Skip to main content

Defects and Amplification of Costimulation Across the Species

  • Chapter
  • 88 Accesses

Abstract

The initiation of a T-cell immune response requires the integration, by the T cell, of signals transduced by numerous cell surface molecular interactions. Central to these is the recognition of an antigenic major histocompatibility complex (MHC):peptide complex by the T cell’s antigen receptor (TCR). Ligation of the TCR leads to signal transduction through the CD3 complex, the signaling component of the receptor. Additional molecular interactions contribute to the elaboration and amplification of the TCR/CD3-transduced signal, which can be referred to as “signal 1.” These include the coreceptors CD8 for MHC class I-restricted T cells and CD4 for MHC class II-restricted cells. Another category of molecules, described as accessory molecules, contributes to the generation of signal 1. These include ICAM- 1, LFA-3, and VCAM1, expressed by the antigen-presenting cell (APC), which interact with LFA-1, CD2, and VLA-4, respectively, expressed by the T cell. These interactions have two functions; first, they increase the avidity of T cell:APC conjugates, thereby increasing the chances of TCR occupancy by specific MHC molecule:peptide complexes. Second, the signals that they transduce amplify signal 1 (Fig. 1). However, it has been long appreciated that the activation of naive and resting memory T cells requires the receipt of a so-called “second,” or “costimulatory,” signal. The two-signal model of T-cell activation was first proposed by Bretscher and Cohn (1), and was substantiated by the work of Jenkins and Schwartz in the mid 1980s (2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretscher P, Cohn M. A theory of self-nonself discrimination. Science 1970; 169 (950): 1042.

    Article  PubMed  CAS  Google Scholar 

  2. Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 1987; 165 (2): 302.

    Article  PubMed  CAS  Google Scholar 

  3. Mueller DL, Jenkins MK, Schwartz RH. An accessory cell-derived costimulatory signal acts independently of protein kinase C activation to allow T cell proliferation and prevent the induction of unresponsiveness. J Immunol 1989; 142 (8): 2617.

    Google Scholar 

  4. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989; 7: 445.

    Article  PubMed  CAS  Google Scholar 

  5. Bretscher P. The two-signal model of lymphocyte activation twenty-one years later [see comments]. Immunol Today 1992; 13 (2): 74.

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349.

    Article  PubMed  CAS  Google Scholar 

  7. Baird MA. Evidence that heat-treated antigen-presenting cells induce hyporesponsiveness in allogeneic T cells. Transplantation 1994; 57 (5): 763.

    Article  PubMed  CAS  Google Scholar 

  8. Jenkins MK, Pardoll DM, Mizuguchi J, Chused TM, Schwartz RH. Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones. Proc Natl Acad Sci U S A 1987; 84 (15): 5409.

    Article  PubMed  CAS  Google Scholar 

  9. Dorling A, Lechler RI. The passenger leucocyte, dendritic call and antigen-presenting cells (APC). Philadelphia: Lippincott-Raven, 1996.

    Google Scholar 

  10. Kirk AD, Hall BL, Finn OJ, Bollinger RR. In vitro analysis of the human antiporcine T-cell repertoire. Transplant Proc 1992; 24 (2): 602.

    PubMed  CAS  Google Scholar 

  11. Dorling A, Lombardi G, Binns R, Lechler RI. Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur J Immunol 1996; 26 (6): 1378.

    Article  PubMed  CAS  Google Scholar 

  12. Yamada K, Sachs DH, DerSimonian H. Human anti-porcine xenogeneic T cell response. Evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J Immunol 1995; 155 (11): 5249.

    PubMed  CAS  Google Scholar 

  13. Kirk AD, Li RA, Kinch MS, Abernethy KA, Doyle C, Bollinger RR. The human antiporcine cellular repertoire. In vitro studies of acquired and innate cellular responsiveness. Transplantation 1993; 55 (4): 924.

    Article  PubMed  CAS  Google Scholar 

  14. Alter BJ, Bach FH. Cellular basis of the proliferative response of human T cells to mouse xenoantigens. J Exp Med 1990; 171 (1): 333.

    Article  PubMed  CAS  Google Scholar 

  15. Dorling A, Binns R, Lechler RI. Cellular Xenoresponses: Observation of significant primary indirect human T cell anti-pig xenoresponses using co-stimulator-deficient or SLA class II-negative porcine stimulators. Xenotransplantation 1996; 3: 112.

    Article  Google Scholar 

  16. Kumagai-Braesch M, Johansson-Borg A, Satake M, Moller E. Characteristics of direct and indirect activation of human T cells against allogeneic and porcine xenogeneic cells/peptides. Xenotransplantation 1997; 4: 85.

    Article  Google Scholar 

  17. Satake M, Kawagishii N, Moller E. Direct activation of human responder T cells by porcine stimulator cells leads to T cell proliferation and cytotoxic T cell development. Xenotransplantation 1996; 3: 198.

    Article  Google Scholar 

  18. Gimmi CD, Freeman GJ, Gribben JG, Gray G, Nadler LM. Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc Natl Acad Sci USA 1993; 90 (14): 6586.

    Article  PubMed  CAS  Google Scholar 

  19. Warrens AN, Zhang JY, Sidhu S, et al. Myoblasts fail to stimulate T cells but induce tolerance. Int Immunol 1994; 6 (6): 847.

    Article  PubMed  CAS  Google Scholar 

  20. Boussiotis VA, Freeman GJ, Gray G, Gribben J, Nadler LM. B7 but not intercellular adhesion molecule-1 costimulation prevents the induction of human alloantigenspecific tolerance. J Exp Med 1993; 178 (5): 1753.

    Article  PubMed  CAS  Google Scholar 

  21. Boussiotis VA, Freeman GJ, Gribben JG, Daley J, Gray G, Nadler LM. Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation. Proc Natl Acad Sci U S A 1993; 90 (23): 11, 059.

    Google Scholar 

  22. June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today 1994; 15 (7): 321.

    Article  PubMed  CAS  Google Scholar 

  23. Freeman GJ, Freedman AS, Segil JM, Lee G, Whitman JF, Nadler LM. B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J Immunol 1989; 143 (8): 2714.

    Google Scholar 

  24. Freeman GJ, Gribben JG, Boussiotis VA, et al. Cloning of B7–2: a CTLA-4 counter-receptor that costimulates human T cell proliferation [see comments]. Science 1993; 262 (5135): 909.

    Article  PubMed  CAS  Google Scholar 

  25. Azuma M, Ito D, Yagita H, et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 1993; 366 (6450): 76.

    Article  PubMed  CAS  Google Scholar 

  26. Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA 1990; 87 (13): 5031.

    Article  PubMed  CAS  Google Scholar 

  27. Norton SD, Zuckerman L, Urdahl KB, Shefner R, Miller J, Jenkins MK. The CD28 ligand, B7, enhances IL-2 production by providing a costimulatory signal to T cells. J Immunol 1992; 149 (5): 1556.

    PubMed  CAS  Google Scholar 

  28. Galvin F, Freeman GJ, RaziWolf Z, et al. Murine B7 antigen provides a sufficient costimulatory signal for antigen-specific and MHC-restricted T cell activation. J Immunol 1992; 149 (12): 3802.

    PubMed  CAS  Google Scholar 

  29. Schultze J, Nadler LM, Gribben JG. B7-mediated costimulation and the immune response. Blood Rev 1996; 10 (2): 111.

    Article  PubMed  CAS  Google Scholar 

  30. van Gool SW, Vandenberghe P, de Boer M, Ceuppens JL. CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunological Reviews 1996; 153: 47.

    Article  PubMed  Google Scholar 

  31. Wingren AG, Parra E, Varga M, et al. T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit Rev Immunol 1995; 15 (3–4): 235.

    Article  PubMed  CAS  Google Scholar 

  32. Olsson C, Michaelsson E, Parra E, Pettersson U, Lando PA, Dohlsten M. Biased dependency of CD80 versus CD86 in the induction of transcription factors regulating the human IL-2 promoter. Int Immunol 1998; 10 (4): 499.

    Article  PubMed  CAS  Google Scholar 

  33. Parra E, Wingren AG, Hedlund G, et al. Costimulation of human CD4+ T lymphocytes with B7 and lymphocyte function-associated antigen-3 results in distinct cell activation profiles. J Immunol 1994; 153 (6): 2479.

    Google Scholar 

  34. Pana E, Wingren AG, Hedlund G, Kalland T, Dohlsten M. The role of B7–1 and LFA-3 in costimulation of CD8+ T cells. J Immunol 1997; 158 (2): 637.

    Google Scholar 

  35. Collette Y, Benziane A, Razanajaona D, Olive D. Distinct regulation of T-cell death by CD28 depending on both its aggregation and T-cell receptor triggering: a role for Fas-FasL. Blood 1998; 92 (4): 1350.

    PubMed  CAS  Google Scholar 

  36. Boise LH, Noel PJ, Thompson CB. CD28 and apoptosis. Curr Opin Immunol 1995; 7 (5): 620.

    Article  PubMed  CAS  Google Scholar 

  37. Sperling AI, Auger JA, Ehst BD, Rulifson IC, Thompson CB, Bluestone JA. CD28/ B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol 1996; 157 (9): 3909.

    PubMed  CAS  Google Scholar 

  38. Baliga P, Chavin KD, Qin L, et al. CTLA4Ig prolongs allograft survival while suppressing cell-mediated immunity. Transplantation 1994; 58 (10): 1082.

    PubMed  CAS  Google Scholar 

  39. Turka LA, Linsley PS, Lin H, et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992; 89 (22): 11, 102.

    Google Scholar 

  40. Lin H, Bolling SF, Linsley PS, et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J Exp Med 1993; 178 (5): 1801.

    Article  PubMed  CAS  Google Scholar 

  41. Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA41g [see comments]. Science 1992; 257 (5071): 789.

    Article  PubMed  CAS  Google Scholar 

  42. Grewal IS, Flaveli RA. The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 1996; 153: 85.

    Article  PubMed  CAS  Google Scholar 

  43. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381 (6581): 434.

    Article  PubMed  CAS  Google Scholar 

  44. Wecker H, Auchincloss H, Jr. Cellular mechanisms of rejection. Curr Opin Immunol 1992; 4 (5): 561.

    Article  PubMed  CAS  Google Scholar 

  45. Freeman GJ, Boniello F, Hodes RJ, et al. Murine B7–2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med 1993; 178 (6): 2185.

    Google Scholar 

  46. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7–1 (CD80) and B7–2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors [published erratum appears in Immunity 1995 Feb;2(2):following 203]. Immunity 1994; 1 (9): 793.

    Article  PubMed  CAS  Google Scholar 

  47. Ellis JH, Burden MN, Vinogradov DV, Linge C, Crowe JS. Interactions of CD80 and CD86 with CD28 and CTLA4. The Journal of Immunology 1996; 56: 2700.

    Google Scholar 

  48. Maher SE, Karmann K, Min W, Hughes CC, Pober JS, Bothwell AL. Porcine endothelial CD86 is a major costimulator of xenogeneic human T cells: cloning, sequencing, and functional expression in human endothelial cells. J Immunol 1996; 157 (9): 3838.

    PubMed  CAS  Google Scholar 

  49. Jenkins MK, Johnson JG. Molecules involved in T-cell costimulation. Curr Opin Immunol 1993; 5 (3): 361.

    Article  PubMed  CAS  Google Scholar 

  50. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature 1987; 328 (6127): 267.

    Article  PubMed  CAS  Google Scholar 

  51. Lenschow DJ. Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996; 14: 233.

    Article  PubMed  Google Scholar 

  52. Lin H, Rathmell JC, Gray GS, Thompson CB, Leiden JM, Alegre M-L. Cytotoxic T lymphocyte antigen (CTLA4) blockade accelerates the acute rejection of cardiac allografts in Cd28-deficient mice: CTLA4 can function independently of CD28. Journal of Experimental Medicine 1998; 188 (1): 199.

    Article  PubMed  CAS  Google Scholar 

  53. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation [see comments]. J Exp Med 1995; 182 (2): 459.

    Article  PubMed  CAS  Google Scholar 

  54. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996; 183 (6): 2533.

    Google Scholar 

  55. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1 (5): 405.

    Article  PubMed  CAS  Google Scholar 

  56. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4 [see comments]. Science 1995; 270 (5238): 985.

    Article  PubMed  CAS  Google Scholar 

  57. van Essen D, Kikutani H, Gray D. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 1995; 378 (6557): 620.

    Article  PubMed  Google Scholar 

  58. Grewal IS, Flavell RA. A central role of CD40 ligand in the regulation of CD4+ T-cell responses. Immunol Today 1996; 17 (9): 410.

    Article  PubMed  CAS  Google Scholar 

  59. Tang A, Judge TA, Turka LA. Blockade of CD40–CD40 ligand pathway induces tolerance in murine contact hypersensitivity. Eur J Immunol 1997; 27 (12): 3143.

    Article  PubMed  CAS  Google Scholar 

  60. Peng X, Kasran A, Warmerdam PA, de Boer M, Ceuppens JL. Accessory signaling by CD40 for T cell activation: induction of Th 1 and Th2 cytokines and synergy with interleukin-12 for interferon-gamma production. Eur J Immunol 1996; 26 (7): 1621.

    Article  PubMed  CAS  Google Scholar 

  61. Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16: 111.

    Article  PubMed  CAS  Google Scholar 

  62. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions [see comments]. Nature 1998; 393 (6684): 480.

    Article  PubMed  CAS  Google Scholar 

  63. Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T- helper and a T-killer cell [see comments]. Nature 1998; 393 (6684): 474.

    Article  PubMed  CAS  Google Scholar 

  64. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling [see comments]. Nature 1998; 393 (6684): 478.

    Article  PubMed  CAS  Google Scholar 

  65. Tran HM, Nickerson PW, Patel A, Strom TB, Allen RDM, O’Connell PJ. Short-term suppression of the xeno-immune response with mCTLA4-Fc treatment. Xenotransplantation 1997; 4: 222.

    Article  Google Scholar 

  66. Lenschow DJ, Zeng Y, Hathcock KS, et al. Inhibition of transplant rejection following treatment with anti-B7–2 and anti-B7–1 antibodies. Transplantation 1995; 60 (10): 1171.

    Article  PubMed  CAS  Google Scholar 

  67. Lu L, Li W, Fu F, et al. Blockade of the CD40–CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 1997; 64 (12): 1808.

    Article  PubMed  CAS  Google Scholar 

  68. Larsen CP, Alexander DZ, Hollenbaugh D, et al. CD40-gp39 interactions play a critical role during allograft rejection. Suppression of allograft rejection by blockade of the CD40-gp39 pathway. Transplantation 1996; 61 (1): 4.

    Article  PubMed  CAS  Google Scholar 

  69. Sun H, Subbotin V, Chen C, et al. Prevention of chronic rejection in mouse aortic allografts by combined treatment with CTLA4-Ig and anti-CD40 ligand monoclonal antibody. Transplantation 1997; 64 (12): 1838.

    Article  PubMed  CAS  Google Scholar 

  70. Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci U S A 1997; 94 (16): 8789.

    Article  PubMed  CAS  Google Scholar 

  71. Osborn L. Leukocyte adhesion to endothelium in inflammation. Cell 1990; 62 (1): 3.

    Article  PubMed  CAS  Google Scholar 

  72. Springer TA. Adhesion receptors of the immune system. Nature 1990; 346 (6283): 425.

    Article  PubMed  CAS  Google Scholar 

  73. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69 (1): 11.

    Article  PubMed  CAS  Google Scholar 

  74. Bevilacqua MP, Nelson RM. Selectins. Journal of Clinical Investigation 1993; 91: 379.

    Article  CAS  Google Scholar 

  75. Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. Faseb J 1995; 9 (10): 866.

    PubMed  CAS  Google Scholar 

  76. Tanaka Y, Adams DH, Shaw S. Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol Today 1993; 14 (3): 111.

    Article  PubMed  CAS  Google Scholar 

  77. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76 (2): 301.

    Article  PubMed  CAS  Google Scholar 

  78. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991; 67 (6): 1033.

    Article  PubMed  CAS  Google Scholar 

  79. Alon R, Kassner PD, Carr MW, Finger EB, Hemler ME, Springer TA. The integrin VLA4 supports tethering and rolling in flow on VCAM-1. J Cell Biol 1995; 128 (6): 1243.

    Article  PubMed  CAS  Google Scholar 

  80. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84 (7): 2068.

    Google Scholar 

  81. Jones DA, McIntire LV, Smith CW, Picker LJ. A two-step adhesion cascade for T cell/endothelial cell interactions under flow conditions. J Clin Invest 1994; 94 (6): 2443.

    Google Scholar 

  82. Tessitore A, Pastore L, Rispoli A, et al. Two gamma-interferon sites activation sites on the promotor of the human ICAM-1 gene are required for induction of transcription of Interferon gamma. 1995.

    Google Scholar 

  83. Ballantyne CM. Nucleotide sequence of the cDNA for murine intercellular adhesion molecule-1 (ICAM-1). Nucleic Acids Research 1989; 17: 5853.

    Article  PubMed  CAS  Google Scholar 

  84. Polte TR. Full length vascular cell adhesion molecule. Nucleic Acid Research 1990; 18: 5901.

    Article  CAS  Google Scholar 

  85. Araki M, Araki K, Vassalli P. Cloning and sequencing of mouse VCAM-1 cDNA. Gene 1993; 126: 261.

    Article  PubMed  CAS  Google Scholar 

  86. van Dijken PJ, Ghayur T, Mauch P, Down J, Burakoff SJ, Ferrara JL. Evidence that anti-LFA-I in vivo improves engraftment and survival after allogeneic bone marrow transplantation. Transplantation 1990; 49 (5): 882.

    Article  PubMed  Google Scholar 

  87. Isobe M, Yagita H, Okumura K, Ihara A. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 1992; 255 (5048): 1125.

    Article  PubMed  CAS  Google Scholar 

  88. Berlin PJ, Bacher JD, Sharrow SO, Gonzalez C, Gress RE. Monoclonal antibodies against human T cell adhesion molecules-modulation of immune function in nonhuman primates. Transplantation 1992; 53 (4): 840.

    Article  PubMed  CAS  Google Scholar 

  89. Fischer A, Griscelli C, Blanche S, et al. Prevention of graft failure by an anti-HLFA1 monoclonal antibody in HLA-mismatched bone-marrow transplantation. Lancet 1986; 2 (8515): 1058.

    Article  PubMed  CAS  Google Scholar 

  90. Le Mauff B, Hourmant M, Rougier JP, et al. Effect of anti-LFA 1 (CD l i a) monoclonal antibodies in acute rejection in human kidney transplantation. Transplantation 1991; 52 (2): 291.

    Article  PubMed  Google Scholar 

  91. Kameoka H, Ishibashi M, Tamatani T, et al. The immunosuppressive action of anti-CD 18 monoclonal antibody in rat heterotopic heart allotransplantation. Transplantation 1993; 55 (3): 665.

    PubMed  CAS  Google Scholar 

  92. Byrne JG, Smith WJ, Murphy MP, Couper GS, Appleyard RF, Cohn LH. Complete prevention of myocardial stunning, contracture, low-reflow, and edema after heart transplantation by blocking neutrophil adhesion molecules during reperfusion. J Thorac Cardiovasc Surg 1992; 104 (6): 1589.

    PubMed  CAS  Google Scholar 

  93. Cosimi AB, Conti D, Delmonico FL, et al. In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts. J Immunol 1990; 144 (12): 4604.

    PubMed  CAS  Google Scholar 

  94. Orosz CG, Ohye RG, Pelletier RP, et al. Treatment with anti-vascular cell adhesion molecule l monoclonal antibody induces long-term murine cardiac allograft acceptance. Transplantation 1993; 56 (2): 453.

    Article  PubMed  CAS  Google Scholar 

  95. Batten P, Heaton T, Fuller Espie S, Lechler RI. Human anti-mouse xenorecognition. Provision of noncognate interactions reveals plasticity of T cell repertoire. J Immunol 1995; 155 (3): 1057.

    PubMed  CAS  Google Scholar 

  96. Engelhard VH, Le AX, Holterman MJ. Species-specific structural differences in the alpha 1 + alpha 2 domains determine the frequency of murine cytotoxic T cell precursors stimulated by human and murine class I molecules. J Immunol 1988; 141 (6): 1835.

    PubMed  CAS  Google Scholar 

  97. Newberg MH, Ridge JP, Vining DR, Salter RD, Engelhard VII. Species specificity in the interaction of CD8 with the alpha 3 domain of MHC class I molecules. J Immunol 1992; 149 (1): 136.

    PubMed  CAS  Google Scholar 

  98. Hargreaves R, Logiou V, Lechler R. The primary alloresponse of human CD4+ T cells is dependent on B7 (CD80), augmented by CD58, but relatively uninfluenced by CD54 expression. Int Immunol 1995; 7 (9): 1505.

    Article  PubMed  CAS  Google Scholar 

  99. Claiborne Johnston S, Dustin ML, Hibbs ML, Springer TA. On the species specificity of the interaction of LFA-1 with Intercellular adhesion molecules. The Journal of Immunology 1990; 145 (4): 1181.

    Google Scholar 

  100. Moses RD, Winn HJ, Auchincloss H, Jr. Evidence that multiple defects in cell-surface molecule interactions across species differences are responsible for diminished xenogeneic T cell responses. Transplantation 1992; 53 (1): 203.

    Article  PubMed  CAS  Google Scholar 

  101. Moses RD, Pierson RNd, Winn HJ, Auchincloss H, Jr. Xenogeneic proliferation and lymphokine production are dependent on CD4+ helper T cells and self antigen-presenting cells in the mouse. J Exp Med 1990; 172 (2): 567.

    Article  PubMed  CAS  Google Scholar 

  102. Rollins SA, Kennedy SP, Chodera AJ, Elliott EA, Zavoico GB, Matis LA. Evidence that activation of human T cells by porcine endothelium involves direct recognition of porcine SLA and costimulation by porcine ligands for LFA- 1 and CD2. Transplantation 1994; 57 (12): 1709.

    PubMed  CAS  Google Scholar 

  103. Murray AG, Khodadoust MM, Pober JS, Bothwell AL. Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity 1994; 1 (1): 57.

    Article  PubMed  CAS  Google Scholar 

  104. Dorling A, Binns R, Lechler RI. Direct human T-cell anti-pig xenoresponses are vigorous but significantly weaker than direct alloresponses. Transplant Proc 1996; 28 (2): 653.

    PubMed  CAS  Google Scholar 

  105. Dorling A, Binns R, Lechler RI. Significant primary indirect human T-cell anti-pig xenoresponses observed using immature porcine dendritic cells and SLA-class II-negative endothelial cells. Transplant Proc 1996; 28 (2): 654.

    PubMed  CAS  Google Scholar 

  106. Dorling A, Lechler RI. The T cell response to xenografts: molecular interactions and graft-specific immunosuppression. Xenotransplantation 1996; 4: 68.

    Google Scholar 

  107. Pleass HC, Forsythe JL, Proud G, Taylor RM, Kirby JA. Xenotransplantation: an examination of the adhesive interactions between human lymphocytes and porcine renal epithelial cells. Transpl Immunol 1994; 2 (3): 225.

    Article  PubMed  CAS  Google Scholar 

  108. Mueller JP, Evans MJ, Cofiell R, Rother RP, Matis LA, Elliott EA. Porcine vascular cell adhesion molecule (VCAM) mediates endothelial cell adhesion to human cells. Transplantation 1995; 60: 1299.

    PubMed  CAS  Google Scholar 

  109. Robinson LA, Tu L, Steeber DA, Preis O, Platt JL, TedderTF. The role of adhesion molecules in human leukocyte attachment to porcine vascular endothelium: implications for xenotransplantation. J Immunol 1998; 161 (12): 6931.

    PubMed  CAS  Google Scholar 

  110. Dorling A, Stocker C, Tsao T, Haskard DO, Lechler RI. In vitro accommodation of immortalized porcine endothelial cells: resistance to complement mediated lysis and down-regulation of VCAM expression induced by low concentrations of polyclonal human IgG antipig antibodies. Transplantation 1996; 62 ( 8 ): 1127.

    Article  PubMed  CAS  Google Scholar 

  111. Dorling A, Stocker C, Tsao T, Haskard DO, Lechler RI. In vitro accomodation of immortalised porcine endothelial cells: resistance to complement mediated lysis and down-regulation of VCAM expression induced by low concentrations of polyclonal human IgG antipig antibodies. Transplantation 1996; 62: 1127.

    Article  PubMed  CAS  Google Scholar 

  112. Pober JS, Cotran RS. Immunologic interactions of T lymphocytes with vascular endothelium. Adv Immunol 1991; 50: 261.

    Article  PubMed  CAS  Google Scholar 

  113. Larsen CP, Pearson TC. The CD40 pathway in allograft rejection, acceptance, and tolerance. Curr Opin Immunol 1997; 9 (5): 641.

    Article  PubMed  CAS  Google Scholar 

  114. Sad S, Gupta HM, Talwar GP, Raghupathy R. Carrier-induced suppression of the antibody response to a `self’ hapten. Immunology 1991; 74 (2): 223.

    PubMed  CAS  Google Scholar 

  115. Sad S, Rao K, Arora R, Talwar GP, Raghupathy R. Bypass of carrier-induced epitope-specific suppression using a T-helper epitope. Immunology 1992; 76 (4): 599.

    PubMed  CAS  Google Scholar 

  116. Sad S, Chauhan VS, Arunan K, Raghupathy R. Synthetic gonadotrophin-releasing hormone (GnRH) vaccines incorporating GnRH and synthetic T-helper epitopes. Vaccine 1993; 11 (11): 1145.

    Article  PubMed  CAS  Google Scholar 

  117. Yagita H, Hanabuchi S, Asano Y, Tamura T, Nariuchi H, Okumura K. Fas-mediated cytotoxicity-a new immunoregulatory and pathogenic function of Th 1 CD4+ T cells. Immunol Rev 1995; 146: 223.

    Article  PubMed  CAS  Google Scholar 

  118. Golstein P. Fas-based T cell-mediated cytotoxicity. Curr Top Microbiol Immunol 1995; 198: 25.

    Article  PubMed  CAS  Google Scholar 

  119. Lynch DH, Ramsdell F, Alderson MR. Fas and FasL in the homeostatic regulation of immune responses [see comments]. Immunol Today 1995; 16 (12): 569.

    Article  PubMed  CAS  Google Scholar 

  120. Nagata S, Golstein P. The Fas death factor. Science 1995; 267 (5203): 1449.

    Article  PubMed  CAS  Google Scholar 

  121. Lau HT, Yu M, Fontana A, Stoeckert CJ. Prevention of islet aloograft rejection with engineered myoblasts expressing FasL in mice. Science 1996; 273: 109.

    Article  PubMed  CAS  Google Scholar 

  122. Stocker CJ, Sugars KL, Yarwood H, et al., Transplantation 2000 Aug 27; 70 (4): 579–586.

    Article  CAS  Google Scholar 

  123. Rogers, N. J., Mirenda, V., Jackson, I., Dorling, A., Lechler, R. I. Costimulatory blockade by the induction of an endogenous xenospecific antibody response. Nat Immunol. 2000 Aug; 1 (2): 163–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogers, N., Lechler, R. (2002). Defects and Amplification of Costimulation Across the Species. In: Platt, J.L. (eds) Xenotransplantation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-166-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-166-4_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-127-1

  • Online ISBN: 978-1-59259-166-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics