Skip to main content

The Complement Barrier to Xenotransplantation

  • Chapter
Xenotransplantation
  • 90 Accesses

Abstract

Early work on xenotransplantation indicated that complement activation is a major mediator of organ xenograft rejection (1,2). This knowledge provided the impetus for numerous studies addressing complement activation in a recipient bearing a xenograft and the mechanisms of complement-mediated xenogeneic injury (3,4). In phylogenetically distant, discordant combinations, such as pig-to-primate, complement activation occurs immediately after initiation of organ reperfusion, resulting in hyperacute rejection (HAR) of the xenograft. In concordant combinations, such as hamster-to-rat, complement may participate in delayed rejection once anti-graft antibodies have been generated. Therefore, several approaches have been explored to prevent complement-mediated damage to xenografts. This chapter is comprised of a brief overview of the reaction mechanisms of complement, followed by a discussion of the role of complement in the pathogenesis of tissue injury in xenograft rejection, a review of approaches to inhibit complement activation as an important component of strategies to avoid xenograft rejection, and finally, a brief discussion of the significance of complement in accommodation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson RA. A new concept of immunosuppression in the hypersensitivity reactions and in transplantation immunity. Sury Ophthalmol 1966; 11: 498 - 505.

    Google Scholar 

  2. Gewurz H, Clark DS, Cooper MD, Varco RL, Good RA. Effect of cobra venom-induced inhibition of complement activity on allograft and xenograft rejection reactions. Transplantation 1967; 5: 1296 - 1303.

    Article  PubMed  CAS  Google Scholar 

  3. Dalmasso AP. The role of complement in xenograft rejection. In: Cooper DKC, Kemp E, Platt JL, White DJG, eds. Xenotransplantation. The transplantation of organs and tissues between species, 2nd ed. Berlin: Springer-Verlag, 1997, 38 - 60.

    Google Scholar 

  4. Auchincloss H, Jr. Xenografting: a review. Transplant Rev 1990; 4: 14 - 27.

    Article  Google Scholar 

  5. Volanakis JE, Frank MM. The human complement system in health and disease. New York: Marcel Dekker, 1998.

    Google Scholar 

  6. Rother K, Till GO, Hansch GM. The complement system. Berlin: Springer, 1998.

    Book  Google Scholar 

  7. Cooper NR. The classical complement pathway: activation and regulation of the first complement component. Adv Immunol 1985; 37: 151 - 216.

    Article  PubMed  CAS  Google Scholar 

  8. Müller-Eberhard HJ. Molecular organization and function of the complement system. Ann Rev Biochem 1988; 57: 321 - 347.

    Article  PubMed  Google Scholar 

  9. Levine RP, Dodds AW. The thioester bond of C3. Curr Topics Microbiol Immunol 1990; 153: 73 - 82.

    Article  CAS  Google Scholar 

  10. Pangburn MK, Müller-Eberhard HJ. The alternative pathway of complement. Springer Semin Immunopathol 1984; 7: 163 - 203.

    Article  PubMed  CAS  Google Scholar 

  11. Matsushita M. The lectin pathway of the complement system. Microbiol Immunol 1996; 40: 887 - 893.

    PubMed  CAS  Google Scholar 

  12. Matsushita M, Endo Y, Fujita T. Complement-activating complex of ficolin and mannose-binding lectin-associated serine protease. J Immunol 2000; 164: 2281 - 2284.

    PubMed  CAS  Google Scholar 

  13. Dalmasso AP, Benson BA. Pore size of lesions induced by complement on red cell membranes and its relation to C5b-8, C5b-9 and poly C9. In: Podack ER, ed. Cytolytic lymphocytes and complement: Effectors of the immune system Vol. 1. Boca Raton: CRC Press, 1988: 207 - 219.

    Google Scholar 

  14. Davis AE. Cl inhibitor and hereditary angioneurotic edema. Ann Rev Immunol 1988; 6: 595 - 628.

    Article  CAS  Google Scholar 

  15. Hourcade D, Holers VM, Atkinson JP. The regulators of complement activation (RCA) gene cluster. Adv Immunol 1989; 45: 381 - 416.

    Article  PubMed  CAS  Google Scholar 

  16. Meri S. Protectin (CD59). Complement lysis inhibitor and prototype domain in a new protein superfamily. The Immunologist 1994; 2: 149 - 155.

    CAS  Google Scholar 

  17. Rosse WF, Ware RE. The molecular basis of paroxysmal nocturnal hemoglobinuria. Blood 1995; 86: 3277 - 3286.

    PubMed  CAS  Google Scholar 

  18. Hinchliffe SJ, Rushmere NK, Hanna SM, Morgan BP. Molecular cloning and functional characterization of the pig analogue of CD59: relevance to xenotransplantation. J Immunol 1998; 160: 3924 - 3932.

    PubMed  CAS  Google Scholar 

  19. Maher SE, Pflugh DL, Larsen NJ, Rothschild MF, Bothwell AL. Structure/function characterization of porcine CD59: expression, chromosomal mapping, complement-inhibition, and costimulatory activity. Transplantation 1998; 66: 1094 - 1100.

    Article  PubMed  CAS  Google Scholar 

  20. Fearon DT, Carter RH. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Ann Rev Immunol 1995; 13: 127 - 149.

    Article  CAS  Google Scholar 

  21. Morgan BP. Physiology and pathophysiology of complement: progress and trends. Crit Rev Clin Lab Sci 1995; 32: 265 - 298.

    Article  PubMed  CAS  Google Scholar 

  22. Botto M, Agnola C, Bygrave AE, et al. Homozygous Clq deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genetics 1988; 19: 56 - 59.

    Article  Google Scholar 

  23. Korb LC, Ahearn JM. Clq binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 1997; 158: 4525 - 4528.

    PubMed  CAS  Google Scholar 

  24. Morgan BP. (1993) Cellular responses to the membrane attack complex. In: Whaley K, Loos M, Weiler JM, eds. Complement in health and disease Vol. 20. Boston: Kluwer Academic 1993: 325 - 351.

    Google Scholar 

  25. Dalmasso AP, Vercellotti GM, Fischel RJ, Bolman RM, Bach FH, PlattJL. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am J Pathol 1992; 140: 1157 - 1166.

    PubMed  CAS  Google Scholar 

  26. Miyagawa S, Hirose H, Shirakura R, et al. The mechanism of discordant xenograft rejection. Transplantation 1998; 46: 825 - 830.

    Article  Google Scholar 

  27. Kroshus TJ, Bolman RM, Dalmasso AP. Selective IgM depletion prolongs organ survival in an ex vivo model of pig-to-human xenotransplantation. Transplantation 1996; 62: 5 - 12.

    Article  PubMed  CAS  Google Scholar 

  28. Leventhal JR, Dalmasso AP, Cromwell J, et al. Prolongation of cardiac xenograft survival by depletion of complement. Transplantation 1993; 55: 857 - 865.

    Article  PubMed  CAS  Google Scholar 

  29. Leventhal JR, Matas AJ, Sun, L.H., et al. The immunopathology of cardiac xenograft rejection in the guinea pig-to-rat model. Transplantation 1993; 56: 1 - 8.

    Article  PubMed  CAS  Google Scholar 

  30. Fryer J, Leventhal JR, Dalmasso AP, et al. Cellular rejection in a discordant xenograft when hyperacute rejection is prevented: analysis using adoptive and passive transfer. Transplant Immunol 1994; 2: 87 - 93.

    Article  CAS  Google Scholar 

  31. Fryer JP, Leventhal JR, Dalmasso AP, et al. Beyond hyperacute rejection. Accelerated rejection in a discordant xenograft model by adoptive transfer of specific cell subsets. Transplantation 1995; 59: 171 - 176.

    PubMed  CAS  Google Scholar 

  32. Leventhal JR, Sakiyalak P, Witson J, et al.The synergistic effect of combined antibody and complement depletion on discordant cardiac xenograft survival in nonhuman primates. Transplantation 1994; 57: 974 - 978.

    Article  PubMed  CAS  Google Scholar 

  33. Ierino FL, Kozlowski T, Siegel JB, et al. Disseminated intravascular coagulation in association with the delayed rejection of pig-to-baboon renal xenografts. Transplantation 1998; 66: 1439 - 1450.

    Article  PubMed  CAS  Google Scholar 

  34. Brauer RB, Baldwin WMI, Daha MR, Pruitt SK, Sanfilippo F. Use of C6-deficient rats to evaluate the mechanism of hyperacute rejection of discordant cardiac xenografts. J Immunol 1993; 151: 7240 - 7248.

    PubMed  CAS  Google Scholar 

  35. Kerr SR, Dalmasso AP, Apasova EV, Chen SS, Kirschfink M, Matas Ai. Mouseto-rabbit xenotransplantation: a new small animal model of hyperacute rejection mediated by the classical complement pathway. Transplantation 1999; 67: 360 - 365.

    Article  PubMed  CAS  Google Scholar 

  36. Chartrand C, Regan S, Robitaille P, Pinto-Blonde M. Delayed rejection of cardiac xenografts in C6-deficient rabbits. Immunology 1979; 38: 245 - 248.

    PubMed  CAS  Google Scholar 

  37. Zhow XJ, Niesen N, Pawlowski I, et al. Prolongation of survival of discordant kidney xenografts by C6 deficiency. Transplantation 1990; 50: 896 - 898.

    Article  PubMed  CAS  Google Scholar 

  38. Johnson EM, Leventhal J, Dalmasso AP, et al. Inactivation of C3 and C5 prolongs cardiac xenograft survival and decreases leukocyte infiltration in a model of delayed xenograft rejection. Transplant Proc 1996; 28: 603.

    PubMed  CAS  Google Scholar 

  39. Johnson EM, Leventhal J, Dalmasso AP et al.Use of a novel CD I I b/CD 18 inhibitory agent in a C6 deficient rat to evaluate delayed xenograft rejection. Transplant Proc 1996; 28: 728.

    PubMed  CAS  Google Scholar 

  40. Kroshus TJ, Rollins SA, Dalmasso AP, et al. Complement inhibition with an anti-05 monoclonal antibody prevents acute cardiac tissue injury in an ex vivo model of pig-to-human xenotransplantation. Transplantation 1995; 60: 1194 - 1202.

    PubMed  CAS  Google Scholar 

  41. Schaapherder AFM, Gooszen HG, Te Bulte MTJW, Daha MR. Human complement activation via the alternative pathway on porcine endothelium initiated by IgA antibodies. Transplantation 1995; 60; 287 - 291.

    Article  PubMed  CAS  Google Scholar 

  42. Saadi S, Platt JL. Endothelial cell responses to complement activation. In: Volanakis JE, Frank MM, eds. The human complement system in health and disease. New York: Marcel Dekker, 1998: 335 - 353.

    Google Scholar 

  43. Guo WX, Ghebrehiwet B, Weksler B, Schweitzer K, Peerschke EI. Up-regulation of endothelial cell binding proteins/receptors for complement component Clq by inflammatory cytokines. J Lab Clin Med 1999; 133: 541 - 550.

    Article  PubMed  CAS  Google Scholar 

  44. Lozada C, Levin RI, Huie M, et al. Identification of Clq as the heat-labile serum cofactor required for immune complexes to stimulate endothelial expression of the adhesion molecules E-selectin and intercellular and vascular cell adhesion molecules 1. Proc Natl Acad Sci USA 1995; 92: 8378 - 8382.

    Article  PubMed  CAS  Google Scholar 

  45. Peerschke EIB, Reid KBM, Ghebrehiwet B. Platelet activation by Clq results in the induction of allb/133 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med 1993; 178: 579 - 587.

    Article  PubMed  CAS  Google Scholar 

  46. Vercellotti GM, Platt JL, Bach FH, Dalmasso AP. Neutrophil adhesion to xenogeneic endothelium via iC3b. J Immunol 1991; 146: 730 - 734.

    PubMed  CAS  Google Scholar 

  47. Oxvig C, Lu C, Springer, TA. Conformational changes in tertiary structure near the ligand binding site of an integrin I domain. Proc Natl Acad Sci USA 1999; 96: 2215 - 2220.

    Article  PubMed  CAS  Google Scholar 

  48. Vetvicka V, Thornton BP, Ross GD. Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11 b/ CD 18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest 1996; 98: 50 - 61.

    Article  PubMed  CAS  Google Scholar 

  49. Morigi M, Zoja C, Colleoni S, et al. Xenogeneic serum promotes leukocyte-endothelium interaction under flow through two temporally distinct pathways: role of complement and nuclear factor-KB. J Am Soc Nephrol 1999; 10: 2197 - 2207.

    PubMed  CAS  Google Scholar 

  50. Haviland DL, McCoy RL, Whitehead WT, et al. Cellular expression of the C5a anaphylatoxin receptor (C5aR): demonstration of C5aR on nonmyeloid cells of the liver and lung. J Immunol 1995; 154: 1861 - 1869.

    PubMed  CAS  Google Scholar 

  51. Murphy HS, Shayman JA, Till GO, et al. Superoxide responses of endothelial cells to C5a and TNF-alpha: divergent signal transduction pathways. Am J Physiol 1992; 263: L51 - 59.

    PubMed  CAS  Google Scholar 

  52. Platt JL, Dalmasso AP, Lindman Bi, Ihrcke NS, Bach FH. The role of C5a and antibody in the release of heparan sulfate from endothelial cells. Eur J Immunol 1991; 21: 2887 - 2890.

    Article  PubMed  CAS  Google Scholar 

  53. Ihrcke NS, Platt JL. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. J Cell Physiol 1996; 168: 625 - 637.

    Article  PubMed  CAS  Google Scholar 

  54. Platt JL, Vercellotti GM, Lindman B, Oegema TR, Jr, Bach FH, Dalmasso AP. Release of heparan sulfate from endothelial cells: implications for pathogenesis of hyperacute rejection. J Exp Med 1990; 171: 1363 - 1368.

    Article  PubMed  CAS  Google Scholar 

  55. Foreman KE, Glovsky MM, Warner RL, Horvath SJ, Ward PA. Comparative effect of C3a and C5a on adhesion molecule expression on neutrophils and endothelial cells. Inflammation 1996; 20: 1 - 9.

    Article  PubMed  CAS  Google Scholar 

  56. Ikeda K, Nagasawa K, Horiuchi T, Tsuru T, Nishizaka H, Niho Y. C5a induces tissue factor activity on endothelial cells. Thromb Haemost 1997; 77: 394 - 398.

    PubMed  CAS  Google Scholar 

  57. Varani J, Ginsburg I, Schuger L, et al. Endothelial cell killing by neutrophils. Synergistic interaction of oxygen products and proteases. Am J Pathol 1989; 135: 435 - 438.

    PubMed  CAS  Google Scholar 

  58. Owen CA, Campbell MA, Sannes PL, Boukedes SS, Campbell EJ. Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Biol 1995; 131: 775 - 789.

    Article  PubMed  CAS  Google Scholar 

  59. Saadi S, Platt JL. Transient perturbation of endothelial integrity induced by natural antibodies and complement. J Exp Med 1995; 181: 21 - 31.

    Article  PubMed  CAS  Google Scholar 

  60. Kilgore KS, Flory CM, Miller BF, Evans VM, Warren JS. The membrane attack complex of complement induces interleukin-8 and monocyte chemoattractant protein-1 secretion from human umbilical vein endothelial cells. Am J Pathol 1996; 149: 953 - 961.

    PubMed  CAS  Google Scholar 

  61. Selvan RS, Kapadia HB, Platt JL. Complement-induced expression of chemokine genes in endothelium: regulation by IL-1-dependent and -independent mechanisms. J Immunol 1998; 161: 4388 - 4395.

    PubMed  CAS  Google Scholar 

  62. Bustos M, Coffman TM, Saadi S, Platt JL. Modulation of eicosanoid metabolism in endothelial cells in a xenograft model. Role of cyclooxygenase-2. J Clin Invest 1997; 100: 1150 - 1158.

    Article  PubMed  CAS  Google Scholar 

  63. Stahl GL, Reenstra WR, Frendl G. Complement-mediated loss of endothelium-dependent relaxation of porcine coronary arteries. Role of the terminal membrane attack complex. Circ Res 1995; 76: 575 - 583.

    Article  PubMed  CAS  Google Scholar 

  64. Hattori R, Hamilton KK, McEver RP, Sims Pi. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J Biol Chem 1989; 264: 9053 - 9060.

    PubMed  CAS  Google Scholar 

  65. Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med 1994; 179: 985 - 992.

    Article  PubMed  CAS  Google Scholar 

  66. Hamilton KK, Hattori R, Esmon CT, Sims PJ. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem 1990: 265: 3809 - 3814.

    PubMed  CAS  Google Scholar 

  67. Saadi S, Holzknecht RA, Patte C, Stern DM, Platt JL. Complement-mediated regulation of tissue factor activity in endothelium. J Exp Med 1995; 182: 1807 - 1814.

    Article  PubMed  CAS  Google Scholar 

  68. Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med 1997; 185: 1619 - 1627.

    Google Scholar 

  69. Dalmasso AP, Vercellotti GM, Platt JL, Bach FH. Inhibition of complement-medi-ated endothelial cell cytotoxicity by decay accelerating factor. Potential for prevention of xenograft hyperacute rejection. Transplantation 1991; 52: 530 - 533.

    Article  PubMed  CAS  Google Scholar 

  70. Akami T, Sawada R, Minato N, et al. Cytoprotective effect of CD59 antigen on xenotransplantation immunity. Transplant Proc 1992; 24: 485 - 487.

    PubMed  CAS  Google Scholar 

  71. Charreau B, Cassard A, Tesson L, et a1.Protection of rat endothelial cells from primate complement-mediated lysis by expression of human CD59 and/or decay-accelerating factor. Transplantation 1994; 58: 1222 - 1229.

    PubMed  CAS  Google Scholar 

  72. Fodor WL, Williams BL, Matis LA, et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci USA 1994; 91:11, 153-11, 157.

    Google Scholar 

  73. McCurry KR, Kooyman DL, Alvarado CG, et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nature Med 1995; 1: 423 - 427.

    Article  PubMed  CAS  Google Scholar 

  74. Rosengard AM, Cary NRB, Langford GA, Tucker AW, Wallwork J, White DJG. Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs: a potential approach for preventing xenograft rejection. Transplantation 1995; 59: 1325 - 1333.

    PubMed  CAS  Google Scholar 

  75. Daggett CW, Yeatman M, Lodge AJ, et al. Swine lungs expressing human complement-regulatory proteins are protected against acute pulmonary dysfunction in a human plasma perfusion model. J Thoracic Cardiovasc Surg 1997; 113: 390 - 398.

    Article  CAS  Google Scholar 

  76. Kroshus TJ, Bolman RM, Dalmasso AP, et al. Expression of human CD59 in transgenic pig organs enhances organ survival in an ex vivo xenogeneic perfusion model. Transplantation 1996; 61: 1513 - 1521.

    Article  PubMed  CAS  Google Scholar 

  77. Schmoeckel M, Nollert G, Shahmohammadi M, et al. Transgenic human decay accelerating factor makes normal pigs function as a concordant species. J Heart Lung Transplant 1997; 16: 758 - 764.

    PubMed  CAS  Google Scholar 

  78. Byrne GW, McCurry KR, Martin MJ, McClellan SM, Platt JL, Logan JS. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation 1997; 63: 149 - 155.

    Article  PubMed  CAS  Google Scholar 

  79. Cozzi E, Yannoutsos Y, Langford GA, Pino-Chavez G, Wallwork J, White DJG. Effect of transgenic expression of human decay-accelerating factor on the inhibition of hyperacute rejection of pig organs. In: Cooper DKC, Kemp E, Platt JL, White DJG, eds. Xenotransplantation. The transplantation of organs and tissues between species 2nd ed. Berlin: Springer, 1997: 665 - 682.

    Google Scholar 

  80. Lambrigts D, Sachs DH, Cooper DK. Discordant organ xenotransplantation in primates: world experience and current status. Transplantation 1998; 66: 547 - 561.

    Article  PubMed  CAS  Google Scholar 

  81. Schmoeckel M, Bhatti FN, Zaidi A, et al. Orthotopic heart transplantation in a transgenic pig-to-primate model. Transplantation 1998; 65: 1570 - 1577.

    Article  PubMed  CAS  Google Scholar 

  82. Zaidi A, Schmoeckel M, Bhatti F, et al. Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 1998; 65: 1584 - 1590.

    Article  PubMed  CAS  Google Scholar 

  83. Zaidi A, Bhatti F, Schmoeckel M, et al. Kidneys from HDAF transgenic pigs are physiologically compatible with primates. Transplant Proc 1998; 30: 2465 - 2466.

    Article  PubMed  CAS  Google Scholar 

  84. Cowan PJ, Somerville CA, Shinkel TA, et al. High-level endothelial expression of human CD59 prolongs heart function in an ex vivo model of xenograft rejection. Transplantation 1998; 65: 826 - 831.

    Article  PubMed  CAS  Google Scholar 

  85. Mulder LCF, Mora M, Lazzeri M, et al. Human MCP and DAF double transgenic mice are protected from human complement attack in an in vivo model. Transplant Proc 1996; 28: 589.

    PubMed  CAS  Google Scholar 

  86. Costa C, Zhao L, Decesare S, Fodor WL. Comparative analysis of three genetic modifications designed to inhibit human serum-mediated cytolysis. Xenotransplantation 1999; 6: 6 - 16.

    Article  PubMed  CAS  Google Scholar 

  87. Cowan PJ, Chen CG, Shinkel TA, et al. Knock out of alphal,3galactosyltransferase or expression of alpha 1,2-fucosyltransferase further protects CD55- and CD59-expressing mouse hearts in an ex vivo model of xenograft rejection. Transplantation 1998; 65: 1599 - 1604.

    Article  PubMed  CAS  Google Scholar 

  88. van Denderen BJ, Salvaris E, Romanella M, et al. Combination of decay-accelerating factor expression and alphal,3-galactosyltransferase knockout affords added protection from human complement-mediated injury. Transplantation 1997; 64: 882 - 888.

    Article  PubMed  Google Scholar 

  89. van den Berg, C.W. and Morgan, B.P. (1994) Complement-inhibiting activities of human CD59 and analogues from rat, sheep and pig are not homologously restricted. J. Immunol., 152, 4095 - 4101.

    PubMed  Google Scholar 

  90. van den Berg CW, Perez de la Lastra JM, Llanes D, Morgan BP. Purification and characterization of the pig analogue of human membrane cofactor protein (CD46/ MCP). J Immunol 1997; 158: 1703 - 1709.

    PubMed  Google Scholar 

  91. Perez de la Lastra JM, Hanna SM, Morgan BP. Distribution of membrane cofactor protein (MCP/CD46) on pig tissues. Relevance to xenotransplantation. Immunology 1999; 98: 144 - 151.

    Article  Google Scholar 

  92. Pascual M, French LE. Complement in human diseases: looking towards the 21st century. Immunol. Today 1995; 16: 58 - 61.

    Article  PubMed  CAS  Google Scholar 

  93. Thorley BR, Milland J, Christiansen D, et al. Transgenic expression of a CD46 (membrane cofactor protein) minigene: studies of xenotransplantation and measles virus infection. Eur J Immunol 1997; 27: 726 - 734.

    Article  PubMed  CAS  Google Scholar 

  94. Quigg RJ, He C, Lim A, et al. Transgenic mice overexpressing the complement inhibitor crry as a soluble protein are protected from antibody-induced glomerular injury. J Exp Med 1998; 188: 1321 - 1331.

    Article  PubMed  CAS  Google Scholar 

  95. Pruitt SK, Baldwin WM, Marsh HC, Jr, Lin SS, Yeh CG, Bollinger RR. The effect of soluble complement receptor type 1 on hyperacute xenograft rejection. Transplantation 1991; 52: 868 - 873.

    Article  PubMed  CAS  Google Scholar 

  96. Xia W, Fearon DT, Moore FD, Jr, Schoen FJ, Ortiz F, Kirkman RL. Prolongation of guinea pig cardiac xenograft survival in rats by soluble human complement receptor type 1. Transplant Proc 1992; 24: 479 - 480.

    PubMed  CAS  Google Scholar 

  97. Pruitt SK, Kirk AD, Bollinger RR, et al. The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation 1994; 57: 363 - 370.

    Article  PubMed  CAS  Google Scholar 

  98. Pruitt SK, Bollinger RR, Collins BH, et al. Effect of continuous complement inhibition using soluble complement receptor type 1 on survival of pig-to-primate cardiac xenografts. Transplantation 1997; 63: 900 - 902.

    Article  PubMed  CAS  Google Scholar 

  99. Higgins PJ, Ko JL, Lobell R, Sardonini C, Alessi MK, Yeh CG. A soluble chimeric complement inhibitory protein that possesses both decay-accelerating and factor 1 cofactor activities. J Immunol 1997; 158: 2872 - 2881.

    PubMed  CAS  Google Scholar 

  100. Kroshus TJ, Salerno CT, Yeh CG, Higgins PJ, Bolman RM, Dalmasso AP. A recombinant soluble chimeric complement inhibitor composed of human CD46 and CD55 reduces acute cardiac tissue injury in models of pig-to-primate heart transplantation. Transplantation 2000; 69: 2282 - 2289.

    Article  PubMed  CAS  Google Scholar 

  101. Salerno CT, Dalmasso AP, Kroshus TJ, et al. A recombinant soluble chimeric complement inhibitor CAB-2.0 prolongs xenograft survival in a heterotopic model of pig-to-primate cardiac transplantation. Surg Forum 1997; 48: 265 - 267.

    CAS  Google Scholar 

  102. Huang J, Kim LJ, Mealey R, et al. Neuronal protection in stroke by an sLexglycosylated complement inhibitory protein. Science 1999; 285: 595 - 599.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang H, Yu J, Bajawa E, Morrison S.L, Tomlinson S. Targeting of functional antibody-CD59 fusion proteins to a cell surface. J Clin Invest 1999; 103: 55 - 61.

    Article  PubMed  CAS  Google Scholar 

  104. Dalmasso AP, Platt JL. Prevention of complement-mediated activation of xenogeneic endothelial cells in an in vitro model of xenograft hyperacute rejection by Cl inhibitor. Transplantation 1993; 56: 1171 - 1176.

    Article  PubMed  CAS  Google Scholar 

  105. Dalmasso AP, Platt JL. Potentiation of C l inhibitor plus heparin in prevention of complement-mediated activation of endothelial cells in a model of xenograft hyperacute rejection. Transplant Proc 1994; 26: 1246 - 1247.

    PubMed  CAS  Google Scholar 

  106. Fiane AE, Videm V, Johansen HT, Mellbye OJ, Nielsen EW, Mollnes TE. Cl-inhibitor attenuates hyperacute rejection and inhibits complement, leukocyte and platelet activation in an ex vivo pig-to-human perfusion model. Immunopharmacology 1999; 42: 231 - 243.

    Article  PubMed  CAS  Google Scholar 

  107. Gautreau C, Kojima T, Woimant G, Cardoso J, Devillier P, Houssin D. Use of intravenous immunoglobulin to delay xenogeneic hyperacute rejection. An in vivo and in vitro evaluation. Transplantation 1995; 60: 903 - 907.

    PubMed  CAS  Google Scholar 

  108. Latremouille C, Haeffner-Cavaillon N, Goussef N, et al. Normal human polyclonal immunoglobulins for intravenous use significantly delay hyperacute xenograft rejection. Transplant Proc 1994; 26: 1285.

    PubMed  CAS  Google Scholar 

  109. Magee JC, Collins BH, Harland RC, et al. Immunoglobulin prevents complement-mediated hyperacute rejection in swine-to-primate xenotransplantation. J Clin Invest 1995; 96: 2404 - 2412.

    Article  PubMed  CAS  Google Scholar 

  110. Taniguchi S, Kobayashi T, Neethling FA, et al. Cobra venom factor stimulates anti-alpha-galactose antibody production in baboons. Implications for pig-tohuman xenotransplantation. Transplantation 1996; 62: 678 - 681.

    Article  PubMed  CAS  Google Scholar 

  111. Matis LA, Rollins SA. Complement-specific antibodies: Designing novel antiinflammatories. Nature Med 1995; 1: 839 - 841.

    Article  PubMed  Google Scholar 

  112. Rollins SA, Matis LA, Springhorn JP, Setter E, Wolff DW. Monoclonal antibodies directed against human C5 and C8 block complement-mediated damage of xenogeneic cells and organs. Transplantation 1995; 60: 1284 - 1292.

    PubMed  CAS  Google Scholar 

  113. Fitch JC, Rollins S, Matis L, et al. Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation 1999; 100: 2499 - 2506.

    Article  PubMed  CAS  Google Scholar 

  114. Fiane AE, Mollnes TE, Videm V, et al. Compstatin, a peptide inhibitor of C3, prolongs survival of ex vivo perfused pig xenografts. Xenotransplantation 1999; 6: 52 - 65.

    Article  PubMed  CAS  Google Scholar 

  115. Stevens RB, Wang YL, Kaji H, et al. Administration of nonanticoagulant heparin inhibits the loss of glycosaminoglycans from xenogeneic cardiac grafts and prolongs graft survival. Transplant Proc 1993; 25: 382.

    PubMed  CAS  Google Scholar 

  116. Kojima T, Del Carpio CA, Tajiri 1-1, Yoshikawa K, Saga S, Yokoyama I. Inhibition of complement-mediated immune hemolysis by peptides derived from the constant domain of immunoglobulin. Transplantation 1999; 67: 637 - 638.

    Article  PubMed  CAS  Google Scholar 

  117. Kishore U, Perdikoulis MV, Strong P, Reid KBM. A homotrimer of the B-chain globular head region of Clq is an inhibitor of Clq-mediated complement activation. Mol Immunol 1998; 35: 375.

    Article  Google Scholar 

  118. Biesecker G, Dihel L, Enney K, Bendele RA. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 1999; 42: 219 - 230.

    Article  PubMed  CAS  Google Scholar 

  119. Bach FH, Turman MA, Vercellotti GM, Platt JL, Dalmasso AP. Accommodation: a working paradigm for progressing toward clinical discordant xenografting. Transplant Proc 1991; 23: 205 - 207.

    PubMed  CAS  Google Scholar 

  120. Soares MP, Lin Y, Sato K, Stuhlmeier KM, Bach FH. Accommodation. Immunol Today 1999; 20: 434 - 437.

    Article  CAS  Google Scholar 

  121. Alexandre GPJ, Squifflet JP, De Bruyère M, et al. Present experiences in a series of 26 ABO-incompatible living donor renal allografts. Transplant Proc 1987; 19: 4538 - 4542.

    PubMed  CAS  Google Scholar 

  122. Slapak M, Digard N, Ahmed M, Shell T, Thompson F. Renal transplantation across the ABO barrier: a 9-year experience. Transplant Proc 1990; 22: 1425 - 1428.

    PubMed  CAS  Google Scholar 

  123. Bannett AD, McAlack RF, Morris M, Chopek MW, Platt JL. ABO incompatible renal transplantation: a qualitative analysis of native endothelial tissue ABO antigens after transplantation. Transplant Proc 1989; 21: 783 - 785.

    PubMed  CAS  Google Scholar 

  124. Hasan R, Van den Bogaerde J, Forty J, Wright L, Wallwork J, White DJG. Xenograft adaptation is dependent on the presence of antispecies antibody, not prolonged residence in the recipient. Transplant Proc 1992; 24: 531 - 532.

    PubMed  CAS  Google Scholar 

  125. Soares, M.P., Lin, Y., Anrather, J., et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nature Med 1998; 4: 1073 - 1077.

    Article  PubMed  CAS  Google Scholar 

  126. Suhr BD, Guzman-Paz M, Apasova EP, Matas AJ, Dalmasso AP. Induction of accommodation in the hamster-to-rat model requires inhibition of the membrane attack complex of complement. Transplant Proc 2000; 32: 976.

    Article  PubMed  CAS  Google Scholar 

  127. Dalmasso AP, He T, Benson BA. Human IgM xenoreactive natural antibodies can induce resistance of porcine endothelial cells to complement-mediated injury. Xenotransplantation 1996; 3: 54 - 62.

    Article  Google Scholar 

  128. Dalmasso AP, Benson BA, Johnson JS, Lancto C, Abrahamsen MS. Resistance against the membrane attack complex of complement induced in porcine endothelial cells with a gal_(1-3)gal binding lectin: up-regulation of CD59 expression. J Immunol 2000; 164: 3764 - 3773.

    PubMed  CAS  Google Scholar 

  129. Dorling A, Stocker C, Tsao T, Haskard DO, Lechler RI. In vitro accommodation of immortalized porcine endothelial cells: resistance to complement mediated lysis and down-regulation of VCAM expression induced by low concentrations of polyclonal human IgG antipig antibodies. Transplantation 1996; 62: 1127 - 1136.

    Article  PubMed  CAS  Google Scholar 

  130. Dorling A, Delikouras A, Nohadani M, Polak J, Lechler RI. In vitro accommodation of porcine endothelial cells by low dose human anti-pig antibody: reduced binding of human lymphocytes by accommodated cells associated with increased nitric oxide production. Xenotransplantation 1998; 5: 84 - 92.

    Article  PubMed  CAS  Google Scholar 

  131. Azimzadeh A, Wolf P, Dalmasso AP, et al. Assessment of hyperacute rejection in a rat-to-primate cardiac xenograft model. Transplantation 1996; 61: 1305 - 1313.

    Article  PubMed  CAS  Google Scholar 

  132. Johnston PS, Lim SML, Wang MW, Wright L, White DJG. Hyperacute rejection of xenografts in the complete absence of antibody. Transplant Proc 1991; 23: 877 - 879.

    PubMed  CAS  Google Scholar 

  133. Rajasinghe HA, Reddy VM, Hancock WW, Sayegh MH, Hanley FL. Key role of the alternate complement pathway in hyperacute rejection of rat hearts transplanted into fetal sheep. Transplantation 1996; 62: 407 - 411.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dalmasso, A.P. (2002). The Complement Barrier to Xenotransplantation. In: Platt, J.L. (eds) Xenotransplantation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-166-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-166-4_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-127-1

  • Online ISBN: 978-1-59259-166-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics