Skip to main content

Passive Immunotherapy for HIV Infection

  • Chapter
Immunotherapy for Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 141 Accesses

Abstract

The importance of humoral immunity in the prevention and control of natural HIV infection is unclear. Neutralizing antibody production can be detected soon after acute infection (1). In addition, antibodies capable of neutralization and antibody-dependent cellular cytotoxicity (ADCC) remain present to a greater degree in those patients whose infections remain stable (2, 3). Patients with progressing infection tend to lose these antibody activities. Moreover, levels of HIV-directed maternal antibodies are associated with reduced transmission of HIV to the infant (4–6). However, the nature of the relationship between strong humoral responses and control of infection has not been established. Strong HIV-specific cellular immune responses are also seen after acute infection (7) and in long-term nonprogressors (8), and there is more compelling evidence of a greater role of these responses in controlling HIV replication (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert J, Abrahamsson B, Nagy K, et al. Rapid development of isolate-specific neutralizing antibodies after primary HIV-1 infection and consequent emergence of virus variants which resist neutralization by autologous sera. AIDS 1990; 4: 107–112.

    Article  PubMed  CAS  Google Scholar 

  2. Robert-Guroff M, Goedert JJ, Naugle CL, Jennings AM, Blattner WA, Gallo RC. Spectrum of HIV-1 neutralizing antibodies in a cohort of homosexual men: results of a 6 year prospective study. AIDS Res Hum Retroviruses 1989; 5: 343–350.

    Google Scholar 

  3. Tyler DS, Lyerly HK, Weinhold KJ. Anti-HIV-1 ADCC. AIDS Res Hum Retroviruses 1989; 5: 557–563.

    Article  PubMed  CAS  Google Scholar 

  4. Ugen KE, Goedert JJ, Boyer J, et al. Vertical transmission of human immunodeficiency virus (HIV) infection. Reactivity of maternal sera with glycoprotein 120 and 41 peptides from HIV type 1. J Clin Invest 1992; 89: 1923–1930.

    Article  PubMed  CAS  Google Scholar 

  5. Goedert JJ, Mendez H, Drummond JE, et al. Mother-to-infant transmission of human immunodeficiency virus type 1: association with prematurity or low anti-gp120. Lancet 1989; 2: 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  6. Devash Y, Calvelli TA, Wood DG, Reagan KJ, Rubinstein A. Vertical transmission of human immunodeficiency virus is correlated with the absence of high-affinity/avidity maternal antibodies to the gp120 principal neutralizing domain. Proc Natl Acad Sci USA 1990; 87: 3445–3449.

    Article  PubMed  CAS  Google Scholar 

  7. Safrit IT, Andrew CA, Zhu T, Ho DD, Koup RA. Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: recognition of autologous virus sequences within a conserved immunodominant epitope. J Exp Med 1994; 179: 463–472.

    Article  PubMed  CAS  Google Scholar 

  8. Harrer T, Harrer E, Kalams SA, et al. Strong cytotoxic T cell and weak neutralizing responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res Hum Retroviruses 1996; 12: 585–592.

    Article  PubMed  CAS  Google Scholar 

  9. Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999; 283: 857–860.

    Article  PubMed  CAS  Google Scholar 

  10. Bahmanyar M, Fayaz A, Nour-Salehi S, Mohammadi M, Koprowski H. Successful protection of humans exposed to rabies infection: postexposure treatment with the new human diploid cell rabies vaccine and antirabies serum. JAMA 1976; 236: 2751–2754.

    Article  PubMed  CAS  Google Scholar 

  11. Groothius JR, Stimoes EAF, Levin MJ, et al. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. N Engl J Med 1993; 329: 1524–1530.

    Article  Google Scholar 

  12. Snydman DR, Werner BG, Heinze-Lacey B, et al. Use of cytomegalovirus immune globulin to prevent cytomegalovirus disease in renal transplant recipients. N Engl J Med 1987; 317: 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  13. Stokes J, Jr, Neefe JR. The prevention and attenuation of infectious hepatitis by gamma globulin. JAMA 1945; 127: 144–145.

    Article  Google Scholar 

  14. Beasley RP, Hwang LY, Steven CE. Efficacy of hepatitis B immune globulin for prevention of perinatal transmission of the hepatitis B virus carrier state: final report of a randomized double-blind, placebo-controlled trial. Hepatology 1983; 3: 135–141.

    Article  PubMed  CAS  Google Scholar 

  15. Ross AH. Modification of chicken pox in family contacts by administration of gamma globulin. N Engl J Med 1962; 267: 369–376.

    Article  PubMed  CAS  Google Scholar 

  16. Hammon WM, Coriel LL, Wehrie PF. Evaluation of Red Cross gamma globulin as a prophylactic agent for poliomyelitis. JAMA 1953; 151: 1272–1285.

    CAS  Google Scholar 

  17. Janeway CA. Use of concentrated human serum gamma globulin in the prevention and treatment of measles. Bull NY Acad Med 1945; 21: 202–220.

    CAS  Google Scholar 

  18. Korns RF. Prevention of German measles with immune serum globulin. J Infect Dis 1952; 90: 183–189.

    Article  PubMed  CAS  Google Scholar 

  19. Gellis SS, McGuinnes AC, Peters M. Study of prevention of mumps orchitis by gamma globulin. Am J Med Sci 1945; 210: 661–664.

    Article  Google Scholar 

  20. Emanuel D, Cunningham I, Jules-Elysee K, et al. Cytomegalovirus pneumonia after bone marrow transplantation successfully treated with the combination of ganciclovir and high-dose intravenous immune globulin. Ann Intern Med 1988; 109: 777–782.

    PubMed  CAS  Google Scholar 

  21. Frickhofen N, Abkowitz JL, Safford M, et al. Persistent B19 parvovirus infection in patients infected with human immunodeficiency virus type 1 (HIV-1): a treatable cause of anemia in AIDS. Ann Intern Med 1990; 113: 926–933.

    PubMed  CAS  Google Scholar 

  22. Beasley RP, Hwang LY, Stevens CE, et al. Efficacy of hepatitis B immune globulin for prevention of perinatal transmission of hepatitis B virus carrier state: final report of randomized double-blind, placebo-controlled trial. Hepatology 1983; 3: 135–141.

    Article  PubMed  CAS  Google Scholar 

  23. Krause RM, Dimmock NJ, Morens DM. Summary of antibody workshop: The Role of Humoral Immunity in the Treatment and Prevention of Emerging and Extant Infectious Diseases. J Infect Dis 1997; 176: 549–559.

    Article  PubMed  CAS  Google Scholar 

  24. Casedevall A. Crisis in infectious disease: time for a new paradigm? Clin Infect Dis 1996; 23: 790–794.

    Article  Google Scholar 

  25. Reitter JN, Means RE, Desrosiers RC. A role for carbohydrates in immune evasion in AIDS. Nat Med. 1998; 4: 679–684.

    Article  PubMed  CAS  Google Scholar 

  26. Hairharan K, Nara PL, Caralli VM, Norton FL, Haigwood N, Kang CY. Analysis of the cross-reactive anti-gp120 antibody population in human immunodeficiency virus-infected asymptomatic individuals. J Virol 1993; 67: 953–960.

    Google Scholar 

  27. Muster T, Steindl F, Purtscher M, et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 1993; 67: 6642–6647.

    PubMed  CAS  Google Scholar 

  28. LaCasse RA, Follis KE, Trahey M, Scarborough JD, Littman DR, Nunberg JH. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. Science 1999; 283: 357–362.

    Article  PubMed  CAS  Google Scholar 

  29. Matsushita S, Robert-Guroff M, Rusche J, et al. Characterization of a human immunodefiency virus neutralizing monoclonal antibody and mapping of the neutralizing epitope. J Virol 1998; 62: 2107.

    Google Scholar 

  30. Moore JP, Nara PL. The role of the V3 loop in HIV infection. AIDS 1991; 5 (Suppl 2): S21.

    Article  PubMed  Google Scholar 

  31. Rusche JR, Javaherian K, McDanal C, et al. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino-acid sequence of the viral envelope gp120. Proc Natl Acad Sci USA 1988; 85: 3198–3202.

    Article  PubMed  CAS  Google Scholar 

  32. Yamanaka T, Fujimura Y, Ishimoto S, et al. Correlation of titer of antibody to principal neutralizing domain of HIVMN strain with disease progression in Japanese hemophiliacs seropositive for HIV type 1. AIDS Res Hum Retroviruses 1997; 13: 317.

    Article  PubMed  CAS  Google Scholar 

  33. Devash Y, Calvelli TA, Wood DG, Reagan KJ, and Rubinstein A.Vertical transmission of HIV is correlated with the absence of high affinity/avidity maternal antibodies to the gp120 principal neutralizing domain. Proc Natl Acad Sci USA 1990; 87: 3445–3449.

    Article  PubMed  CAS  Google Scholar 

  34. Cocchi F, DeVico AL, Demo AG, Cara A, Gallo RC, Lusso P. V3 domain of HIV-1 envelope glycoprotein gp120 is critical for chemokine-mediated blockade of infection. Nat Med 1996; 2: 1244.

    Article  PubMed  CAS  Google Scholar 

  35. Emini EA, Schleif WA, Nunberg JH, et al. Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody. Nature 1992; 355: 728–730.

    Article  PubMed  CAS  Google Scholar 

  36. Girard M, Barre-Sinoussi F, van der Ryst E. Vaccination of chimpanzees against HIV-1. Antibiot Chemother 1996; 48: 121–124.

    PubMed  CAS  Google Scholar 

  37. Gorny MK, Conley AJ, Karwowska S, et al. Neutralization of diverse HIV-1 variants by an anti-V3 human monoclonial antibody. J Virol 1992; 66: 7538–7542.

    PubMed  CAS  Google Scholar 

  38. Jahaverian K, Langlois AJ, LaRosa FJ, et al. Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-1. Science 1990; 250: 1590–1593.

    Article  Google Scholar 

  39. Moore JP, Cao Y, Quing L, et al. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120 and their neutralization is not predicted by studies with monomeric gp120. J Virol 1995; 69: 101.

    PubMed  CAS  Google Scholar 

  40. Burton DR, Pyati J, Koduri R, et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 1994; 266: 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  41. Posner MR, Cavacini LA, Emes CL, Power J, Byrn RA. Neutralization of HIV-1 by F105, a human monoclonal antibody to the CD4 binding site of gp120. J Acquir Immune Defic Syndr 1993; 6: 7–14.

    PubMed  CAS  Google Scholar 

  42. Fevrier M, Boudet F, Deslandres A, Theze J. Two new monoclonal antibodies against HIV type 1 glycoprotein gp120: characterization and neutralizing activities against HIV type 1 strains. AIDS Res Hum Retroviruses 1995; 11: 491–500.

    PubMed  CAS  Google Scholar 

  43. Gorny MK, Moore JP, Conley AJ, et al. Human anti-V2 monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1. J Virol 1994; 68: 8312–8320.

    PubMed  CAS  Google Scholar 

  44. Cotropia J, Ugen KE, Kliks S, et al. A human monoclonal antibody to HIV-1 gp41 with neutralizing activity against diverse laboratory isolates. J Acquir Immune Defic Syndr 1996; 12: 221–232.

    Article  CAS  Google Scholar 

  45. Muster T, Guinea R, Trkola A, et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKEAS. J Virol 1994; 68: 4031–4034.

    PubMed  CAS  Google Scholar 

  46. Trkola A, Purtscher M, Muster T, et al. Human monoclonal antibody 2G12 defines a disinctive neutalization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996; 70: 1100–1108.

    PubMed  CAS  Google Scholar 

  47. Trkola A, Pomales AB, Yuan H, et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 1995; 69: 6609–6617.

    PubMed  CAS  Google Scholar 

  48. D’Souza MP, Milman G, Bradac JA, McPhee D, Hanson CV, Hendry RM. Neutralization of primary HIV-1 isolates by anti-envelope monoclonal antibodies. AIDS 1995; 9: 867–874.

    Article  PubMed  Google Scholar 

  49. Laal S, Burda S, Gomy MK, Karwowska S, Buchbinder A, Zolla-Pazner S. Synergistic neutralization of human immunodeficiency type 1 by combinations of human monoclonal antibodies. J Virol 1994; 68: 4001–4008.

    PubMed  CAS  Google Scholar 

  50. Thali M, Furman C, Wahren B, et al. Cooperativity of neutralizing antibodies directed against the V3 and CD4 binding regions of the human immunodeficiency virus gp120 envelope glycoprotein. J Acquir Immune Defic Syndr 1992; 5: 591–599.

    PubMed  CAS  Google Scholar 

  51. Tilley SA, Honnen WJ, Racho ME, Chou T-C, Pinter A. Synergistic neutralization of HIV-1 by human monoclonal antibodies against the V3 loop and the CD4-binding site of gp120. AIDS Res Hum Retroviruses 1992; 8: 461–467.

    Article  PubMed  CAS  Google Scholar 

  52. Vijh-Warrier S, Pinter A, Honnen WJ, Tilley S. Synergistic neutralization of human immunodeficiency virus type 1 by a chimpanzee monoclonal antibody against the V2 domain of gp120 in combination with monoclonal antibodies against the V3 loop and the CD4-binding site. J Virol 1996; 70:4466–1173.

    Google Scholar 

  53. Li A, Baba TW, Sodroski J, et al. Synergistic neutralization of a chimeric SIV/HIV type 1 virus with combinations of human anti-HIV type 1 envelope monoclonal antibodies or hyperimmune globulins. AIDS Res Hum Retroviruses 1997; 13: 647–656.

    Article  PubMed  CAS  Google Scholar 

  54. Li A, Katinger H, Posner MR, et al. Synergistic neutralization of simian-human immunodeficiency virus SHIV-vpu+ by triple and quadruple combinations of human monoclonal antibodies and high-titer anti-human immunodeficiency virus type 1 immunoglobulins. J Virol 1998; 72: 3235–3240.

    PubMed  CAS  Google Scholar 

  55. Mascola JR, Louder MK, Van Cott TC, et al. Potent and synergistic neutralization of human immunodeficiency (HIV) type 1 primary isolates by hyperimmune anti-HIV immunoglobulin combined with monoclonal antibodies 2F5 and 2G12. J Vir 1997; 71: 7198–7206.

    CAS  Google Scholar 

  56. Cummins LM, Weinhold KJ, Matthews TJ, et al. Preparation and characterization of an intravenous solution of IgG from human immunodeficiency virus-seropositive donors. Blood 1991; 77: 1111–1117.

    PubMed  CAS  Google Scholar 

  57. Cavacini LA, Emes CI, Power J, et al. Human monoclonal antibodies to the V3 loop of HIV-1 gp120 mediate variable and distinct effects on binding and viral neutralization by a human monoclonal antibody to the CD4 binding site. J Acquir Immune Defic Syndr 1993; 6: 6353–6358.

    Google Scholar 

  58. McKeating JA, Bennett J, Zolla-Pazner S, et al. Resistance of a human serum-selected human immunodeficiency virus type 1 escape mutant to neutralization by CD4 binding site monoclonal antibodies is conferred by a single amino acid change in gp120. J Virol 1993; 67: 5216–5225.

    PubMed  CAS  Google Scholar 

  59. Yoshiyama H, Mo H, Moore JP, Ho DD. Characterization of mutants of human immunodeficiency virus type 1 that have escaped neutralization by a monoclonal antibody to the gp120 V2 loop. J Virol 1994; 68: 974–978.

    PubMed  CAS  Google Scholar 

  60. Shotton C, Arnold C, Sattentau Q, Sodroski J, McKeating JA. Identification and characterization of monoclonal antibodies specific for polymorphic antigenic determinants within the V2 region of the human immunodeficiency virus type I. J Virol 1995; 69: 222–230.

    PubMed  CAS  Google Scholar 

  61. Daar ES, Li XL, Mougdil T, Ho DD. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci USA 1990; 87: 6574–6578.

    Article  PubMed  CAS  Google Scholar 

  62. Daar ES, Ho DD. Relative resistance of primary HIV-1 isolates to neutralization by soluble CD4. Am J Med 1991; 90 (Suppl 4A): 22S - 26S.

    Article  PubMed  CAS  Google Scholar 

  63. Schacker T, Coombs RW, Collier AC, et al. The effects of high-dose recombinant soluble CD4 on human immunodeficiency virus type 1 viremia. J Infect Dis 1994; 169: 37–40.

    Article  PubMed  CAS  Google Scholar 

  64. Hodges TL, Kahn JO, Kaplan LD, et al. Phase I study of recombinant human CD4immunoglobulin G therapy of patients with AIDS and AIDS-related complex. Antimicrob Agents Chemother 1991; 35: 2580–2586.

    Article  PubMed  CAS  Google Scholar 

  65. Gauduin MC, Allaway GP, Maddon PJ, Barbas CF, Burton DR, Koup RA. Evaluation of the protective role of two recombinant immunoglobulin molecules in passive protection against primary isolates of HIV-1. Keystone Symposium: Immunopathogenesis of HIV Infection 1996; Hilton Head Island, South Carolina.

    Google Scholar 

  66. Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984; 312: 763–767.

    Article  PubMed  CAS  Google Scholar 

  67. Klatzman D, Champagne E, Chamaret S, et al. T-lymphocytes T4 molecule behaves as the receptor for human retrovirus LAY. Nature 1984; 312: 767–768.

    Article  Google Scholar 

  68. McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, Nicholson JKA. (1986) Binding of HTL-IIULAV to T4+ T cells by complex of the 110K viral protein and the T4 molecule. Science 1986; 231: 382–385.

    Article  Google Scholar 

  69. Reimann KA, Burkly LC, Burrus B, Waite BCD, Lord CI, Letvin NL. (1993) In vivo administration to rhesus monkeys of a CD-4 specific monoclonal antibody capable of blocking AIDS virus replication. AIDS Res Hum Retroviruses 1993; 9: 199–207.

    Article  PubMed  CAS  Google Scholar 

  70. Reimann KA, Lin WU, Bixler S, et al. A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res Hum Retro-viruses 1997; 13: 933–943.

    Article  CAS  Google Scholar 

  71. Burkly L, Mulrey L, Blumenthal R, Dimitrov DS. Synergistic inhibition of human immunodeficiency virus type 1 envelope glycoprotein-mediated cell fusion and infection by an antibody to CD4 domain 2 in combination with anti-gp120 antibodies. J Virol 1995; 69: 4267–4273.

    PubMed  CAS  Google Scholar 

  72. Chang YW, Sawyer LSW, Murthy KK, et al. Postexposure immunoprophylaxis of primary isolates by an antibody to HIV receptor complex. Proc Natl Acad Sci USA 1999; 96: 10367–10372.

    Article  Google Scholar 

  73. Olson W, Nagashima K, Tran D, et al. HIV-1 and chemokine-inhibitory activities of antiCCR5 antibodies map to distinct CCR5 epitopes [Abstract]. In: Programs and Abstracts, 6th Conference on Retroviruses and Opportunistic Infections 1999; Chicago.

    Google Scholar 

  74. Murayama T, Cai Q, Rinaldo CR. Antibody-dependent cellular cytotoxicity mediated by CD 16+ lymphocytes from HIV-seropositive homosexual men. Clin Immunol Immunopathol 1990; 55: 297–304.

    Article  PubMed  CAS  Google Scholar 

  75. Ahmad A, Morriset R, Thomas R, Menezes J. Evidence for a defect of antibody-dependent cellular cytotoxicity (ADCC) effector function and anti-HIV gp120/gp41specific ADCC mediating antibody titers in HIV-infected individuals. J Acquir Immune Defic Syndr 1994; 7: 428–437.

    PubMed  CAS  Google Scholar 

  76. Tyler DS, Nastala CL, Stanley SD, et al. Gp120 specific cellular cytotoxicity in HIV-1 seropositive individual: evidence of circulating CD16+ effector cells armed in vivo with cytophilic antibody. J Immunol 1990; 142: 1177–1182.

    Google Scholar 

  77. Lin S-J, Roberts RL, Ank BJ, Nguyen QH, Thomas EK, Stiehm ER. Human immunodeficiency virus (HIV) type-1 gp120-specific cell-mediated cytotoxicity (CMC) and natural killer (NK) activity in HIV-infected (HIV+) subjects: enhancement with interleukin-2 (IL-2), IL-12, and IL-15. Clin Immunol Immunopathol 1997; 82: 163–173.

    Article  PubMed  CAS  Google Scholar 

  78. Posner MR, Elboim HS, Cannon T, Cavacini L, Hideshima T. Functional activity of an HIV-1 neutralizing IgG monoclonal antibody: ADCC and complement mediated lysis. AIDS Res Hum Retroviruses 1992; 5: 553–558.

    Article  Google Scholar 

  79. Gorny MK, Keler T, Burda S, et al. Functional studies of bispecific antibodies directed against HIV-1 and the Fc-y 1 receptor type 1. Antibiot Chemother 1996; 48: 173–183.

    PubMed  CAS  Google Scholar 

  80. Gregersen JP, Mehdi S, Baur A, Hilfenhaus J. Antibody-and complement-mediated lysis of HIV-infected cells and inhibition of viral replication. J Med Virol 1990; 30: 287–293.

    Article  PubMed  CAS  Google Scholar 

  81. Spear GT, Sullivan BL, Landay AL, Lint TF. Neutralization of human immunodeficiency virus type 1 by complement occurs by viral lysis. J Virol 1990; 64: 5869–5873.

    PubMed  CAS  Google Scholar 

  82. Spear GT, Takefman DM, Sharpe S, Ghassemi M, Zolla-Pazner S. Antibodies to the HIV-1 V3 loop in serum from infected persons contribute a major proportion of immune effector functions including complement activation, antibody binding, and neutralization. Virology 1994; 204: 609–615.

    Article  PubMed  CAS  Google Scholar 

  83. Spear GT, Takefman DM, Sullivan BL, Landay AL, Zolla-Pazner S. Complement activation by human monoclonal antibodies to human immunodeficiency virus. J Virol 1993; 67: 53–59.

    PubMed  CAS  Google Scholar 

  84. Fung MSC, Sun C, Sun NC, et al. Monoclonal antibodies that neutralize HIV-1 virions and inhibit syncytium formation by infected cells. Biotechnology 1987; 5: 940–946.

    Article  CAS  Google Scholar 

  85. Lyerly HK, Matthews TJ, Langlois AJ, Bolognesi DP, Weinhold KJ. Human T-cell lymphotropic virus IIIB glycoprotein (gp120) bound to CD4 on normal lymphocytes and expressed by infected cells serves as target for immune attack. Proc Natl Acad Sci USA 1987; 84: 4601–4605.

    Article  PubMed  CAS  Google Scholar 

  86. Siliciano RF, Lawton T, Knall C, et al. Analysis of host-virus interactions in AIDS with anti-gp120 T cell clones: effects of HIV sequence variation and a mechanism for CD4+ cell depletion. Cell 1988; 54: 561–575.

    Article  PubMed  CAS  Google Scholar 

  87. Orentas RJ, Hildreth JE, Obah E, et al. Induction of CD4+ human cytolytic T cells specific for HIV-infected cells by a gp160 subunit vaccine. Science 1990; 248: 1234–1237.

    Article  PubMed  CAS  Google Scholar 

  88. Liegler TI, Stites DP. HIV-1gp120 and anti-gp120 induce reversible unresponsiveness in peripheral CD4 T lymphocytes. J Acquir Immune Defic Syndr 1994; 7: 340–348.

    PubMed  CAS  Google Scholar 

  89. Theodore AC, Komfield H, Wallace RP, Criukshank WW. CD4 modulation of noninfected human T lymphocytes by HIV-1 envelope glycoprotein gp120 contributions to the immunosuppression seen in HIV-1 infection by induction of CD4 and CD4 unresponsiveness. J Acquir Immune Defic Syndr 1994; 7: 899–907.

    PubMed  CAS  Google Scholar 

  90. Frankel SS, Steinman RM, Michael NL, et al. Neutralizing monoclonal antibodies block human immunodeficiency virus type 1 infection of dendritic cells and transmission to T cells. J Virol 1998; 72 (12): 9788–9794.

    PubMed  CAS  Google Scholar 

  91. Takeda A, Tuazon CV, Ennis FA. Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science 1988; 86: 8055–8058.

    Google Scholar 

  92. Robinson WE, Montefiore DC, Gillespie DH, Mitchell WM. Complement mediated, antibody dependent enhancement of HIV-1 infection in vitro is characterized by increased protein and RNA synthesis and infectious virus release. J Acquir Immune Defic Syndr 1989; 2: 33–42.

    PubMed  CAS  Google Scholar 

  93. Putkonen P, Thorstensson R, Ghavamzadeh L, et al. Prevention of HIV-2 and SIVsm infection by passive immunization in cynomolgus monkeys. Nature 1991; 352: 436–438.

    Article  PubMed  CAS  Google Scholar 

  94. Biberfeld G, Thorstensson R, Putkonen P. HIV-2 vaccine trials in cynomolgus monkeys. Antibiot Chemother 1996; 48: 113–120.

    PubMed  CAS  Google Scholar 

  95. Prince AM, Reesink H, Pascual D, et al. Prevention of HIV infection by passive immunization with HIV immunoglobulin. AIDS Res Hum Retroviruses 1991; 7: 971–973.

    Article  PubMed  CAS  Google Scholar 

  96. Prince AM, Horowitz B, Baker L, et al. Failure of a human immunodeficiency virus (HIV) immune globulin to protect chimpanzees against experimental challenge with HIV. Proc Natl Acad Sci USA 1988; 85: 6944–6948.

    Article  PubMed  CAS  Google Scholar 

  97. Lewis MG, Elkins WR, McCutchan FE, et al. Passively transferred antibodies directed against conserved regions of SIV envelope protect macaques from SIV infection. Vaccine 1993; 11: 1347–1355.

    Article  PubMed  CAS  Google Scholar 

  98. Kent KA, Kitchin P, Mills KH, et al. Passine immunization of cynomolgus macaques with immune sera or a pool of neutralizing monoclonal antibodies failed to protect against challenge with SIVmac251• AIDS Res Hum Retroviruses 1994; 10: 189–194.

    PubMed  CAS  Google Scholar 

  99. Gardner M, Rosenthal A, Jennings M, Yee J, Antipa L, Robinson E Jr. Passive immunization of rhesus macaques against SIV infection and disease. AIDS Res Hum Retro-viruses 1995; 111: 843–854.

    Article  Google Scholar 

  100. Van Rompay KKA, Berardi CJ, Dillard-Telm S, et al. Passive immunization of newborn rhesus macaques prevents oral simian immunodeficiency virus infection. J Infect Dis 1998; 177: 1247–1259.

    Article  PubMed  Google Scholar 

  101. Siegel F, Kurth R, Norley S. Neither whole inactivated virus immunogen nor passive immunoglobulin transfer protects against SIVagm infection in the African green monkey natural host. J Acquir Immune Defic Syndr 1995; 8: 217–226.

    Article  CAS  Google Scholar 

  102. Clements JE, Montelaro RC, Zink MC, et al. Cross-protective immune responses induced in rhesus macaques by immunization with attenuated macrophage-tropic simian immunodeficiency virus. J Virol 1995; 69: 2737–2744.

    PubMed  CAS  Google Scholar 

  103. Haigwood NL, Watson A, Sutton WF, et al. Passive immune globulin therapy in the SIV/ macaque model: early intervention can alter disease profile. Immunol Lett 1996; 51: 107–114.

    Article  PubMed  CAS  Google Scholar 

  104. Conley AJ, Kessler JA II, Boots U, et al. The consequence of passive administration of an anti-human immunodeficiency virus type 1 neutralizing monoclonal antibody before challenge of chimpanzees with a primary virus isolate. J Virol 1996; 70: 6751–6758.

    PubMed  CAS  Google Scholar 

  105. Mascola JR, Lewis MG, Stiegler G, et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 1999; 73: 4009–4018.

    PubMed  CAS  Google Scholar 

  106. Mascola JR, Gabriela S, VanCott TC, et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 2000; 6: 207–210.

    Article  PubMed  CAS  Google Scholar 

  107. Baba TW, Liska V, Hofmann-Lehmann R, et al. Human neutralizing monoclonal antibodies of the IgGI subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 2000; 6: 200–206.

    Article  PubMed  CAS  Google Scholar 

  108. Custer RP, Bosma GC, Bosma MJ. Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol 1985; 120: 464–477.

    PubMed  CAS  Google Scholar 

  109. McCune JM, Namikawa R, Kaneshima H, Schultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    Article  PubMed  CAS  Google Scholar 

  110. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    Article  PubMed  CAS  Google Scholar 

  111. Mosier DE, Gulizia RJ, Baird SM, Wilson DB, Spector DH, Spector SA. Human immunodeficiency virus infection of human-PBL-SLID mice. Science 1991; 251: 791–794.

    Article  PubMed  CAS  Google Scholar 

  112. Safrit JT, Fung MSC, Andrews CA, et al. Hu-PBL-SCID mice can be protected from HIV-1 infection by passive transfer of monoclonal antibody to the principal neutralizing determinant of the envelope gp120. AIDS 1993; 7: 15–21.

    Article  PubMed  CAS  Google Scholar 

  113. Gauduin MC, Safrit JT, Weir R, Fung MS, Koup RA. Pre-and post-exposure protection against human immunodeficiency virus type 1 infection mediated by a monoclonal antibody. J Infect Dis 1995; 171: 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  114. Andrus L, Prince AM, Bernal I, et al. Passive immunization with a human immunodeficiency virus type 1-neutralizing monoclonal antibody in Hu-PBL-SCID mice; isolation of a neutralization escape variant. J Infect Dis 1998; 177: 889–897.

    Article  PubMed  CAS  Google Scholar 

  115. Koup RA, Safrit JT, Weir R, Gauduin M-C. Defining antibody protection against HIV-1 transmission in Hu-PBL-SCID mice. Semin Immunol 1996; 8: 263–268.

    Article  PubMed  CAS  Google Scholar 

  116. Andrus L, McCarthy M, Cobb KE, et al. Passive immunization against HIV-1 infection. In: Girard M, Valette L (eds). Retroviruses of Human AIDS and Related Animal Diseases. Paris: Foundation Merieux, 1993, pp. 251–257.

    Google Scholar 

  117. Parren PW, Ditzel HJ, Gulizia RJ, et al. Protection against HIV-1 infection in hu-PBLSCID mice by passive administration with a neutralizing monoclonal antibody against the gp120-binding site. AIDS 1995; 9: F1 - F6.

    Article  PubMed  CAS  Google Scholar 

  118. Gauduin M-C, Parren PWHI, Weir R, Barbas CF, Burton DR, Koup RA. Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nat Med 1997; 3: 1389–1393.

    Article  PubMed  CAS  Google Scholar 

  119. Okamoto Y, Eda Y, Ogura A, et al. In SCID-hu mice, passive transfer of a humanized antibody prevents infection and atrophic change of medulla in human thymic implant due to intravenous inoculation of primary HIV-1 isolate. J Immunol 1998; 160: 69–76.

    PubMed  CAS  Google Scholar 

  120. Schutten M, Tenner-Racz K, Racz P, van Bekkum DW, Osterhaus AD. Human antibodies that neutralize primary human immunodeficiency virus type 1 in vitro do not provide protection in an in vivo model. J Gen Virol 1996; 77: 1667–1675.

    Article  PubMed  CAS  Google Scholar 

  121. Moore JP, Nara PL. The role of the V3 loop of gp120 in HIV infection. AIDS 1994; 5: S21 - S33.

    Article  Google Scholar 

  122. Trkola A, Dragic T, Arthos J, et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 1996; 384: 184–187.

    Article  PubMed  CAS  Google Scholar 

  123. Gauduin M-C, Weir R, Fung MSC, Koup RA. Involvement of the complement system in antibody-mediated post-exposure protection against human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1998; 14: 205–211.

    Article  PubMed  CAS  Google Scholar 

  124. Jackson GG, Perkins JT, Rubenis M, et al. Passive immunoneutralization of human immunodeficiency virus in patients with advanced AIDS. Lancet 1988; 2: 647–654.

    Article  PubMed  CAS  Google Scholar 

  125. Karpas A, Hill F, Youle M, et al. Effects of passive immunization in patients with the acquired immunodeficiency syndrome-related complex and acquired immunodeficiency syndrome. Proc Natl Acad Sci USA 1988; 85: 9234–9237.

    Article  PubMed  CAS  Google Scholar 

  126. Busch MP, Henrard DR, Hewlett IK, et al. Poor sensitivity, specificity, and reproducibility of detection of HIV-1 DNA in serum by polymerase chain reaction. The Transfusion Safety Study Group. J Acquir Immune Defic Syndr 1992; 5: 872–877.

    PubMed  CAS  Google Scholar 

  127. Jacobson JM, Colman N, Ostrow NA, et al. Passive immunotherapy in the treatment of advanced human immunodeficiency virus infection. J Infect Dis 1993; 168: 298–305.

    Article  PubMed  CAS  Google Scholar 

  128. Vittecoq D, Mattlinger B, Barre-Sinoussi F, et al. Passive immunotherapy in AIDS: a randomized trial of serial human immunodeficiency virus-positive transfusions of plasma rich in p24 antibodies versus transfusions of seronegative plasma. J Infect Dis 1992; 165: 364–368.

    Article  PubMed  CAS  Google Scholar 

  129. Levy J, Youvan T, Lee ML. Passive hyperimmune plasma therapy in the treatment of acquired immunodeficiency syndrome: results of a 12 month multicenter double-blind controlled trial. Blood 1994; 84: 2130–2135.

    PubMed  CAS  Google Scholar 

  130. Vittecoq D, Chevret S, Morand-Joubert L, et al. Passive immunotherapy in AIDS: a double-blind randomized study based on transfusions rich in anti-human immundeficiency virus 1 antibodies vs transfusions of seronegative plasma. Proc Natl Acad Sci USA 1995; 92: 1195–1199.

    Article  PubMed  CAS  Google Scholar 

  131. Morand-Joubert L, Vittecoq D, Roudot-Thoraval F, et al. Virological and immunological data of AIDS patients treated by passive immunotherapy (transfusions of plasma rich in HIV-1 antibodies). Vox Sang 1997; 73: 149–154.

    Article  PubMed  CAS  Google Scholar 

  132. Osther K, Wiik A, Black F, et al. PASSHIV-1 treatment of patients with HIV-1 infection. A preliminary report of a phase 1 trial of hyperimmune porcine immunoglobulin to HIV-1. AIDS 1992; 6: 1457–1464.

    Article  PubMed  CAS  Google Scholar 

  133. Stiehm ER, Lambert JS, Mofenson LM, et al. Efficacy of zidovudine and human immunodeficiency virus (HIV) hyperimmune immunoglobin for reducing perinatal HIV transmission from HIV-infected women with advanced disease: results of Pediatric AIDS Clinical Trials Group Protocol 185. J Infect Dis 1999; 179: 567–575.

    Article  PubMed  CAS  Google Scholar 

  134. Stiehm ER, Lambert JS, Mofenson LM, et al. Use of human immunodeficiency virus (HIV) human hyperimmune immunoglobulin in HIV type 1-infected children (Pediatric AIDS Clinical Trials Group Protocol 273). J Infect Dis 2000; 181: 548–554.

    Article  PubMed  CAS  Google Scholar 

  135. Hinkula J, Bratt G, Gilljam G, et al. Immunological and virological interactions in patients receiving passive immunotherapy with HIV-1 neutralizing monoclonal antibodies. J Acquir Immune Defic Syndr 1994; 7: 940–951.

    PubMed  CAS  Google Scholar 

  136. Gunthard HF, Gowland PL, Schupback J. A phase UIIA clinical study with a chimeric mouse-human monoclonal antibody to the V3 loop of human immunodeficiency virus type 1 gp120. J Infect Dis 1994; 170: 1384–1393.

    Article  PubMed  CAS  Google Scholar 

  137. Stiehm ER, Mofenson L, Zolla-Pazner S, Jackson B, Martin NL, Ammann AJ. Summary of the workshop on passive immunotherapy in the prevention and treatment of HIV infection. The Passive Antibody Workshop Participants. Clin Immunol Immunopathol 1995; 75: 84–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jacobson, J.M. (2002). Passive Immunotherapy for HIV Infection. In: Jacobson, J.M. (eds) Immunotherapy for Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-171-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-171-8_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9681-9

  • Online ISBN: 978-1-59259-171-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics