Skip to main content

Synthesis of Carbohydrate Antigens Recognized by Xenoreactive Antibodies

  • Chapter
Book cover Xenotransplantation

Abstract

The problem in transplanting pig organs to humans is the occurrence of hyperacute rejection. Natural antibodies (particularly IgM, but also IgG) bind to antigens on the endothelium lining the blood vessels, fix complement, and lead to endothelial cell activation and intravascular thrombosis within minutes. Hyperacute rejection can be prevented by the depletion, blocking, or removal of any of the three components. Here we examine the importance of carbohydrate antigens in xenograft rejection, in particular the Galα(1,3)Gal epitope; the α1,3galactosyltransferase enzyme responsible for generating Galα(1,3)Gal and transgenic strategies designed to eliminate or reduce expression of Galα(1,3)Gal, such that the epitope can no longer be detected by natural human antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sandrin MS, Vaughan HA, Dabkowski PL, McKenzie IFC. Anti-pig IgM antibodies in human serum reacts predominantly with Galα(1,3)Gal epitopes. Proc Natl Acad Sci USA 1993; 90: 11391–11395.

    Article  PubMed  CAS  Google Scholar 

  2. Sandrin MS, McKenzie IFC. Galα(1,3)Gal, the major xenoantigen(s) recognized in pigs by human natural antibodies. Immunol Rev 1994; 141: 169–190.

    Article  PubMed  CAS  Google Scholar 

  3. Sandrin MS, Vaughan HA, McKenzie IFC. Identification of Galα(1,3)Gal as the major epitope for pig-to-human vascularised xenografts. Transplant Rev 1994; 8: 134–149.

    Article  Google Scholar 

  4. McKenzie IFC, Vaughan HA, Sandrin MS. How important are anti-Galα(1–3)Gal antibodies in pig to human xenotransplants? Xeno 1994; 2: 107–110.

    Google Scholar 

  5. Cooper DK, Koren E, Oriol R. Oligosaccharides and discordant xenotransplantation. Immunol Rev 1994; 141: 31–58.

    Article  PubMed  CAS  Google Scholar 

  6. Good AH, Cooper DKC, Malcolm AJ, et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant Proc 1992; 24: 559–562.

    PubMed  CAS  Google Scholar 

  7. Galili U, Shohet SB, Korbin E, Stults CLM, Macher BA. Man, apes and Old World monkeys differ from other mammals in the expression of the a-Galαctosyl epitopes on nucleated cells. J Biol Chem 1988; 263: 17755–17762.

    PubMed  CAS  Google Scholar 

  8. Galili U, Macher BE, Buehler J, Shohet SB. Human natural anti-a-Galαctosyl IgG II. the specific recognition of a(1,3)-linked Galαctose residues. J Exp Med 1985; 162: 573–582.

    Article  PubMed  CAS  Google Scholar 

  9. Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-a-Galαctosyl specificity. J Exp Med 1984; 160: 1519–1531.

    Article  PubMed  CAS  Google Scholar 

  10. Cooper DK, Good AH, Koren E, et al. Identification of alpha-Galαctosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol 1993; 1 (3): 198–205.

    Article  PubMed  CAS  Google Scholar 

  11. Platt JL, Lindman BJ, Chen H, Spitalnik SL, Bach FH. Endothelial cell antigens recognized by xenoreactive human natural antibodies. Transplantation 1990; 50: 817–822.

    Article  PubMed  CAS  Google Scholar 

  12. Platt JL, Fischel RJ, Matas AJ, Reif SA, Bolman RM, Bach FH. Immunopathology of hyperacute rejection in swine to primate model. Transplantation 1991; 52: 214–220.

    Article  PubMed  CAS  Google Scholar 

  13. Vaughan HA, Loveland BE, Sandrin MS. Gal a(1,3)Gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies. Transplantation 1994; 58 (8): 879–882.

    Article  PubMed  CAS  Google Scholar 

  14. Neethling FA, Koren E, Ye Y, et al. Protection of pig kidney (PK15) cells from the cytotoxic effect of anti-pig antibodies by a-Galαctosyl oligosaccharides. Transplantation 1994; 57 (6): 959–963.

    Article  PubMed  CAS  Google Scholar 

  15. Rieben R, von Allmen E, Korchagina EY, et al. Detection, immunoabsoption, and inhibition of cytotoxic activity of anti-aGal antibodies using newly developed substances with synthetic Galα1–3Gal disaccharide epitopes. Xenotransplantation 1995; 2: 98–106.

    Article  Google Scholar 

  16. Romano E, Neethling FA, Nilsson K, et al. Intravenous synthetic agal saccharides delay hyperacute rejection following pig -to-baboon heart transplantation. Xenotransplantation 1999; 6 (34–42).

    Article  Google Scholar 

  17. Simon PM, Neethling FA, Taniguchi S, et al. Intravenous infusion of Galαl-3Gal oligosaccharides in baboons delays hyperacute rejection of porcine heart xenografts. Transplantation 1998; 65: 346–353.

    Article  PubMed  CAS  Google Scholar 

  18. Taniguchi S, Neethling FA, Korchagina EY, et al. In vivo immunoadsorption of antipig antibodies in baboons using a specific Galα1–3Gal column. Transplantation 1996; 62: 1379–1384.

    Article  PubMed  CAS  Google Scholar 

  19. Kozlowski T, Ierino FL, Lambrigts D, et al. Depletion of anti-Galα 1–3Gal antibody in baboons by specific Gal immunoaffinity columns. Xenotransplantation 1998; 5: 122–131.

    Article  PubMed  CAS  Google Scholar 

  20. Xu Y, Lorf T, Sablinski T, et al. Removal of anti-porcine natural antibodies from human and nonhuman primate plasma in vitro and in vivo by a Galαl-3Gal(314(3Glc-X immunoaffinity column. Transplantation 1998; 65: 172–179.

    Article  PubMed  CAS  Google Scholar 

  21. Sandrin MS, Dabkowski PL, Henning MM, Mouhtouris E, McKenzie IFC. Characterization of cDNA clones for porcine a1,3 Galαctosyltransferase: the enzyme generating the Galα(1,3)Gal epitope. Xenotransplantation 1994; 1: 81–88.

    Article  Google Scholar 

  22. McKenzie IF, Koulmanda M, Mandel T, Xing PX, Sandrin MS. Comparative studies of the major xenoantigen gal alpha(1,3)gal in pigs and mice. Transplant Proc 1995; 27 (1): 247–248.

    PubMed  CAS  Google Scholar 

  23. McKenzie IF, Xing PX, Vaughan HA, Prenzoska J, Dabkowski PL, Sandrin MS. Distribution of the major xenoantigen (gal (a1–3)gal) for pig to human xenografts. Transpl Immunol 1994; 2 (2): 81–86.

    Article  PubMed  CAS  Google Scholar 

  24. Oriol R, Ye Y, Koren E, Cooper DK. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation 1993; 56 (6): 1433–1442.

    Article  PubMed  CAS  Google Scholar 

  25. Vaughan HA, McKenzie IFC, Sandrin MS. Biochemical studies of pig xenoantigens detected by naturally occurring human antibodies and the Galαctosea(1–3)Galαctose reactive lectin. Transplantation 1995; 59 (1): 102–109.

    Article  PubMed  CAS  Google Scholar 

  26. Platt JL, Holznecht ZE. Porcine platelet antigens recognised by human xenoreactive natural antibodies. Transplantation 1994; 57: 327–335.

    Article  PubMed  CAS  Google Scholar 

  27. Holzknecht ZE, Platt JL. Identification of porcine endothelial cell membrane antigens recognized by human xenoreactive natural antibodies. J Immunol 1995; 154: 4565–4575.

    PubMed  CAS  Google Scholar 

  28. Thall A, Galili U. Distribution of Galαl-3GalI31–4G1cNAc residues on secreted mammalian glycoproteins (thyroglobulin, fibrinogen, and immunoglobulin G) as measured by a sensitive solid-phase radioimmunoassay. Biochemistry 1990; 29: 3959–3965.

    Article  PubMed  CAS  Google Scholar 

  29. Arumugham RG, Hsieh TC, Tanzer ML, Laine RA. Structures of the asparaginelinked sugar chains of laminin. Biochim Biophys Acta 1986; 883: 112–126.

    Article  PubMed  CAS  Google Scholar 

  30. Joziasse DH. Mammalian glycosyltransferases: genomic organization and protein structure. Glycobiology 1992; 2: 271–277.

    Article  PubMed  CAS  Google Scholar 

  31. Blanken WM, Van den Eijnden DH. Biosynthesis of terminal Galαl-3Galα14G1cNAc oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide al-3-Galαctosyltransferase from calf thymus. J Biol Chem 1985; 260: 12927–12934.

    PubMed  CAS  Google Scholar 

  32. Larsen RD, Rajan VP, Ruff M, Kukowska-Latallo J, Cummings RD, Lowe JB. Isolation of a cDNA encoding a murine UDPGalαctose: (3–o-galctosyl-l,4-N-acetylglucosaminide -a-1,3-Galαctosyltransferase: Expression cloning by gene transfer. Proc Natl Acad Sci USA 1989; 86: 8227–8231.

    Article  PubMed  CAS  Google Scholar 

  33. Joziasse DH, Shaper NL, Kim D, Van den Eijnden DH, Shaper JH. Murine a1,3 Galαctosyltransferase: A single gene locus specifies four isoforms of the enzyme by alternative spicing. J Biol Chem 1992; 267: 5534–5541.

    PubMed  CAS  Google Scholar 

  34. Joziasse DH, Shaper JH, Van den Eijnden DH, Van den Tunen AJ, Sharper NL. Bovine a1,3 Galαctosyltransferase: isolation and characterisation of a cDNA clone. Identification of homologous sequences in human genomic DNA. J Biol Chem 1989; 264: 14290–14297.

    PubMed  CAS  Google Scholar 

  35. Strahan KM, Gu F, Preece AF, Gustaysson I, Andersson L, Gustafsson K. cDNA sequence and chromosome localization of pig alpha 1,3 Galαctosyltransferase. Immunogenetics 1995; 41: 101–105.

    Article  PubMed  CAS  Google Scholar 

  36. Henion TR, Macher BA, Anaraki F, Galili U. Defining the minimal size of catalytically active primate a1,3Galαctosyltransferase: structure-function studies on the recombinant truncated enzyme. Glycobiology 1994; 4: 193–201.

    Article  PubMed  CAS  Google Scholar 

  37. Joziasse DH, Shaper JH, Jabs EW, Sharper NL. Characterisation of an a1,3Galαctosyltransferase homologue on human chromosome 12 that is organised as a processed pseudogene. J Biol Chem 1991; 266: 6991–6998.

    PubMed  CAS  Google Scholar 

  38. Larsen RD, Riverra-Marrero CA, Ernst LK, Cummings RD, Lowe JB. Frameshift and non sense mutations in a human genomic sequence homologous to a murine UDP-Gal:13-D-Gal1.4-D- G1cNAca 1,3-Galαctosyl-transferase cDNA. J Biol Chem 1990; 265: 7055–7061.

    PubMed  CAS  Google Scholar 

  39. Galili U, Swanson K. Gene sequences suggest inactivation of a-1,3-Galαctosyltransferase in catarrhines after divergence of apes from monkeys. Proc Natl Acad Sci USA 1991; 88: 7401–7404.

    Article  PubMed  CAS  Google Scholar 

  40. Shaper NL, Lin SP, Joziasse DH, Kim DY, Yang-Feng TL. Assignment of two human alpha-1,3-Galαctosyltransferase gene sequences (GGTAI and GGTA1P) to chromosomes 9q33-q34 and 12g14-q15. Genomics 1992; 12: 613–615.

    Article  PubMed  CAS  Google Scholar 

  41. Ferguson-Smith MA, Aitken DA, Turleau C, de Grouchy J. Localisation of the human ABO: Np-1: AK-1 linkage group by regional assignment of AK-1 to 9q34. Hum Genet 1976; 34: 35–43.

    Article  PubMed  CAS  Google Scholar 

  42. Lu Q, Hasty P, Shur BD. Targeted mutation in 131,4-Galαctosyltransferase leads to pituitary insufficiency and neonatal lethality. Dev Biol 1997; 181: 257–267.

    Article  PubMed  CAS  Google Scholar 

  43. Asano M, Furukawa K, Kido M, et al. Growth retardation and early death of f3–1,4Galαctosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 1997; 16: 1850–1857.

    Article  PubMed  CAS  Google Scholar 

  44. Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J 1994; 13: 2056–2065.

    PubMed  CAS  Google Scholar 

  45. Ioffe E, Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci USA 1994; 91: 728–732.

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto F, Clausen H, White T, Marken J, Hakmori S. Molecular genetic basis of the histo-blood group ABO system. Nature 1990; 345: 229–233.

    Article  PubMed  CAS  Google Scholar 

  47. Kelly RJ, Ernst LK, Larsen RD, Bryant JG, Robinson JS, and Lowe JB. Molecular basis for H blood group deficiency in Bombay (Oh) and para-Bombay individuals. Proc Natl Acad Sci USA 1994; 91: 5843–5847.

    Article  PubMed  CAS  Google Scholar 

  48. McKenzie IFC, Patton K, Smit JA, et al. Definition and characterization of chicken Galα(1,3)Gal antibodies. Transplantation 1999; 67: 864–870.

    Article  PubMed  CAS  Google Scholar 

  49. Thall AD, Maly P, Lowe JB. Oocyte Galα1,3Gal Epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J Biol Chem 1995; 270: 21437–21440.

    Article  PubMed  CAS  Google Scholar 

  50. Tearle RG, Tange MJ, Zannettino ZL, et al. The a-1,3-Galαctosyltransferase knockout mouse: implications for xenotransplantation. Transplantation 1996; 61: 13–19.

    Article  PubMed  CAS  Google Scholar 

  51. McKenzie IFC, Li YQ, Patton K, Thall A, Sandrin MS. A murine model for antibody mediated hyperacute rejection due to anti-Galα(1,3)Gal antibodies in Gal o/o mice. Transplantation 1998; 66: 754–763.

    Article  PubMed  CAS  Google Scholar 

  52. Pearse MJ, Witort E, Mottram P, et al. Anti-Gal antibody-mediated allograft rejection in a 1,3-Galαctosyltransferase gene knockout mice: a model of delayed xenograft rejection. Transplantation 1998; 66: 748–754.

    Article  PubMed  CAS  Google Scholar 

  53. McKenzie IFC, Koulmanda M, Mandell TE, Sandrin MS. Pig islet xenografts are susceptible to “anti-pig” but not to anti Galα(1,3)Gal antibody plus complement in Gal o/o mice. J Immunol 1998; 161: 5116–5119.

    PubMed  CAS  Google Scholar 

  54. Yang Y-G, deGoma E, Ohdan H, et al. Tolerization of anti-Galα1–3Gal natural antibody-forming B cells by induction of mixed chimerism. J Exp Med 1998; 187: 1335–1342.

    Article  PubMed  CAS  Google Scholar 

  55. Bracy JL, Sachs DH, Iacomini J. Inhibition of xenoreactive natural antibody production by retroviral gene therapy. Science 1998; 281: 1845–1847.

    Article  PubMed  CAS  Google Scholar 

  56. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385: 810–813.

    Article  PubMed  CAS  Google Scholar 

  57. Yong Z, Yugiang L. Nuclear-cytoplasmic interaction and development of goat embryos reconstructed by nuclear transplantation: production of goats by serially cloning embryos. Biol Reprod 1998; 58: 266–269.

    Article  PubMed  CAS  Google Scholar 

  58. Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 1998; 280: 1256–1258.

    Article  PubMed  CAS  Google Scholar 

  59. Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394: 369–374.

    Article  PubMed  CAS  Google Scholar 

  60. Schnieke AE, Kind AJ, Ritchie WA, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 1997; 278: 2130–2133.

    Article  PubMed  CAS  Google Scholar 

  61. Sandrin MS, Fodor WL, Mouhtouris E, et al. Enzymatic remodeling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nature Medicine 1995; 1: 1261–1267.

    Article  PubMed  CAS  Google Scholar 

  62. Cohney S, McKenzie IFC, Patton K, et al. Down regulation of Galα(1,3)Gal expression in mice by the al,2fucosyltransferase transgene. Transplantation 1997; 64: 495–500.

    Article  PubMed  CAS  Google Scholar 

  63. Sandrin MS, Fodor WL, Cohney S, et al. Reduction of the major porcine xenoantigen Galα(1,3)Gal by expression of a(1,2)fucosyltransferase. Xenotransplantation 1996; 3: 134–140.

    Article  Google Scholar 

  64. Osman N, McKenzie IFC, Mouhtouris E, Sandrin MS. Switching amino terminal cytoplasmic domains of a1,2fucosyltransferase and a1,3Galαctosyltransferase alters the expression of H substance and Galα(1,3)Gal. J Biol Chem 1996; 271: 33105–33109.

    Article  PubMed  CAS  Google Scholar 

  65. Chen C-G, Fisicaro N, Shinkel TA, et al. Reduction in Galα(1,3)Gal epitope expression in transgenic mice expressing human H-transferase. Xenotransplantation 1996; 3: 69–75.

    Article  Google Scholar 

  66. Koike C, Kannagi R, Takamura Y, et al. Introduction of a(1,2)-fucosyltransferase and its effect on a-Gal epitopes in transgenic pig. Xenotransplantation 1996; 3: 81–86.

    Article  Google Scholar 

  67. Sharma A, Okabe J, Birch P, et al. Reduction in the level of Gal(a1,3)Gal in transgenic mice and pigs by the expression of an a(1,2)fucosyltransferase. Proc Natl Acad Sci USA 1996; 93: 7190–7195.

    Article  PubMed  CAS  Google Scholar 

  68. Cohney S, Mouhtouris E, McKenzie IFC, Sandrin MS. Molecular cloning and characterization of the pig secretor type al,2fucosyltransferase (FUT2). Int J Mol Med 1999; 3: 199–207.

    PubMed  CAS  Google Scholar 

  69. Tanemura M, Miyagawa S, Koyota S, et al. Reduction of the major swine xenoantigen, the a-Galαctosyl epitope by transfection of the a2,3-sialyltransferase gene. J Biol Chem 1998; 273: 16421–16425.

    Article  PubMed  CAS  Google Scholar 

  70. Takemura M, Miyagawa S, Ihara Y, et al. Reduction of the major swine xenoantigen Galα(1,3)Gal by transfection of N-acetylglucosaminyltransferase III (GnT-III) gene. Transplant Proc 1997; 29: 891–892.

    Article  Google Scholar 

  71. Smith DF, Larsen RD, Mattox S, Lowe JB, Cummings RD. Transfer and expression of a murine UDP-Gal:a o-Gal-a1,3-Galαctosyltransferase gene in transfected Chinese hamster ovary cells. Competition reactions between the a1,3Galαctosyltransferase and the endogenous a2,3-sialyltransferase. J Biol Chem 1990; 265: 6225–6234.

    PubMed  CAS  Google Scholar 

  72. Takemura M, Miyagawa S, Ihara Y, et al. Suppression of the xenoantigen Galα(1,3)Gal by N-acetylglucosaminyltransferase III (GnT-III) in transgenic mice. Transplant Proc 1997; 29: 895–896.

    Article  Google Scholar 

  73. Cairns T, Hammelmann D, Gray K, Welsh K, Larson G. Enzymatic removal from various tissues of Galαctoseal,3-Galαctose target antigens of human antispecies antibodies. Transplant Proc 1994; 26: 1279–1280.

    PubMed  CAS  Google Scholar 

  74. Satake M, Kawagishi N, Rydberg L, et al. Limited specificity of xenoantibodies in diabetic patients transplanted with fetal porcine islet cell clusters. Main antibody reactivity against a-linked Galαctose-containing epitopes. Xenotransplantation 1994; 1: 89–101.

    Article  Google Scholar 

  75. Osman N, McKenzie IFC, Ostenreid K, Ioannou YA, Desnick RJ, Sandrin MS. Combined transgenic expression of a—Galαctosidase and a1,2fucosyltransferase leads to optimal reduction in the major xenoepitope Galα(1,3)Gal. Proc Natl Acad Sci USA 1997; 94: 14677–14682.

    Article  PubMed  CAS  Google Scholar 

  76. Kase R, Shimmoto M, Itoh K, et al. Immunohistochemical characterization of transgenic mice highly expressing human lysosomal a—Galαctosidase. Biochim Biophys Acta 1998; 1406: 260–266.

    Article  PubMed  CAS  Google Scholar 

  77. Bach FH. Xenotransplantation: problems and prospects. Annu Rev Med 1998; 49: 301–310.

    Article  PubMed  CAS  Google Scholar 

  78. Palmetshofer A, Galili U, Dalmasso AP, Robson SC, Bach FH. α—Galαctosyl epitope-mediated activation of porcine aortic endothelial cells: type I activation. Transplantation 1998; 65: 844–853.

    Article  PubMed  CAS  Google Scholar 

  79. Palmetshofer A, Galili U, Dalmasso AP, Robson SC, Bach FH. α—Galαctosyl epitope-mediated activation of porcine aortic endothelial cells: type II activation. Transplantation 1998; 65: 971–978.

    Article  PubMed  CAS  Google Scholar 

  80. Goodman DJ, von Albertini M, Willson A, Milian MT, Bach FH. Direct activation of porcine endothelial cells by human natural killer cells. Transplantation 1996; 61: 763–771.

    Article  PubMed  CAS  Google Scholar 

  81. Malyguine AM, Saadi S, Platt JL, Dawson JR. Human natural killer cells induce morphologic changes in porcine endothelial cell monolayers. Transplantation 1996; 61: 161–164.

    Article  PubMed  CAS  Google Scholar 

  82. Schaapherder AFM, Daha MR, to Bulte M-J, van der Woude FJ, Gooszen HG. Antibody-dependant cell-mediated cytotoxicity against porcine endothelium induced by a majority of human sera. Transplantation 1994; 57: 1376–1382.

    Article  PubMed  CAS  Google Scholar 

  83. Waiter H, Gullaumin JM, Vallee I, et al. Human NK cell-mediated direct and IgGdependent cytotoxicity against xenogeneic porcine endothelial cells. Transplant Immunol 1996; 4: 293–299.

    Article  Google Scholar 

  84. Galili U, Tibell A, Samuelsson B, Rydberg L, Groth CG. Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation 1995; 59: 1549–1556.

    PubMed  CAS  Google Scholar 

  85. Inverardi L, Clissi B, Stolzer AL, Bender JR, Sandrin MS, Pardi R. Human natural killer lymphocytes directly recognize evolutionarily conserved oligosaccharide ligands expressed by xenogeneic tissues. Transplantation 1997; 63: 1318–1330.

    Article  PubMed  CAS  Google Scholar 

  86. Artrip JH, Kwiatkowski P, Wang S-F, et al. Target cell susceptibility to lysis by human natural killer cells is augmented by all,3)-Galαctosyltransferase and reduced by α(1,2)-fucosyltransferase. J Biol Chem 1999; 274: 10717–10722.

    Article  PubMed  CAS  Google Scholar 

  87. Bach FH, Winkler H, Ferran C, Hancock WW, Robson SC. Delayed xenograft rejection. Immunology Today 1996; 17: 379–384.

    Article  PubMed  CAS  Google Scholar 

  88. Millan MT, Geczy C, Stuhlmeier KM, Goodman DJ, Ferran C, Bach FH. Human monocytes activate porcine endothelial cells, resulting in increased E-selectin, interleukin-8, monocyte chemotactic protein-1, and plasminogen activator inhibitor type-1 expression. Transplantation 1997; 63: 421–429.

    Article  PubMed  CAS  Google Scholar 

  89. Sepp A, Skacel P, Lindstedt R, Lechler RI. Expression of α-1,3-Galαctose and other type 2 oligosaccharide structure in a porcine endothelial cell line transfected with human α-1,2-fucosyltransferase. J Biol Chem 1997; 272: 23104–23110.

    Article  PubMed  CAS  Google Scholar 

  90. Kwiatkowski P, Artrip JH, Edwards NM, et al. High level porcine endothelial cell expression of α(1,2)-fucosyltransferase reduces human monocyte adhesion and activation. Transplantation 1999; 67: 219–226.

    Article  PubMed  CAS  Google Scholar 

  91. McKenzie IFC, Li YQ, Patton K, Sandrin MS. Fucosyl transferase (H) transgenic heart transplants to Gal-/- mice. Transplantation 2000; 70: 1205–1209.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sandrin, M.S., McKenzie, I.F.C. (2002). Synthesis of Carbohydrate Antigens Recognized by Xenoreactive Antibodies. In: Platt, J.L. (eds) Xenotransplantation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-166-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-166-4_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-127-1

  • Online ISBN: 978-1-59259-166-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics