Skip to main content

Targeting the CD22 Receptor with RNA Damaging Agents

  • Chapter
Tumor Targeting in Cancer Therapy

Abstract

CD22, a B lymphocyte-restricted member of the immunoglobulin superfamily (IgSF), is a member of the sialoadhesin family of adhesion molecules that includes sialoadhesin and myelin-associated glycoprotein (1). Sialoadhesin and CD22 mediate cellular interactions by recognizing specific cell-surface sialylated glycoconjugates (2and refs. therein). Binding of CD22 to glycoconjugates on neighboring cells alters signaling through the membrane immunoglobulin of B cells by binding cytosolic proteins (3). CD22 is an attractive molecular target because of its restricted expression; it is not exposed on embryonic stem or pre-B cells nor is it normally shed from the surface of antigen-bearing cells (4). Moreover, it is highly expressed on B cells in approx 70–80% of non-Hodgkin’s lymphoma (NHL) cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, deBellard M-E, et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol1994; 4:965–972.

    Article  PubMed  CAS  Google Scholar 

  2. Nath D, vanderMerwe A, Kelm PA, Bradfield P, Crocker PR. The amino-terminal immunoglobulinlike domain of sialoadhesin contains the sialic acid binding site: comparison with CD22. J Biol Chem1995; 270:26184–26191.

    Article  PubMed  CAS  Google Scholar 

  3. Doody GM, Dempsey PW, Fearon DT. Activation of B lymphocytes: integrating signals from CD 19, CD22 and FcyRIIb1. Curr Opin Immunol1996; 8:378–382.

    Article  PubMed  CAS  Google Scholar 

  4. Li JL, Shen GL, Ghetie MA, May RD, Till M, Ghetie V, et al. The epitope specificity amd tissue reactivity of four murine monoclonal anti-CD22 antibodies. Cell Immunol1989; 118:85–99.

    Article  PubMed  CAS  Google Scholar 

  5. Fitzgerald D. Why toxins? Sem Cancer Biol1996; 7:87–95.

    Article  CAS  Google Scholar 

  6. Kao R, Davies J. Molecular dissection of mitogillin reveals that the fungal ribotoxins are a family of natural genetically engineered ribonucleases. J Biol Chem1999; 274:12576–12582.

    Article  PubMed  CAS  Google Scholar 

  7. Wool IG, Bluck A, Endo Y. Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci1992; 17:266–269.

    Article  PubMed  CAS  Google Scholar 

  8. Youle RJ, Newton DL, Wu YN, Gadina M, Rybak SM. Cytotoxic ribonucleases and chimeras in cancer therapy. Crit Rev Therapeut Drug Carrier Syst1993; 10:1–28.

    CAS  Google Scholar 

  9. James R, Kleanthous C, Moore GR. The biology of E. colicins: paradigms and paradoxes. Microbiology1996; 142:1569–1580.

    Article  PubMed  CAS  Google Scholar 

  10. Iordanov MS, Pribnow D, Magun JL, Dinh T H, Pearson JA, Chen SL-Y, Magun BE. Ribotoxic stress response:activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the α-sarcin ricin loop in the 28S rRNA. Mol Cell Biol1997; 17:3373–3381.

    PubMed  CAS  Google Scholar 

  11. Iordanov MS, Ryabinina OP, Wong J, Dinh T H, Newton DL, Rybak SM, Magun BE. Molecular determinants of programmed cell death induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res2000; 60:1983–1994.

    PubMed  CAS  Google Scholar 

  12. Ecker DJ, Griffey RH. RNA as a small-molecule drug target: doubling the value of genomics. Drug Dis Today1999; 4:420–429.

    Article  CAS  Google Scholar 

  13. Schein CH. From housekeeper to microsurgeon: the diagnostic and therapeutic potential of ribonucleases. Nature Biotechnol1997; 15:529–536.

    Article  CAS  Google Scholar 

  14. Lenz GR, Nash HM, Jindal S. Chemical ligands, genomics and drug discovery. Drug Discov Today2000; 5:145–156.

    Article  PubMed  CAS  Google Scholar 

  15. Wilson WD, Li K. Targeting RNA with small molecules. Curr Med Chem2000; 7:73–98.

    Article  PubMed  CAS  Google Scholar 

  16. Hecht SM. Bleomycin: new perspectives on the mechanism of action. J Nat Prod2000; 63:158–168.

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa T, Tomita K, Ueda T, Watanabe K, Uozumi T, Masaki H. A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science1999; 283:2097–2100.

    Article  PubMed  CAS  Google Scholar 

  18. Lin JJ, Newton DL, Mikulski SM, Kung HF, Youle RJ, Rybak SM. Characterization of the mechanism of cellular and cell free protein synthesis inhibition by an anti-tumor ribonuclease. Biochem Biophys Res Commun1994; 204:156–162.

    Article  PubMed  CAS  Google Scholar 

  19. Ledoux L. Action of ribonuclease on two solid tumors in vivo. Nature1955; 176:36–37.

    Article  PubMed  CAS  Google Scholar 

  20. Ledoux L. Action of ribonuclease on certain ascites tumours. Nature1955; 175:258–259.

    Article  PubMed  CAS  Google Scholar 

  21. Aleksandrowicz J. Intracutaneous ribonuclease in chronic myelocytic leukemia. Lancet1958; 2:420.

    Article  Google Scholar 

  22. D’Alessio G. New and cryptic biological messages from RNases. Trends in Cell Biol1993; 3:106–109.

    Article  Google Scholar 

  23. Matousek J. The effect of bovine seminal ribonuclease (AS RNase) on cells of Crocker tumour in mice. Experientia1973: 29:858–859.

    Article  PubMed  CAS  Google Scholar 

  24. Laccetti P, Spalletti-Cernia D, Portella G, DeCorato P, D’Alessio G, Vecchio G. Seminal RNase inhibits tumor growth and reduces the metastatic potential of Lewis lung carcinoma. Cancer Res1994; 54:4253–4256.

    PubMed  CAS  Google Scholar 

  25. Pouckova P, Soucek J, Jelinek J, Zadinova M, Hlouskova D, Pllivkova J, et al. Antitumor action of bovine seminal ribonuclease. Cytostatic effect on human melanoma and mouse seminoma. Neoplasma1998; 45:30–34.

    PubMed  CAS  Google Scholar 

  26. Soucek J, Pouckova P, Matousek J, Stockbauer P, Dostal J, Zadinova M. Antitumor action of bovine seminal ribonuclease. Neoplasma1996; 43:335–340.

    PubMed  CAS  Google Scholar 

  27. Darzynkiewicz Z, Carter SP, Mikulski SM, Ardelt WJ, Shogen K. Cytostatic and cytotoxic effects of Pannon (P-30 protein) a novel anti-cancer agent. Cell Tissue Kinet1988; 21:169–182.

    PubMed  CAS  Google Scholar 

  28. Mikulski SM, Ardelt W, Shogen K, Bernstein EH, Menduke H. Striking increase of survival of mice bearing M109 Madison Carcinoma treated with a novel protein from amphibian embryos. J Nall Cancer Inst1990; 82:151–153.

    Article  CAS  Google Scholar 

  29. Mikulski SM, Viera A, Ardelt W, Menduke H, Shogen K. Tamoxifen and trifluoroperazine (Stelazine) potentiate cytostatic/cytotoxic effects of P-30 protein, a novel protein possessing anti-tumor activity. Cell Tissue Kinet1990: 23:237–246.

    PubMed  CAS  Google Scholar 

  30. Mikulski SM, Viera A, Darzynkiewicz A, Shogen K. Synergism between a novel amphibian oocyte ribonuclease and lovastatin in inducing cytostatic and cytotoxic effects in human lung and pancreatic carcinoma cell lines. Br J Cancer1992; 66:304–310.

    Article  PubMed  CAS  Google Scholar 

  31. Mikulski SM, Viera A, Shogen K. In vitro synergism between a novel amphibian oocytic ribonuclease (Onconase) and tamoxifen, lovastatin and cisplatin in human OVCAR-3 ovarian carcinoma cell line. Intl J Oncology1992; 1:779–785.

    CAS  Google Scholar 

  32. Rybak SM, Pearson JW, Fogler WF, Volker K, Spence SE, Newton DL, et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with Onconase, an antitumor ribonuclease. J Natl Cancer Inst1996; 88:747–753.

    Article  PubMed  CAS  Google Scholar 

  33. Mikulski SM, Grossman AM, Carter PW, Shogen K, Costanzi JJ. Phase 1 human clinical trial of ONCONASE (P-30 protein) administered intravenously on a weekly schedule in cancer patients with solid tumors. Intl J. Oncol1993; 3:57–64.

    CAS  Google Scholar 

  34. Newton DL, Hansen HJ, Mikulski SM, Goldenberg DM, Rybak SM. In vitro and in vivo characterization of LL2-RNase conjugates against the CD22 antigen on human B-cell lymphomas. Proc Am Assoc Cancer Res1998; 39:435.

    Google Scholar 

  35. Benhattar J, Cerottini JP, Saraga E, Metthez G, Givel JC. p53 mutations as a possible predictor of response to chemotherapy in metastatic colorectal carcinomas. Intl J Cancer1996; 69:190–192.

    Article  CAS  Google Scholar 

  36. Pawlak-Byczkowska EJ, Hansen HJ, Dion AS, Goldenberg DM. Two new monoclonal antibodies, EPB-1 and EPB-2 reactive with human lymphoma. Cancer Res1989; 49:4568–4577.

    PubMed  CAS  Google Scholar 

  37. Stein R, Belisle E, Hansen HJ, Goldenberg DM. Epitope specificity of the anti-B-cell lymphoma monoclonal antibody, LL2. Cancer Immunol Immunother1993; 37:293–298.

    Article  PubMed  CAS  Google Scholar 

  38. Juweid ME, Blumenthal RD, Lew W, Hajjar G, Rubin AD, Goldenberg DM. Importance of timing of radioimmunotherapy after granulocyte colony-stimulating factor administration for peripheral blood stem cell harvest. Clin Cancer Res1999; 5(Suppl):3337s–3342s.

    Google Scholar 

  39. Leonard JP, Coleman M, Schuster MW, Feldman EJ, Chadburn A, Ely S, et al. CD-22 directed immunotherapy of NHL with Epratuzumab results in objective responses with minimal toxicity. Cancer Biother Radiopharmaceut2000; 15:104.

    Google Scholar 

  40. Rybak SM, Saxena SK, Ackerman EJ, Youle RJ. Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins. J Biol Chem1991; 266:21202–21207.

    PubMed  CAS  Google Scholar 

  41. Newton DL, Ilercil O, Laske DW, Oldfield E, Rybak SM, Youle RJ. Cytotoxic ribonuclease chimeras: targeted tumoricidal activity in vitro and in vivo. J Biol Chem1992; 267:19572–19578.

    PubMed  CAS  Google Scholar 

  42. Jinno H, Ueda M, Ozawa S, Kikuchi K, Ikeda T, Enomoto K, Kitajima M. Epidermal growth factor receptor-dependent cytotoxic effect by an EGF-ribonuclease conjugate on human cancer cell lines: a trial for less immunogenic chimeric toxin. Can Chemother Pharmacol1996; 38:303–308.

    Article  CAS  Google Scholar 

  43. Jinno H, Ueda M, Ozawa S, Ikeda T, Enomoto K, Psarras K, et al. Epidermal growth factor receptordependent cytotoxicity for human squamous carcinoma cell lines of a conjugate composed of human EGF and RNase 1. Life Sci1996; 58:1901–1908.

    Article  PubMed  CAS  Google Scholar 

  44. Newton DL, Xue Y, Olson KA, Fett JW, Rybak SM. Angiogenin single-chain immunofusions: Influence of peptide linkers and spacers between fusion protein domains. Biochemistry1996; 35:545–553.

    Article  PubMed  CAS  Google Scholar 

  45. Newton DL, Nicholls PJ, Rybak SM, Youle RJ. Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. J Biol Chem1994; 269:26739–26745.

    PubMed  CAS  Google Scholar 

  46. Rybak SM, Hoogenboom HR, Meade HM, Raus JC, Schwartz D, Youle RJ. Humanization of immuntoxins. Proc Natl Acad Sci USA1992; 89:3165–3169.

    Article  PubMed  CAS  Google Scholar 

  47. Zewe M, Rybak SM, Dubel S, Coy JF, Welschof M, Newton DL, Little M. Cloning and cytotoxicity of a human pancreatic RNase immunofusion. Immunotechnology1997; 3:127–136.

    Article  PubMed  CAS  Google Scholar 

  48. Psarras K, Ueda M, Yamamura T, Ozawa S, Kitajima M, Aiso S, et al. Human pancreatic RNase 1human epidermal growth factor fusion: an entirely human immunotoxin analog with cytotoxic properties against squamous cell carcinomas. Prot Eng1998; 11:1285–1292.

    Article  CAS  Google Scholar 

  49. Yoon JM, Han SH, Kown OB, Kim SH, Park MH, Kim BK. Cloning and cytotoxicity of fusion proteins of EGF and angiogenin. Life Sci1999; 64:1435–1445.

    Article  PubMed  CAS  Google Scholar 

  50. Rybak SM, Newton DL. Natural and engineered cytotoxic ribonucleases: therapeutic potential. Exp Cell Res1999; 253:325–335.

    Article  PubMed  CAS  Google Scholar 

  51. Ghetie MA, May RD, Till M, Uhr JW, Ghetie V, Knowles PP, et al. Evaluation of ricin A-chain-containing immunotoxins directed against C019 and CD22 antigens on normal and malignant human Bcells as potential reagents for in vivo therapy. Cancer Res1988; 48:2610–2617.

    PubMed  CAS  Google Scholar 

  52. Ghetie MA, Tucker K, Richardson J, Uhr JW, Vitetta ES. The anti-tumor activity of an anti-CD22 immunotoxin in SCID mice with disseminated Daudi lymphoma is enhanced by either an anti-CD 19 antibody or an anti-CD 19 immunotoxin. Blood1992; 84:702–707.

    Google Scholar 

  53. Ghetie MA, Richardson J, Tucker T, Jones D, Uhr JW, Vitetta ES. Antitumor activity of Fab’ and IgG-anti-CD22 immunotoxins in disseminated human B lymphoma grown in mice with severe combined immunodeficiency disease effect on tumor cells in extranodal sites. Cancer Res1991; 51:5876–5880.

    PubMed  CAS  Google Scholar 

  54. Thrush GR, Lark LR, Clinchy BC, Vitetta ES. Immunotoxins: an update. Ann Rev Immunol1996; 14:49–71.

    Article  CAS  Google Scholar 

  55. Horssen PJV, Preijers FWMB, Oosterhout YVV, Witte TD. Highly potent CD22-recombinant ricin A results in complete cure of disseminated malignant B-cell xenografts in SCID mice but fails to cure solid xenografts in nude mice. Intl J Cancer1996; 68:378–383.

    Article  Google Scholar 

  56. Vitetta ES, Stone M, Amlot P, Fay J, May R, Till M, et al. Phase I immunotoxin trial in patients with Bcell lymphoma. Cancer Res1991; 51:4052–4058.

    PubMed  CAS  Google Scholar 

  57. Amlot PL, Stone MJ, Cunningham D, Fay J, Newman J, Collins R, et al. A phase I study of an antiCD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood1993; 82:2624–2633.

    PubMed  CAS  Google Scholar 

  58. Sausville EA, Headlee D, Stetler-Stevenson M, Jaffe ES, Solomon D, Figg WD, et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT dgA in patients with B-cell lymphoma: a phase I study. Blood1995; 85:3457–3465.

    PubMed  CAS  Google Scholar 

  59. Senderowicz AM, Vitetta ES, Headlee D, Ghetie V, Uhr JW, Figg WD, et al. Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Int Med1997; 126:882–885.

    PubMed  CAS  Google Scholar 

  60. Press OW. Prospects for the management of non-Hodgkin’s lymphomas with monoclonal antibodies and immunoconjugates. Cancer J Sci Am1998; 4:S19–26.

    Google Scholar 

  61. Vitetta ES, Thorpe PE, Uhr JW. Immunotoxins: magic bullets or misguided missiles. TiPS1993; 14:148–154.

    PubMed  CAS  Google Scholar 

  62. Kreitman RJ, Hansen HJ, Jones AL, FitzGerald DJP, Goldenberg DM, Pastan I. Pseudomonas Exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab’ induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res1993; 53:819–825.

    PubMed  CAS  Google Scholar 

  63. Rybak SM, Newton DL. Immunoenzymes, in Antibody Fusion Proteins(Chamow SM, Ashkenazi A, eds). John Wiley & Sons, New York, NY, pp 53–110.

    Google Scholar 

  64. Newton DL, Rybak SM. Construction of ribonuclease-antibody conjugates for selective cytotoxicity, in Drug Targeting: Strategies, Principles, and Applicationsvol 25 (Francis GE, Delgado C, eds). Humana Press, Totowa, NJ, pp 27–35.

    Google Scholar 

  65. Mansfield E, Pastan I, FitzGerald DJ. Characterization of RFB4-Pseudomonasexotoxin A immunotoxins tareted to CD22 on B-cell malignancies. Bioconjugate Chem1996; 7:557–563.

    Article  CAS  Google Scholar 

  66. vanHorssen PJ, vanOosterhout YVJM, Evers S, Backus HHJ, vanOijen MGCT, Bongaerts R, deWitte T. Influence of cytotoxicity enhancers in combination with human serum on the activity of CD22recombinant ricin A against B cell lines, chronic and acute lymphocytic leukemia cells. Leukemia1999; 13:241–249.

    Article  CAS  Google Scholar 

  67. Boix E, Wu Y, Vasandani VM, Saxena SK, Ardelt W, Ladner J, Youle RJ. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J Mol Biol1996; 257:992–1007.

    Article  PubMed  CAS  Google Scholar 

  68. Newton DL, Xue Y, Boque L, Wlodawer A, Kung HF, Rybak SM. Expression and characterization of a cytotoxic human-frog chimeric ribonuclease: potential for cancer therapy. Protein Eng1997; 10:463–470.

    Article  PubMed  CAS  Google Scholar 

  69. Saxena SK, Rybak SM, Winkler G, Meade HM, McGray P, Youle RJ, Ackerman EJ. Comparison of RNases and toxins upon injection into Xenopus oocytes. J Biol Chem1991; 266:21208–21214.

    PubMed  CAS  Google Scholar 

  70. Newton DL, Pollock D, DiTullio P, Echelard Y, Harvey M, Wilburn B, et al. Functional properties of human ribonuclease fusion proteins expressed in Escherichia colior transgenic mice. J Int Soc Tumor Tari2000; 1:70–81.

    Google Scholar 

  71. Ghetie MA, Richardson J, Tucker T, Jones D, Uhr JW, Vitetta ES. Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice. Intl J Cancer1990; 45:481–485.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, H. et al. (2002). Targeting the CD22 Receptor with RNA Damaging Agents. In: Pagé, M. (eds) Tumor Targeting in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-167-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-167-1_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-251-3

  • Online ISBN: 978-1-59259-167-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics