Skip to main content

188Rhenium-Labeled Trisuccin-ΔCH2HuCC49 as a Radioimmunotherapy Model in Nude Mice

  • Chapter
Tumor Targeting in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 247 Accesses

Abstract

Research on targeted therapy of malignancies has gained momentum during the past several years based on its well justified rationale, the efficient delivery of the oncolytic agent to the neoplastic tissue (1,2). The immediate benefit of this tumor-specific delivery is twofold: increasing the effective dose and duration of the antitumor agent, and decreasing the extent of its related side-effects and toxicity. Receptor-based targeted treatment of cancer through the application of tumor-recognizing vehicles (TRVs) began in the 1970s with the development of monoclonal antibody (MAb) technology and was later extended to the application of neuropeptides capable of recognizing the tumor cell-surface receptors. The latter class of molecules is out of the scope of this chapter and will not be discussed further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodwin DA. Stategies for antibody targeting. Antib Immunoconj Radiopharm 1991; 4:427–434.

    CAS  Google Scholar 

  2. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279:377–380.

    Article  PubMed  CAS  Google Scholar 

  3. Kousparou CA, Deonarain MP, Epenetos AA. Advances in tumour targeting. J Intl Soc Tumour Targeting 2000; 1:55–69.

    Google Scholar 

  4. Kohler GM, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256:495–497.

    Article  PubMed  CAS  Google Scholar 

  5. Buchsbaum DJ. Experimental radioimmunotherapy and methods to increase therapeutic efficacy, in Cancer Therapy with Radiolabeled Antibodies (Goldenberg DM, ed). CRC Press, Boca Raton, 1995; pp 115–140.

    Google Scholar 

  6. Yarranton G. Antibodies as carriers for drugs and radioisotopers, in Antibody Therapeutics (Harris WJ, Adasir JR, eds). CRC Press, Boca Raton, 1997; pp 53–72.

    Google Scholar 

  7. Vitetta ES. From the basic science of B cells to biological missiles at the bedside. J Immunol 1994; 153:1407–1420.

    PubMed  CAS  Google Scholar 

  8. Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 1999; 17:478–484.

    PubMed  CAS  Google Scholar 

  9. Stan AC, Radu DL, Casares S, Bona CA, Brumeanu TD. Antineoplastic efficacy of doxorubicin enzymatically assembled on galactose residues of a monoclonal antibody specific for the carcinoembryonic antigen. Cancer Res 1999; 59:115–121.

    PubMed  CAS  Google Scholar 

  10. Safavy A, Raisch KP, Waksal HW, Khazaeli MB, Buchsbaum DJ, Bonner JA: Synthesis, cytotoxicity evaluation, and biodistribution studies of a novel paclitaxel-MAb C225 conjugate. Proceedings of the VIIIth Conference for Radioimmunodetection and Radioimmunotherapy of Cancer, Princeton, NJ, 12–14 October, 2000.

    Google Scholar 

  11. Wawrzynczak EJ, Davies AJ. Strategies in antibody therapy of cancer. Clin Exp Immunol 1990; 82:189–193.

    Article  PubMed  CAS  Google Scholar 

  12. Goldenberg DM. Cancer radioimmunotherapy passing through adolescence. Tumor Targeting 1995; 1:233–235.

    Google Scholar 

  13. McFarlane AS. Efficient trace-labelling of proteins with iodine. Nature 1958; 182:53.

    Article  PubMed  CAS  Google Scholar 

  14. Wilbur DS. Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconjug Chem 1992; 3:433–470.

    Article  PubMed  CAS  Google Scholar 

  15. Khawli LA, Kassis AI. Synthesis of 125I labeled N-succinimidyl p-iodobenzoate for use in radiolabeling antibodies. Int J Rad Appl Instrum B 1989; 16:727–733.

    Article  PubMed  CAS  Google Scholar 

  16. Vaidyanathan G, Zalutsky MR. Radioiodination of antibodies via N-succinimidyl 2,4-dimethoxy-3(trialkylstannyl)benzoates. Bioconjug Chem 1990; 1:387–393.

    Article  PubMed  CAS  Google Scholar 

  17. Schuster JM, Garg PK, Bigner DD, Zalutsky MR. Improved therapeutic efficacy of a monoclonal antibody radioiodinated using N-succinimidyl-3-(tri-n-butylstannyl)benzoate. Cancer Res 1991; 51:4164–4169.

    PubMed  CAS  Google Scholar 

  18. Rainsbury R, Westwood J. Tumour localization with monoclonal antibody radioactivity labelled with metal chelate rather than iodine. Lancet 1982; 2:1347–1348.

    Article  PubMed  CAS  Google Scholar 

  19. Hagan PL, Halpern SE, Chen A, Krishnan L, Frincke J, Bartholomew RM, et al. In vivo kinetics of radiolabeled monoclonal anti-CEA antibodies in animal models. J Nucl Med 1985; 26:1418–1423.

    PubMed  CAS  Google Scholar 

  20. Kievit E, van Gog FB, Schluper HM, van Dongen GA, Pinedo HM, Boven E. Comparison of the biodistribution and the efficacy of monoclonal antibody 323/A3 labeled with either 1311 or 1 86Re in human ovarian cancer xenografts. Intl J Radiat Oncol Biol Phys 1997; 38:813–823.

    Article  CAS  Google Scholar 

  21. DeNardo SJ, Kukis DL, Miers LA, Winthrop MD, Kroger LA, Salako Q, et al. Yttrium-90-DOTA-peptide-chimeric L6 radioimmunoconjugate: efficacy and toxicity in mice bearing p53 mutant human breast cancer xenografts. J Nucl Med 1998; 39:842–849.

    PubMed  CAS  Google Scholar 

  22. Schubiger PA, Alberto R, Smith A. Vehicles, chelators, and radionuclides: Choosing the “building blocks” of an effective therapeutic radioimmunoconjugate. Bioconjug Chem 1996; 7:165–179.

    Article  PubMed  CAS  Google Scholar 

  23. Srivastava SC, Mease RC. Progress in research on ligands, nuclides and techniques for labeling monoclonal antibodies. Nucl Med Biol 1991; 18:589–603.

    CAS  Google Scholar 

  24. Griffiths GL, Goldenberg DM, Jones AL, Hansen HJ. Radiolabeling of monoclonal antibodies and fragments with technetium and rhenium. Bioconjug Chem 1992; 3:91–99.

    Article  PubMed  CAS  Google Scholar 

  25. Knapp FF, Jr. Rhenium-188-a generator-derived radioisotope for cancer therapy. Cancer Biother Radiopharm 1998; 13:337–349.

    Article  PubMed  CAS  Google Scholar 

  26. Kotts CE, Su FM, Leddy C, Dodd T, Scates S, Shalaby MR, et al. 186Re-labeled antibodies to p 185Her 2 as HER2-targeted radioimmunopharmaceutical agents: comparison of physical and biological characteristics with 1251 and 1311-labeled counterparts. Cancer Biother Radiopharm 1996; 11:133–144.

    Article  PubMed  CAS  Google Scholar 

  27. Kasina S, Rao TN, Srinivasan A, Sanderson JA, Fitzner JN, Reno JM, et al. Development and biologic evaluation of a kit for preformed chelate technetium-99m radiolabeling of an antibody Fab fragment using a diamide dimercaptide chelating agent. J Nucl Med 1991; 32:1445–1451.

    PubMed  CAS  Google Scholar 

  28. Visser GWM, Gerretsen M, Herscheid JDM, Snow GB, van Dongen G. Labeling of monoclonal antibodies with rhenium-186 using the MAG3 chelate for radioimmunotherapy of cancer: a technical protocol. J Nucl Med 1993; 34:1953–1963.

    PubMed  CAS  Google Scholar 

  29. Johnson VG, Schlom J, Paterson AJ, Bennett J, Magnani JL, Colcher D. Analysis of a human tumorassociated glycoprotein (TAG-72) identified by monoclonal antibody B72.3. Cancer Res 1986; 46:850–857.

    PubMed  CAS  Google Scholar 

  30. Muraro R, Kuroki M, Wunderlich D, Poole DJ, Colcher D, Thor A, et al. Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen. Cancer Res 1988; 48:4588–4596.

    PubMed  CAS  Google Scholar 

  31. Colcher D, Minelli MF, Roselli M, Muraro R, Simpson-Milenic D, Schlom J. Radioimmunolocalization of human carcinoma xenografts with B72.3 second generation monoclonal antibodies. Cancer Res 1988; 48:4597–4603.

    PubMed  CAS  Google Scholar 

  32. Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52:3402–3408.

    PubMed  CAS  Google Scholar 

  33. Kashmiri SVS, Shu L, Padlan EA, Milenic DE, Schlom J, Horan Hand P. Generation, characterization, and in vivo studies of humanized anticarcinoma antibody CC49. Hybridoma 1995; 14:461–473.

    Article  PubMed  CAS  Google Scholar 

  34. Slavin-Chiorini DC, Kashmiri SVS, Schlom J, Calvo B, Shu LM, Schott ME, et al. Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res (Suppl) 1995; 55:5957s–5967s.

    Google Scholar 

  35. Slavin-Chiorini DC, Kashmiri SVS, Lee H-S, Milenic DE, Poole DJ, Bernon E, et al. A CDR-grafted (humanized) domain-deleted antitumor antibody. Cancer Biother Radiopharm 1997; 12:305–316.

    Article  PubMed  CAS  Google Scholar 

  36. Fritzberg AR, Abrams PG, Beaumier PL, Kasina S, Morgan AC, Rao TN, et al. Specific and stable labeling of antibodies with technetium-99m with a diamide dithiolate chelating agent. Proc Natl Acad Sci USA 1988; 85:4025–4029.

    Article  PubMed  CAS  Google Scholar 

  37. Najafi A, Alauddin MM, Sosa A, Ma GQ, Chen DC, Epstein AL, et al. The evaluation of 1 86Re-labeled antibodies using N254 chelate in vitro and in vivo using tumor-bearing nude mice. Intl J Rad Appl Instrum B 1992; 19:205–212.

    Article  CAS  Google Scholar 

  38. Schultze LM, Todaro LJ, Baldwin RM, Byrne EF, McBride BJ. Synthesis, characterization, and crystal structure of neutral rhenium (V) complexes with S-substituted N2S2 ligands. Inorg Chem 1994; 33:5579–5585.

    Article  CAS  Google Scholar 

  39. Gerretsen M, Visser GW, van Walsum M, Meijer CJ, Snow GB, van Dongen GA. 186Re-labeled monoclonal antibody E48 immunoglobulin G-mediated therapy of human head and neck squamous cell carcinoma xenografts. Cancer Res 1993; 53:3524–3529.

    PubMed  CAS  Google Scholar 

  40. Safavy A, Buchsbaum DJ, Khazaeli MB. Synthesis of N-[tris[2-[[N-(benzyloxy)amino]carbonyl] ethyl]methyl]succinamic acid, trisuccin Hydroxamic acid derivatives as a new class of bifunctional chelating agents. Bioconjug Chem 1993; 4:194–198.

    Article  PubMed  CAS  Google Scholar 

  41. Safavy A, Sanders A, Qin H, Buchsbaum DJ. Conjugation of unprotected trisuccin, N-[tris[2-[(Nhydroxyamino)carbonyl]ethyl]methyl]succinamic acid, to monoclonal antibody CC49 by an improved active ester protocol. Bioconj Chem 1997; 8:766–771.

    Article  CAS  Google Scholar 

  42. Goding JW. Production and applications of monoclonal antibodies in cell biology, biochemistry and immunology, in Monoclonal Antibodies: Principles and Practice Academic Press, Orlando, 1986; pp 5–58.

    Google Scholar 

  43. Shao J, Tam JP. Unprotected peptides as building blocks for the synthesis of peptide. J. Am Chem Soc 1995; 117:3893–3899.

    Article  CAS  Google Scholar 

  44. Safavy A, Khazaeli MB, Kirk M, Coward L, Buchsbaum DJ. Further studies on the protein conjugation of hydoxamic acid bifunctional chelating agents: group-specific conjugation at two different loci. Bioconjug Chem 1999; 10:18–23.

    Article  PubMed  CAS  Google Scholar 

  45. Buchsbaum DJ, Khazapli MR, Mayo, MS Rnhprcon PL, Comparicnn of mnltinlpholus and rontinunucinjections of 1311-CC49 for therapy in a colon cancer xenograft model. Clin Cancer Res 1999; 5 (Suppl):3153 s–3159s.

    Google Scholar 

  46. Safavy A, Khazaeli MB, Mayo MS, Buchsbaum DJ. Synthesis, rhenium-188 labeling and biodistribution studies of a phenolic ester derivative of trisuccin. Cancer Biother Radiopharm 1997; 12:375–384.

    Article  PubMed  CAS  Google Scholar 

  47. Safavy A, Khazaeli MB, Safavy K, Mayo MS, Buchsbaum DJ. Biodistribution study of 188Re-labeled trisuccin-HuCC49 and trisuccin-HuCC49ACH2 conjugates in athymic nude mice bearing intraperitoneal colon cancer xenografts. Clin Cancer Res 1999; 5 (Suppl):2994s–3000s.

    Google Scholar 

  48. Mueller BM, Reisfeld RA, Gillies SD. Serum half-life and tumor localization of a chimeric antibody deleted of the CH2 domain and directed against the disialoganglioside GD2. Proc Nall Acad Sci USA 1990; 87:5702–5705.

    Article  CAS  Google Scholar 

  49. Arnold MW, Schneebaum S, Berens A, Petty L, Mojzisik C, Hinkle G, et al. Intraoperative detection of colorectal cancer with radioimmunoguided surgery and CC49, a second-generation monoclonal antibody. Ann Surg 1992; 216:627–632.

    Article  PubMed  CAS  Google Scholar 

  50. Alvarez RD, Partridge EE, Khazaeli MB, Plott G, Austin M, Kilgore L, et al. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol Oncol 1997; 65:94–101.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Safavy, A., Buchsbaum, D.J. (2002). 188Rhenium-Labeled Trisuccin-ΔCH2HuCC49 as a Radioimmunotherapy Model in Nude Mice. In: Pagé, M. (eds) Tumor Targeting in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-167-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-167-1_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-251-3

  • Online ISBN: 978-1-59259-167-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics