroxycarbamide. Lancet 1997; 352: 635–636.

    Google Scholar 

  103. Lisziewicz J, Jessen H, Finzi D, Siliciano RF, Lori F. HIV-1 suppression by early treatment with hydroxyurea, didanosine, and a protease inhibitor. Lancet 1998; 352: 199–200.

    PubMed  CAS  Google Scholar 

  104. Ortiz GM, Nixon DF, Trkola A, et al. HIV-1-specific immune responses in subjects who temporarily contain virus replication after discontinuation of highly active antiretroviral therapy. J Clin Invest 1999; 104: R13–R18.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kilby, J.M., Bucy, R.P. (2002). Host Cell-Directed Approaches for Treating HIV and Restoring Immune Function. In: Jacobson, J.M. (eds) Immunotherapy for Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-171-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-171-8_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9681-9

  • Online ISBN: 978-1-59259-171-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics