Skip to main content

Disordered Regulation of Coagulation and Platelet Activation in Xenotransplantation

  • Chapter
Xenotransplantation

Abstract

Over the past decade, substantial increases in transplant organ and recipient survival have been accompanied by a significant increase in the quality of life for patients with end-stage organ failure. However, the increasing access to organ transplant lists, coupled with static or even falling organ donation rates, have resulted in a doubling of the waiting time for patients receiving a cadaveric kidney at many major centers in the United States (http://www.unos.org). In addition, many patients waiting for suitable heart or liver donors die because of the lack of effective life-support systems. Living donor transplantation has the potential to alleviate renal allograft shortages but comparable procedures have been performed for lung and liver in only a few specialized centers to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taniguchi S, Cooper D. Clinical xenotransplantation–past, present and future. Ann R Coll Surg Engl 1997; 79: 13–19.

    PubMed  CAS  Google Scholar 

  2. Platt JL, Bach FH. Discordant xenografting: challenges and controversies. Curr Opin Immunol 1991; 3: 735–739.

    Article  PubMed  CAS  Google Scholar 

  3. Platt, J.L. Xenotransplantation–recent progress and current perspectives. Curr Opin Immunol 1996; 8: 721–728.

    Article  PubMed  CAS  Google Scholar 

  4. Platt JL. The immunological barriers to xenotransplantation. Crit Rev Immunol 1996; 16: 331–358.

    PubMed  CAS  Google Scholar 

  5. Parker W, Saadi S, Lin SS, Holzknecht ZE, Bustos M, Platt JL. Transplantation of discordant xenografts–a challenge revisited. Immunol Today 1996; 17: 373–378.

    Article  PubMed  CAS  Google Scholar 

  6. Platt JL, Bach FH. The barrier to xenotransplantation. Transplantation 1991; 52: 937–947.

    Article  PubMed  CAS  Google Scholar 

  7. Bach FH, Winkler H, Ferran C, Hancock WW, Robson SC. Delayed xenograft rejection. Immunol Today 1996; 17: 379–384.

    Article  PubMed  CAS  Google Scholar 

  8. Bach FH, Robson SC, Ferran C, et al. Endothelial cell activation and thromboregulation during xenograft rejection. Immunol Reviews 1994; 141: 5–30.

    Article  CAS  Google Scholar 

  9. Dalmasso AP. The complement system in xenotransplantation. Immunopharmacology 1992; 24: 149–160.

    Article  PubMed  CAS  Google Scholar 

  10. Bach FH, Ferran C, Soares M, et al. Modification of vascular responses in xenotransplantation–inflammation and apoptosis. Nature Medicine 1997; 3: 944–948.

    Article  PubMed  CAS  Google Scholar 

  11. Platt JL. New directions for organ transplantation. Nature 1998; 392: 11–17.

    Article  PubMed  CAS  Google Scholar 

  12. Goodman DJ, Pearse MJ, Dapice AJF. Overcoming hyperacute xenograft rejection with transgenic animals. Biodrugs 1998; 9: 219–234.

    Article  PubMed  CAS  Google Scholar 

  13. Dorling A, Lechler RI. Prospects for xenografting. Curr Opin Immunol 1994; 6: 765–769.

    Article  PubMed  CAS  Google Scholar 

  14. Robson SC, Candinas D, Hancock WW, Wrighton C, Winkler H, Bach,FH. Role of endothelial cells in transplantation. lnt Arch Allergy Immunol 1995; 106: 305–322.

    Article  CAS  Google Scholar 

  15. Dalmasso AP, Vercellotti GM, Fischel RJ, Bolman RM, Bach FH, Platt JL. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Amer J Pathol 1992; 140: 1157–1166.

    CAS  Google Scholar 

  16. Galili U. Interaction of the natural anti-gal antibody with alpha-galactosyl epitopes–a major obstacle for xenotransplantation in humans. Immunol Today 1993; 14: 480–482.

    Article  PubMed  CAS  Google Scholar 

  17. Cooper D, Ye Y, Niekrasz M, et al. Specific intravenous carbohydrate therapy–a new concept in inhibiting antibody-mediated rejection experience with ABO-incompatible cardiac allografting in the baboon. Transplantation 1993; 56: 769–777.

    Article  PubMed  CAS  Google Scholar 

  18. Cooper DKC, Koren E, Oriol R. a-galactosyl oligosaccharides and discordant xenografting. Xeno 1994; 2.

    Google Scholar 

  19. Pruitt SK, Bollinger RR, Collins BH, et al. Effect of continuous complement inhibition using soluble complement receptor type 1 on survival of pig-to-primate cardiac xenografts. Transplantation 1997; 63: 900–902.

    Article  PubMed  CAS  Google Scholar 

  20. Hancock WW. Delayed Xenograft Rejection [Review]. World J Surg 1997: 21: 917–923.

    Article  PubMed  CAS  Google Scholar 

  21. Rosengard AM, Cary NR, Langford GA, Tucker AW, Wallwork J, White DJ. Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs. A potential approach for preventing xenograft rejection. Transplantation 1995; 59: 1325–1333.

    PubMed  CAS  Google Scholar 

  22. Sandrin MS, Fodor WL, Mouhtouris E, et al. Enzymatic remodeling of the carbohydrate surface of a xenogeneic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat Med 1995; 1: 1261–1267.

    Article  PubMed  CAS  Google Scholar 

  23. Sandrin MS, Fodor WL, Cohney S, et al. Reduction of the major porcine xenoantigen gal-alpha(1,3)gal by expression of alpha(1,2)fucosyltransferase. Xeno-transplantation 1996; 3: 134–140.

    Google Scholar 

  24. Byrne G, Mccurry KR, Martin MJ, Mcclellan SM, Platt JL, Logan JS. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation 1997; 63: 149–155.

    Article  PubMed  CAS  Google Scholar 

  25. Diamond LE, Mccurry KR, Martin MJ, McClellan SB, Oldham ER, Platt JL, Logan JS. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium. Transplantation 1996; 61: 1241–1249.

    Article  PubMed  CAS  Google Scholar 

  26. Lin SS, Weidner BC, Byrne GW, et al. The role of antibodies in acute vascular rejection of pig-to-baboon cardiac transplants. J Clin Invest 1998; 101: 1745–1756.

    Article  PubMed  CAS  Google Scholar 

  27. Saadi S, Holzknecht RA, Patte CP, Stern DM, Platt JL. Complement-mediated regulation of tissue factor activity in endothelium. J Exper Med 1995; 182: 1807–1814.

    Article  CAS  Google Scholar 

  28. Platt JL, Lin SS, McGregor CGA. Acute vascular rejection. Xenotransplantation 1998; 5: 169–175.

    Article  PubMed  CAS  Google Scholar 

  29. Dalmasso AP, Platt JL, Bach FH. Reaction of complement with endothelial cells in a model of xenotransplantation. Clin Exper Immunol 1991; 1: 31–35.

    Google Scholar 

  30. Candinas D, Lesnikoski BA, Robson SC, et al. Effect of repetitive high-dose treatment with soluble complement receptor type l and cobra venom factor on discordant xenograft survival. Transplantation 1996; 62: 336–342.

    Article  PubMed  CAS  Google Scholar 

  31. Bach FH. Revisiting a challenge in transplantation: discordant xenografting. Hum Immunol 1991; 30: 262–269.

    Article  PubMed  CAS  Google Scholar 

  32. Oriol R, Ye Y, Koren E, Cooper D. In vivo depletion of xenoreactive natural antibodies with an anti-mu monoclonal antibody. Transplantation 1993; 56: 1427–1433.

    Article  Google Scholar 

  33. McCurry KR, Kooyman DL, Diamond LE, et al. Human complement regulatory proteins in transgenic animals regulate complement activation in xenoperfused organs. Transplant Proc 1995; 27: 317–318.

    PubMed  CAS  Google Scholar 

  34. McCurry KR, Kooyman DL, Alvarado CG, et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1995; 1: 423–427.

    Article  PubMed  CAS  Google Scholar 

  35. Koike C, Isobe K, Nakashima I, et al. Establishment of a human DAF/HRF20 double transgenic mouse line is not sufficient to suppress hyperacute rejection. Surgery Today1996; 26: 993–998.

    Google Scholar 

  36. Kopp CW, Siegel JB, Hancock WW, et al. Effect of porcine endothelial tissue factor pathway inhibitor on human coagulation factors. Transplantation 1997; 63: 749–758.

    Article  PubMed  CAS  Google Scholar 

  37. Candinas D, Koyamada N, Miyatake T, et al. Loss of rat glomerular ATP diphosphohydrolase activity during reperfusion injury is associated with oxidative stress reactions. Thromb Haemost 1996; 76: 807–812.

    PubMed  CAS  Google Scholar 

  38. Robson SC, Kaczmarek E, Siegel JB, et al. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exper Med 1997; 185: 153–163.

    Article  CAS  Google Scholar 

  39. Ierino FL, Kozlowski T, Siegel JB, et al. (1998) Disseminated intravascular coagulation in association with the delayed rejection of pig-to-baboon renal xenografts. Transplantation 1998; 66: 1439–1450.

    Article  Google Scholar 

  40. Kozlowski T, Shimizu A, Lambrigts D, et al. Porcine kidney and heat transplantation in baboons undergoing a tolerance induction regimen and antibody adsorption. Transplantation 1999; 67: 18–30.

    Article  PubMed  CAS  Google Scholar 

  41. Robson SC, Young VK. Cook NS, et al. Thrombin inhibition in an ex vivo model of hyperacute xenograft rejection. Transplantation 1996; 61:862–868.

    Google Scholar 

  42. Lesnikoski BA, Candinas D, Otsu I, Metternich R, Bach FH, Robson SC. Thrombin inhibition in discordant xenograft rejection. Xenotransplantation 1997; 4: 140–146.

    Article  Google Scholar 

  43. Jakobs FM, Davis EA, White T, Sanfilippo F, Baldwin WM. Prolonged discordant xenograft survival by inhibition of the intrinsic coagulation pathway in complement C6-deficient recipients. J Heart Lung Transplant 1998; 17: 306–311.

    PubMed  CAS  Google Scholar 

  44. Candinas D, Lesnikoski BA, Hancock WW, et al. Inhibition of platelet integrin GPIIbIlla prolongs survival of discordant cardiac xenografts. Transplantation 1996; 62: 1–5.

    Article  PubMed  CAS  Google Scholar 

  45. Robson SC, Young VK, Cook NS, et al. Inhibition of platelet gpIIbIIIa in an ex vivo model of hyperacute xenograft rejection does not prolong cardiac survival time. Xenotransplantation 1996; 3: 43–52.

    Article  Google Scholar 

  46. Makowka L, Chapman FA, Cramer DV, Qian SG, Sun H, Starzl TE. Platelet-activating factor and hyperacute rejection. The effect of a platelet-activating factor antagonist, SRI 63–441, on rejection of xenografts and allografts in sensitized hosts. Transplantation 1990; 50: 359–365.

    Article  PubMed  CAS  Google Scholar 

  47. Ohair DP, Roza AM, Komorowski R, et al. Tulopafant, a PAF receptor antagonist, increases capillary patency and prolongs survival in discordant cardiac xenotransplants. Journal of Lipid Mediators. 7: 79–84.

    Google Scholar 

  48. Coughlan AF, Berndt MC, Dunlop LC, Hancock WW. In vivo studies of P-selectin and platelet activating factor during endotoxemia, accelerated allograft rejection, and discordant xenograft rejection. Transplant Proc 1993; 25: 2930–2931.

    PubMed  CAS  Google Scholar 

  49. Koyamada N, Miyatake T, Candinas D, et al. (1996) Apyrase administration prolongs discordant xenograft survival. Transplantation 1996; 62: 1739–1743.

    Article  Google Scholar 

  50. Enjyoji K, Sevigny J, Lin Y, et al. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 1999; 5: 1010–1017.

    Article  PubMed  CAS  Google Scholar 

  51. Imai M, Takigama K, Guckelberger O. Modulation of nucleoside triphosphate diphosphohydrolase-1/cd39 in xenograft rejection. Molec Med 1999; 5: 743–752.

    CAS  Google Scholar 

  52. Imai M, Takigami K, Guckelberger O. Recombinant adenoviral mediated CD39 gene transfer prolongs cardiac xenograft survival. Transplantation 2000; In press.

    Google Scholar 

  53. Rosenberg JC, Broersma RJ, Bullemer G, Mammen EF, Lenaghan R, Rosenberg B.F. Relationship of platelets, blood coagulation, and fibrinolysis to hyperacute rejection of renal xenografts. Transplantation 1969; 8: 152–161.

    Article  PubMed  CAS  Google Scholar 

  54. Broersma RJ, Bullemer GD, Rosenberg JC, Lenaghan R, Rosenberg BF, Mammen EF. Coagulation changes in hyperacute rejection of renal xenografts. Thrombosis et Diathesis Haemorrhagica–Supplementum 1969; 36: 333–340.

    PubMed  CAS  Google Scholar 

  55. Breimer ME, Bjorck S, Svalander CT, et al. Extracorporeal (ex vivo) connection of pig kidneys to humans. 1. Clinical data and studies of platelet destruction. Xenotransplantation 1996; 3: 328–339.

    Article  Google Scholar 

  56. Collins BH, Chari RS, Magee JC, et al. Immunopathology of porcine livers per-fused with blood of humans with fulminant hepatic failure. Transplant Proc 1995; 27: 280–281.

    PubMed  CAS  Google Scholar 

  57. Davis EA, Jakobs F, Pruitt SK, et al. Overcoming rejection in pig-to-primate cardiac xenotransplantation. Transplant Proc 1997; 29: 938–939.

    Article  PubMed  CAS  Google Scholar 

  58. Davis EA, Pruitt SK, Greene PS, et al. (1996) Inhibition of complement, evoked antibody, and cellular response prevents rejection of pig-to-primate cardiac xenografts. Transplantation 1996; 62: 1018–1023.

    Article  Google Scholar 

  59. Schmoeckel M, Nollert G, Shahmohammadi M, et al. Transgenic human decay accelerating factor makes normal pigs function as a concordant species. J Heart Lung Transplant 1997; 16: 758–764.

    PubMed  CAS  Google Scholar 

  60. Tucker, A.W., Carrington, C.A., Richards, A.C., Robson, S.C., and White, D. (1997) Endothelial cells from human decay acceleration factor transgenic pigs are protected against complement mediated tissue factor expression in vitro. Transplant Proc 29.

    Google Scholar 

  61. White DJG, Schmoeckel M, Cozzi E, Chavez G, Langford G. Genetic engineering of pigs for xenogeneic heart transplantation [French]. Biodrugs1997; 8: 33–36.

    Google Scholar 

  62. Cozzi E, Tucker AW, Langford GA, et al. Characterization of pigs transgenic for human decay-accelerating factor. Transplantation 1997; 64: 1383–1392.

    Article  PubMed  CAS  Google Scholar 

  63. Zaidi A, Schmoeckel M, Bhatti F, et al. (1998) Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 1997; 65: 1584–1590.

    Article  Google Scholar 

  64. Schmoeckel M, Bhatti FNK, Zaidi A, et al. Orthotopic heart transplantation in a transgenic pig-to-primate model. Transplantation 1998; 65: 1570–1577.

    Article  PubMed  CAS  Google Scholar 

  65. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling N Engl J Med 1994; 330: 1431–1438.

    CAS  Google Scholar 

  66. Colvin M, Hilton J. Pharmacology of cyclophosphamide and metabolites. Cancer Treatment Reports 1981; 65: 89–95.

    PubMed  CAS  Google Scholar 

  67. Starzl TE, Boehmig HJ, Amemiya H, et al. Clotting changes, including disseminated intravascular coagulation, during rapid renal-homograft rejection. N Engl J Med 1970; 283: 383–390.

    Article  PubMed  CAS  Google Scholar 

  68. Starzl TE, Lerner RA, Dixon FJ, Groth CG, Brettschneider L, Terasaki PI. Shwartzman reaction after human renal homotransplantation. N Engl J Med 1968; 278: 642–648.

    Article  PubMed  CAS  Google Scholar 

  69. Saadi S, Platt JL. Transient perturbation of endothelial integrity induced by natural antibodies and complement. J Exper Med 1995; 181: 21–31.

    Article  CAS  Google Scholar 

  70. Palmetshofer A, Galili U, Dalmasso AP, Robson SC, Bach FH. Alpha-galactosyl epitope-mediated activation of porcine aortic endothelial cells–type II activation. Transplantation 1998; 65: 971–978.

    Article  PubMed  CAS  Google Scholar 

  71. Palmetshofer A, Galili U, Dalmasso AP, Robson SC, Bach FH. Alpha-galactosyl epitope-mediated activation of porcine aortic endothelial cells–type I activation. Transplantation 1998; 65: 844–853.

    Article  PubMed  CAS  Google Scholar 

  72. Palmetshofer A, Robson SC, Bach FH. Tyrosine phosphorylation following lectin mediated endothelial cell stimulation. Xenotransplantation1998; 5: 61–66.

    Google Scholar 

  73. Gritsch HA, Glaser RM, Emery DW, et al. The importance of nonimmune factors in reconstitution by discordant xenogeneic hematopoietic cells. Transplantation 1994; 57: 906–917.

    Article  PubMed  CAS  Google Scholar 

  74. Kawai T, Cosimi AB, Colvin RB, et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 1995; 59: 256–262.

    PubMed  CAS  Google Scholar 

  75. Latinne D, Vitiello DM, Sachs DH, Sykes M. Tolerance to discordant xenografts. 1. Sharing of human natural antibody determinants on miniature swine bone marrow cells and endothelial cells. Transplantation 1994; 57: 238–245.

    Article  PubMed  CAS  Google Scholar 

  76. Wada H, Kaneko T, Ohiwa M, et al. Increased levels of vascular endothelial cell markers in thrombotic thrombocytopenic purpura. Am J Hematol 1993; 44: 101–105.

    Article  PubMed  CAS  Google Scholar 

  77. Takahashi H, Tatewaki W, Nakamura T, Hanano M, Wada K, Shibata A. Coagulation studies in thrombotic thrombocytopenic purpura, with special reference to von Willebrand factor and protein S. Am J Hematol 1989;30:14#-321.

    Google Scholar 

  78. Furlan M, Robles R, Solenthaler M, Wassmer M, Sandoz P, Lammle B. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood 1997; 89: 3097–3103.

    PubMed  CAS  Google Scholar 

  79. Sarode R, Mcfarland JG, Flomenberg N, et al. (1995) Therapeutic plasma exchange does not appear to be effective in the management of thrombotic thrombocytopenic purpura hemolytic uremic syndrome following bone marrow transplantation. Bone Marrow Transplant 1995; 16: 271–275.

    Google Scholar 

  80. Wassmann B, Martin H, Elsner S, Bruecher J, Thaiss F, Stahl R, Hoelzer D. (1994) Microangiopathic hemolytic anemia and renal impairment following autologous bone marrow transplantation–a case of hemolytic uremic syndrome. Bone Marrow Transplant 1994; 14: 849–851.

    Google Scholar 

  81. Pucci G, Martino M, Morabito F, et al. Thrombotic thrombocytopenic purpura–a rare late complication of allogeneic bone marrow transplantation. Haematologica 1994; 79: 371–373.

    PubMed  CAS  Google Scholar 

  82. Platt JL, Vercellotti GM, Lindman BJ, Oegema TJ, Bach FH, Dalmasso AP. (1990) Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacute rejection. J Exp Med 1990; 171: 1363–1368.

    Article  Google Scholar 

  83. Robson SC, Kopp C. Disordered thromboregulation in discordant xenograft rejection. Life Science 1996; 6: 34–38.

    Google Scholar 

  84. Lawson JH, Platt JL. (1996) Molecular barriers to xenotransplantation. Transplantation 1996; 62: 303–310.

    Article  Google Scholar 

  85. Kopp CW, Robson SC, Siegel JB, et al. Regulation of monocyte tissue factor activity by allogeneic and xenogeneic endothelial cells. ThrombHaemost 1998; 79: 529–538.

    PubMed  CAS  Google Scholar 

  86. Grey ST, Hancock WW. A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein C by human mononuclear phagocytes. J Immunol 1996; 156: 2256–2263.

    PubMed  CAS  Google Scholar 

  87. Siegel JB, Grey ST, Lesnikoski BA, et al. Xenogeneic endothelial cells activate human prothrombin. Transplantation 1997; 64: 888–896.

    Article  PubMed  CAS  Google Scholar 

  88. Lawson JH, Daniels LJ, Platt JL. The evaluation of thrombomodulin activity in porcine to human xenotransplantation. Transplant Proc 1997; 29: 884–885.

    Article  PubMed  CAS  Google Scholar 

  89. Jurd KM, Gibbs RV, Hunt BJ. Activation of human prothrombin by porcine aortic endothelial cells–a potential barrier to pig to human xenotransplantation. Blood Coagul Fibrinolysis 1996; 7: 336–343.

    Article  PubMed  CAS  Google Scholar 

  90. Van’t Veer C, Golden NJ, Kalafatis M, Mann KG. (1997) Inhibitory mechanism of the protein C pathway on tissue factor-induced thrombin generation–synergistic effect in combination with tissue factor pathway inhibitor. J Biol Chem 1997; 272: 7983–7994.

    Google Scholar 

  91. Van’ t Veer C. Mann KG. Regulation of tissue factor initiated thrombin generation by the stoichiometric inhibitors tissue factor pathway inhibitor, antithrombin-III, and heparin cofactor-II. J Biol Chem 1997; 272: 4367–4377.

    Article  Google Scholar 

  92. Van’t Veer C, Hackeng TM, Delahaye C, Sixma JJ, Bouma BN. Activated factor X and thrombin formation triggered by tissue factor on endothelial cell matrix in a flow model: effect of the tissue factor pathway inhibitor. Blood 1994; 84: 1132–1142.

    Google Scholar 

  93. Anrather D, Milian MT, Palmetshofer A, et al. Thrombin activates nuclear factor-kappa- B and potentiates endothelial cell activation by TNF. J Immunol 1997; 159: 5620–5628.

    PubMed  CAS  Google Scholar 

  94. Robson SC, Siegel JB, Lesnikoski BA, et al. Aggregation of human platelets induced by porcine endothelial cells is dependent upon both activation of complement and thrombin generation. Xenotransplantation 1996; 3: 24–34.

    Article  Google Scholar 

  95. Bajzar L, Nesheim M, Morser J, Tracy PB. Both cellular and soluble forms of thrombomodulin inhibit fibrinolysis by potentiating the activation of thrombinactivable fibrinolysis inhibitor. J Biol Chem 1998; 273: 2792–2798.

    Article  PubMed  CAS  Google Scholar 

  96. Kokame K, Zheng XL, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem 1998; 273:12, 135–12, 139.

    Google Scholar 

  97. Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 1995; 270:14, 477–14, 484.

    Google Scholar 

  98. Fay WP, Murphy JG, Owen WG. High concentrations of active plasminogen activator inhibitor-1 in porcine coronary artery thrombi. Arterioscler Thromb Vasc Biol 1996; 16: 1277–1284.

    Article  PubMed  CAS  Google Scholar 

  99. Debrock S, Declerck Pi. Identification of a functional epitope in plasminogen activator inhibitor-1, not localized in the reactive center loop. Thromb Haemost 1998; 79: 597–601.

    PubMed  CAS  Google Scholar 

  100. Bijnens AP, Knockaert I, Cousin E, Kruithof EK, Declerck PJ. Expression and characterization of recombinant porcine plasminogen activator inhibitor-1 [published erratum appears in Thromb Haemost 1997 May;77(5):1046]. Thromb Haemost 1997; 77: 350–356.

    PubMed  CAS  Google Scholar 

  101. Kalady MF, Lawson JH, Sorrell RD, Platt JL. Decreased fibrinolytic activity in porcine-to-primate cardiac xenotransplantation. Mol Med 1998; 4: 629–637.

    PubMed  CAS  Google Scholar 

  102. Robson SC, Kopp C, Lesnikoski E. Platelets in xenograft rejection. Xeno 1994; 2: 38–46.

    Google Scholar 

  103. Peerschke EIB, Reid KBM, Ghebrehiwet B. Platelet activation by Clq results in the induction of ŒII/ßI11 integrins and the expression of P-selectin and procoagulant activity. J Exp Med 1993; 178: 579–587.

    Article  PubMed  CAS  Google Scholar 

  104. Amirkhosravi, A., Alexander, M., May, K., et al. The importance of platelets in the expression of monocyte tissue factor antigen measured by a new whole blood flow cytometric assay. Thromb Haemost 1996; 75: 87–95.

    PubMed  CAS  Google Scholar 

  105. Robson SC, Schulte am Esch II J, Bach FH. Factors in xenograft rejection. Ann N Y Acad Sci Bioartificial Organs II. 875: 261–276.

    Google Scholar 

  106. Pareti FI, Mazzucato M, Bottini E, Mannucci PM. Interaction of porcine von Willebrand factor with the platelet glycoproteins Ib and IIb/IIIa complex. Brit J Haematol 1992; 82: 81–86.

    Article  CAS  Google Scholar 

  107. Mazzucato M, Demarco L, Pradella P, Masotti A, Pareti FI. Porcine von Willebrand factor binding to human platelet GPIb induces transmembrane calcium influx. Thromb Haemost 1996; 75: 655–660.

    PubMed  CAS  Google Scholar 

  108. Schulte am Esch II J, Siegel JB, Cruz M, Anrather J, Robson SC. The A 1 domain of von Willebrand factor expressed on cell membranes directly activates platelets. Blood 1997; 90: 4425–4437.

    Google Scholar 

  109. Kaczmarek E, Koziak K, Sevigny J, et al. Identification and characterization of CD39 vascular ATP diphosphohydrolase. J Biol Chem 1996; 271:33, 116–33, 122.

    Google Scholar 

  110. Von Albertini M, Palmetshofer A, Kaczmarek E, et al. Extracellular ATP and ADP activate transcription factor NF-kappa-B and induce endothelial cell apoptosis. Biochem Biophys Res Commun 1998; 248: 822–829.

    Article  Google Scholar 

  111. Vandammieras M, Muller AD, Vanhinsbergh V, Mullers W, Bomans P, Bruggeman CA. The procoagulant response of cytomegalovirus infected endothelial cells. Thromb Haemost 1992; 68: 364–370.

    CAS  Google Scholar 

  112. Li C, Fung LS, Chung S, et al. Monoclonal antiprothrombinase (3D4.3) prevents mortality from murine hepatitis virus (MHV-3) infection. J Exp Med 1992; 176: 689–697.

    Article  PubMed  CAS  Google Scholar 

  113. Altieri DC, Etingin OR, Fair DS, et al. Structurally homologous ligand binding of integrin Mac-1 and viral glycoprotein-C receptors. Science 1991; 254: 1200–1202.

    Article  PubMed  CAS  Google Scholar 

  114. Etingin OR, Silverstein RL, Hajjar DP. (1993) Von Willebrand factor mediates platelet adhesion to virally infected endothelial cells. Proc Nat Acad Sci USA 1993; 90: 5153–5156.

    Article  Google Scholar 

  115. Etingin OR, Silverstein RL, Hajjar DP. Identification of a monocyte receptor on herpes virus-infected endothelial cells. Proc Nat Acad Sci USA 1991; 88: 7200–7203.

    Article  PubMed  CAS  Google Scholar 

  116. Rother RP, Fodor WL, Springhorn JP, et al. (1995) A novel mechanism of retrovirus inactivation in human serum mediated by anti-alpha-galactosyl natural antibody. J Exp Med 1995; 182: 1345–1355.

    Article  Google Scholar 

  117. Michaels MG. Infectious concerns of cross-species transplantation–xenozoonoses. World J Surg 1997; 21: 968–974.

    Article  PubMed  CAS  Google Scholar 

  118. Chapman LE, Folks TM, Salomon DR, Patterson AP, Eggerman TE, Noguchi PD. (Xenotransplantation and xenogeneic infections. N Engl J Med 1995; 333: 1498–1501.

    Article  PubMed  CAS  Google Scholar 

  119. Thorley BR, Milland J, Christiansen D., et al. Transgenic expression of a CD46 (membrane cofactor protein) minigene–studies of xenotransplantation and measles virus infection. Eur J Immunol 1997; 27: 726–734.

    Article  PubMed  CAS  Google Scholar 

  120. Mazure G, Grundy JE, Nygard G, et al. Measles virus induction of human endothelial cell tissue factor procoagulant activity in vitro. J Gen Virol 1994; 75: 2863–2871.

    Article  PubMed  CAS  Google Scholar 

  121. Akiyoshi DE, Denaro M, Zhu HH, Greenstein JL, Banerjee P, Fishman JA. Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J Virol 1998; 72: 4503–4507.

    PubMed  CAS  Google Scholar 

  122. Wilson CA, Wong S, Muller J, Davidson CE, Rose TM, Burd P. (1998) Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 1998; 72: 3082–3087.

    Google Scholar 

  123. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997; 3: 282–286.

    Article  PubMed  CAS  Google Scholar 

  124. Toulon P, Lamine M, Ledjev I, Guez T, Holleman ME, Sereni D, Sicard D. Heparin cofactor-II deficiency in patients infected with the human immunodeficiency virus. Thromb Haemost 1993; 70: 730–735.

    PubMed  CAS  Google Scholar 

  125. Sutherland MR, Raynor CM, Leenknegt H, Wright JF, Pryzdial EL. (1997) Coagulation initiated on herpesviruses. Proc Nat Acad Sci USA 1997; 94:13, 510–13, 514.

    Google Scholar 

  126. Pryzdial EL, Wright JF. (1994) Prothrombinase assembly on an enveloped virus: evidence that the cytomegalovirus surface contains procoagulant phospholipid. Blood 1994; 84: 3749–3757.

    Google Scholar 

  127. Kopp CW, Grey ST, Siegel JB, et al. Expression of human thrombomodulin cofactor activity in porcine endothelial cells. Transplantation 1998; 66: 244–251.

    Article  PubMed  CAS  Google Scholar 

  128. Hayashi H, Lee RS, Germana S, et al. Retroviral vectors for long-term expression of allogeneic major histocompatibility complex transduced into syngeneic bone marrow cells. Transplan Proc 1995; 27: 178–179.

    CAS  Google Scholar 

  129. Francesconi M, Casonato A, Pagan S, et al. Inhibitory effect of prostacyclin and nitroprusside on type lib von willebrand factor—promoted platelet activation. Thromb Haemost 1996; 76: 469–474.

    PubMed  CAS  Google Scholar 

  130. Meyer C, Wolf P, Romain N, et al. Use of von Willebrand diseased kidney as donor in a pig-to-primate model of xenotransplantation. Transplantation 1999; 67: 38–45.

    Article  PubMed  CAS  Google Scholar 

  131. Buhler L, Basker M, Always, IPJ, et al. Coagulation and thrombotic disorders associated with pig organ and hematopoietic cell transplantation in nonhuman primates. Transplantation 2000; 70: 1323–1331.

    Article  PubMed  CAS  Google Scholar 

  132. Buhler L, Goepfert C, Kitamura H, et al. Porcine hematopoietic cell xenotransplantation in nonhuman primates is complicated by thrombotic microangiopathy. Bone Marrow Transplant 2001; 27: 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  133. Alwayn IPJ, Buhler L, Appel JZ, et al. Mechanisms of thrombotic microangiopathy following xenogeneic hematopoietic progenitor cell transplantation. Transplantation 2000; 71: 1601–1609.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robson, S.C. (2002). Disordered Regulation of Coagulation and Platelet Activation in Xenotransplantation. In: Platt, J.L. (eds) Xenotransplantation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-166-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-166-4_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-127-1

  • Online ISBN: 978-1-59259-166-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics