Skip to main content

Antibody-Dependent Effects on Cellular Immunity

  • Chapter
Xenotransplantation

Abstract

Transplantation of tissues or organs between different species is referred to as Xenotransplantation. Combinations of donor and recipient species in which a xenograft is rapidly lost due to hyperacute rejection (HAR) are operationally defined as “discordant,” whereas combinations in which HAR does not occur are called “concordant.” HAR is initiated by binding of xenogeneic natural antibodies (XNA) to the vascular endothelial cells (VEC) of the implanted discordant xenogeneic organ. The presence of XNA in the recipient therefore defines a discordant species combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arase H, Arase N, Saito T. Fas-mediated cytotoxicity by freshly isolated natural killer cells. J Exp Med 1995; 181: 1235–1238.

    Article  PubMed  CAS  Google Scholar 

  2. Azimzadeh A, Meyer C, Watier H, et al. Removal of primate xenoreactive natural antibodies by extracorporeal perfusion of pig kidneys and livers. Transpl Immunol 1998; 6: 13–22.

    Article  PubMed  CAS  Google Scholar 

  3. Baquerizo A, Mhoyan A, Kearns-Jonker M, et al. Characterization of human xenoreactive antibodies in liver failure patients exposed to pig hepatocytes after bioartificial liver treatment. An ex vivo model of pig to human transplantation. Transplantation 1999; 67: 5–18.

    Article  PubMed  CAS  Google Scholar 

  4. Benda B, Karlsson-Parra A, Ridderstad A, Korsgren O. Xenograft rejection of porcine islet-like cell clusters in immunoglobulin-or Fc-receptor 7-deficient mice. Transplantation 1996; 62: 1207–1211.

    Article  PubMed  CAS  Google Scholar 

  5. Blakely ML, Van der Werf WJ, Berndt MC, Dalmasso AP, Bach FH, Hancock WW. Activation of intragraft endothelial and mononuclear cells during discordant xenograft rejection. Transplantation 1994; 58: 1059–1066.

    PubMed  CAS  Google Scholar 

  6. Cooke SP, Pearson JD, Savage CO. Human IgG xenoreactive antibodies mediate damage to porcine endothelial cells in vitro by both humoral and cellular mechanisms. Transpl Immunol 1997; 5: 39–44.

    Article  PubMed  CAS  Google Scholar 

  7. Cooper DKC, Koren E, Oriol R. Oligosaccharides and discordant xenotransplantation. Immunol Rev 1994; 141: 31–58.

    Article  PubMed  CAS  Google Scholar 

  8. Cooper DKC, Thall AD. Xenoantigens and xenoantibodies: their modification. World J Surg 1997; 21: 901–906.

    Article  PubMed  CAS  Google Scholar 

  9. Cotterell AH, Collins BH, Parker W, Harland RC, Platt JL. The humoral immune response in humans following cross-perfusion of porcine organs. Transplantation 1995; 60: 861–868.

    PubMed  CAS  Google Scholar 

  10. Cramer DV, Wu GD. The humoral response to xenografts. Xeno 1996; 4: 30.

    Google Scholar 

  11. Daeron M. Fc receptor biology. Ann Rev Immunol 1997; 15: 203–234.

    Article  CAS  Google Scholar 

  12. Dalmasso AP, Vercellotti GM, Platt JL, Bach FH. Inhibition of complement-mediated endothelial cell cytotoxicity by decay accelerating factor potential prevention of xenograft hyperacute rejection. Transplantation 1991; 52: 530–533.

    Article  PubMed  CAS  Google Scholar 

  13. Dalmasso AP. The complement system in xenotransplantation. Immunopharmacology. 1992; 24: 149–160.

    Article  PubMed  CAS  Google Scholar 

  14. Daniels BF, Nakamura MC, Rosen S, Yokoama WM, Seaman WE. Ly-49A, a receptor for H-2Dd, has a functional carbohydrate recognition domain. Immunity 1994; 1: 785–792.

    Article  PubMed  CAS  Google Scholar 

  15. Drickamer C, Taylor ME. Biology of animal lectins. Annu Rev Cell Biol 1993; 9: 237–264.

    Article  PubMed  CAS  Google Scholar 

  16. Freyer JP, Leventhal JR, Dalmasso AP, Chen S, Simone PA, Jessurun J, Sun LH, Reinsmoen NL, Matas AJ. Cellular rejection in discordant xenografts when hyper-acute rejection is prevented: analysis using adoptive and passive transfer. Transpl Immunol 1994; 2: 87–93.

    Article  Google Scholar 

  17. Fryer JP, Leventhal JR, Dalmasso AP, et al. Beyond hyperacute rejection. Accelerated rejection in discordant xenograft model by adoptive transfer of specific cell subsets. Transplantation 1995; 59: 171–176.

    PubMed  CAS  Google Scholar 

  18. Fujiwara I, Nakajima H, Matsuda T, Mizuta N, Yamagishi H, Oka T. Fas and Fas Ligand in discordant xenogeneic Antibody-Dependent Cell-Mediated Cytotoxicity. Transplant Proc 1998; 30: 2488–2490.

    Article  PubMed  CAS  Google Scholar 

  19. Fujiwara I, Nakajima H, Matsuda T, Mizuta N, Oka T. The molecular mechanism of apoptosis induced by xenogeneic cytotoxicity. Xenotransplantation 1998; 5: 50–56.

    Article  PubMed  CAS  Google Scholar 

  20. Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-agalactosyl specificity. J Exp Med 1984; 160: 1519–1531.

    Article  PubMed  CAS  Google Scholar 

  21. Galili U, Macher BA, Buehler L, Shohet SB. Human natural anti-a-galactosyl IgG. II. The specific recognition of a(1,3)-linked galactose residues. J Exp Med 1985; 162: 573–582.

    Article  PubMed  CAS  Google Scholar 

  22. Galili U, Buehler L, Sohet SB, Macher BA. The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by cross-reactivity between natural anti-Gal and anti-B antibodies. J Exp Med 1987; 165: 693–704.

    Article  PubMed  CAS  Google Scholar 

  23. Galili U, Mandrell RE, Hamadeh RM, Sochet SB, Griffiss JM. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun 1988; 57: 1730–1737.

    Google Scholar 

  24. Galili U, Swanson K. Gene sequences suggest inactivation of a1,3galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci USA 1991; 88: 7401–7404.

    Article  PubMed  CAS  Google Scholar 

  25. Galili U. Interaction of natural anti-Gal antibody with a-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 1993; 14: 480–482.

    Article  PubMed  CAS  Google Scholar 

  26. Galili U, Tibell A, Samuelsson B, Rydbcrg L, Groth CG. Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell cl;ister. Transplantation 1995; 59: 1549–1556.

    PubMed  CAS  Google Scholar 

  27. Galili U. Minonov OP, Michler RE, Stone KR. High-affinity anti-Gal immunoglobulin G in chronic rejection of xenografts. Xenotransplantatio.i 1997; 4: 127–131.

    Article  Google Scholar 

  28. Galili U, La Temple DC, Walgenbach AW, Stone KR. Porcine and bovine cartilage transplants in cynomolgus monkey: II. Changes in anti-Gal response during chronic rejection. Transplantation 1997; 63: 646–651.

    Article  PubMed  CAS  Google Scholar 

  29. Galili U. Significance of Anti-Gal in Chronic Xenograft Rejection. Transpl Proc 1999; 31: 940–941.

    Article  CAS  Google Scholar 

  30. Good AH, Cooper DKC, Malcom Ai, et al. Identification of carbohydrate structure that bind human anti-porcine antibodies: implications for discordant xenografting in humans. Transpl Proc 1992; 24: 559–562.

    CAS  Google Scholar 

  31. Goodman DJ, von Albertini M, Willson A, Milian MT, Bach FH. Direct activation of porcine endothelial cells by human natural killer cells. Transplantation 1996 15; 61: 763–771.

    Article  Google Scholar 

  32. Goodman DJ, Milian MT, Ferran C, Bach FH. Mechanism of delayed xenograft rejection. In: Kemp E, Reemtsa K, White D, Platt JL eds. Xenotransplantation, Berlin Heidelberg: Springer-Verlag, 1997: 77–94.

    Chapter  Google Scholar 

  33. Hamelmann W, Gray DWR, Cairns TDJ, et al. Immediate destruction of xenogeneic islets in a primate model. Transplantation 1994; 58: 1109–1114.

    PubMed  CAS  Google Scholar 

  34. Hammarstrom L, Smith CIE. IgG subclasses in bacterial infections. Monogr Allergy 1986; 19: 122–133.

    PubMed  CAS  Google Scholar 

  35. Henkart PA, Williams MS, Zacharchuk CM, Sarin A. Do CTL kill target cells by inducing apoptosis? Semin Immunol 1997; 9: 135–144.

    Article  PubMed  CAS  Google Scholar 

  36. Houchins JP, Yabe T, McSherry C, Bach FH. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 1991; 173: 1017–1020.

    Article  PubMed  CAS  Google Scholar 

  37. Inverardi L, Samaja M, Motterlini R, Mangili F, Bender JR, Pardi R. Early recognition of discordant xenogeneic organ by human circulating lymphocytes. J Immunol 1992; 149: 1416–1423.

    PubMed  CAS  Google Scholar 

  38. Inverardi L, Samaja M, Marelli F, Bemder JR, Pardi R. Cellular early immune recognition of xenogeneic vascular endothelium. Transplant Proc 1992; 24: 459–461.

    PubMed  CAS  Google Scholar 

  39. Inverardi L, Pardi R. Early events in cell-mediated recognition of vascularized xenografts: cooperative interactions between selected lymphocytes subsets and natural antibodies. Immunol Rev 1994; 141: 71–93.

    Article  PubMed  CAS  Google Scholar 

  40. Inverardi L, Ricordi C. Transplantation of pancreas and islets of Langerhans. A review of progress. Immunol Today 1996; 17: 7–9.

    Article  PubMed  CAS  Google Scholar 

  41. Inverardi L, Clissi B, Stolzer AL, Bender JR, Sandrin MS, Pardi R Human natural killer lymphocytes directly recognize evolutionarily conserved oligosaccharide ligands expressed by xenogeneic tissues. Transplantation 1997; 63 (9): 1318–1330.

    Article  PubMed  CAS  Google Scholar 

  42. Inverardi L, Clissi B, Pardi R. Xenorecognition by NK cells and natural antibodies: a common evolutionary pathway? Xeno 1997; 5: 9–11.

    Google Scholar 

  43. Kagi D, Ledermann B, Burki K, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369: 31–37.

    Article  PubMed  CAS  Google Scholar 

  44. Kozlowski T, Ierino FL, Lambrigts D, et al. Depletion of anti-Gal(alpha)l-3Gal antibody in baboon by specific alpha-Gal immunoaffinity columns. Xenotransplantation 1998; 5: 122–131.

    Article  PubMed  CAS  Google Scholar 

  45. Kozlowsky T, Shimizu A, Lambrigts D, et al. Porcine kidney and heart transplantation in baboons undergoing a tolerance induction regimen and antibody absorption. Transplantation 1999; 67: 18–30.

    Article  Google Scholar 

  46. Kroshus TJ, Bolman RM 3rd, Dalmasso AP. Selective IgM depletion prolongs organ survival in an ex vivo model of pig to human xenotransplantation. Transplantation 1996; 62: 5–12.

    Article  PubMed  CAS  Google Scholar 

  47. Kujundzic M, Koren E, Neethlig FA, et al. Variability of anti _-Gal antibodies in human serum and their relation to serum cytotoxicity against pig cells. Xenotransplantation 1994; 1: 58.

    Article  Google Scholar 

  48. Lambrigts D, Van Caster P, Xu Y, et al. Pharmacologic immunosuppressive therapy and extracorporeal immunoadsorption in the suppression of anti-alphaGal antibody in the baboon. Xenotransplantation 1998; 5: 274–283.

    Article  PubMed  CAS  Google Scholar 

  49. Lanier LL. NK cell receptors. Ann Rev Immunol 1998; 16: 359–393.

    Article  CAS  Google Scholar 

  50. Larsson LC, Czech KA, Winder H, Korsgren O. Discordant neural tissue xenografts survive longer in immunoglobulin deficient mice. Transplantation 1999; 68: 1153–1160.

    Article  PubMed  CAS  Google Scholar 

  51. Leibson PJ. Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 1997; 6: 655–661.

    Article  PubMed  CAS  Google Scholar 

  52. Leventhal JR, John R, Fryer JP, et al. Removal of baboon and human antiporcine IgG and IgM natural antibodies by immunoadsorption. Transplantation 1995; 59: 294–300.

    PubMed  CAS  Google Scholar 

  53. Lin Y, Vandeputte M, Waer M. Suppression of T-independent IgM xenoantibody formation by leflunomide during xenografting of hamster hearts in rats. Transplantation 1998; 65: 332–339.

    Article  PubMed  CAS  Google Scholar 

  54. Lin SS, Weidner BC, Byrne GW, et al. The role of antibodies in acute vascular rejection of pig to baboon cardiac transplants. J Clin Invest 1998; 101: 1745–1756.

    Article  PubMed  CAS  Google Scholar 

  55. Magee JC, Collins BH, Harland RC, et al. Immunoglobulin prevents complement-mediated hyperacute rejection in Swine-to- Primate Xenotransplantation. J Clin Invest 1995; 96: 2404–2412.

    Article  PubMed  CAS  Google Scholar 

  56. Manilay JO, Sykes M. Natural killer cells and their role in graft rejection. Curr Opin Immunol 1998; 10: 532–538.

    Article  PubMed  CAS  Google Scholar 

  57. McKenzie IFC, Koulmanda M, Mandel TE, Sandrin MS. Cutting edge: Pig islets are susceptible to “anti-pig” but not Gala(1,3)Gal antibodies plus complement in Gal o/ o mice. J Immunol 1998; 161: 5116–5119.

    PubMed  CAS  Google Scholar 

  58. Miletic VD, Frank MM. Complement-immunoglobulin interactions. Curr Opin Immunol 1995; 7: 41–47.

    Article  PubMed  CAS  Google Scholar 

  59. Mirenda V, Le Mauff B, Boeffard F, et al. Intact pancreatic islet function despite humoral xenorecognition in the pig-to-monkey combination. Transplantation 1998; 66: 1485–1495.

    Article  PubMed  CAS  Google Scholar 

  60. Morigi M, Zoja C, Colleoni S, et al. Xenogeneic serum promotes leukocyte adhesion to porcine endothelium under flow conditions, possibly through the activation of the transcription factor NF-kappa B. Xenotransplantation 1998; 5: 57–60.

    Article  PubMed  CAS  Google Scholar 

  61. Morigi M, Zoja C, Colleoni S, et al. Xenogeneic serum promotes leukocyte-endothelium interaction under flow through two temporally distinct pathways: role of complement and nuclear factor-kappa B. J Am Soc Nephrol 1999; 10: 2197–2207.

    PubMed  CAS  Google Scholar 

  62. Nakajima H, Henkart PA. Cytotoxic lymphocyte granzymes trigger a target cell internal disintegration pathway leading to cytolysis and DNA breakdown. J Immunol 1994; 152: 1057–1063.

    PubMed  CAS  Google Scholar 

  63. Oshimi Y, Oda S, Honda Y, Nagata S, Miyazaki S. Involvement of Fas ligand and Fas-mediated pathways in the cytotoxicity of human natural killer cells. J Immunol 1996; 157: 2909–2015.

    PubMed  CAS  Google Scholar 

  64. Palmetshofer A, Galili U, Dalmasso AP, Robson S, Bach FH. A-Galactosyl epitope mediated activation of porcine aortic endothelial cells. Type I activation. Transplantation 1998; 65: 844–853.

    Article  PubMed  CAS  Google Scholar 

  65. Palmetshofer A, Galili U, Dalmasso AP, Robson S, Bach FH. A-Galactosyl epitope mediated activation of porcine aortic endothelial cells. Type II activation. Transplantation 1998; 65: 971–978.

    Article  PubMed  CAS  Google Scholar 

  66. Parker W, Bruno O, Holzknecht ZE, Platt JL. Characterization and affinity isolation of xenoreactive human natural antibodies. J Immunol 1994; 153: 3791–3803.

    PubMed  CAS  Google Scholar 

  67. Parker W, Lundberg-Swanson KL, Holzknecht ZE, et al. Isohemagglutinins and xenoreactive antibodies: members of a distinct family of natural antibodies. Hum Immunol 1996; 45: 94–104.

    Article  PubMed  CAS  Google Scholar 

  68. Parker W, Yu PB, Holzknecht ZE, Lundberg-Swanson KL, Buckley RH, Platt JL. Specificity and function of “natural” antibodies in immunodeficient subjects: clues to B cell lineage and development. J Clin Immunol 1997; 17: 311–321.

    Article  PubMed  CAS  Google Scholar 

  69. Perussia B. Fc receptors on Natural Killer cells. In: Käne K, and Colonna M eds. Specificity, Function, and Development of NK Cells. Berlin-Heidelberg: Springer–Verlag, 1988: 63–88.

    Google Scholar 

  70. Pinola M, Renkonin R, Majuri ML, Tiisala S, Saksela E. Characterization of the E-selectin ligand on NK cells. J Immunol 1994; 152: 3586–3594.

    PubMed  CAS  Google Scholar 

  71. Pitre J, Moeller E, Satake M. Human xenoreactive natural antibodies against Gal(1–3) pig terminal residues are not produced by CD5+ B-lymphocytes. Transplant Proc 1996; 28: 545.

    PubMed  CAS  Google Scholar 

  72. Platt JL, Fichel RJ, Matas AJ, Sun LH, Bolman RM, Bach FH. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation 1991; 52: 214–220.

    Article  PubMed  CAS  Google Scholar 

  73. Platt JL, Vercellotti GM, Lindman BJ, Oegama TR, Bach FH, Dalmasso AP. Relase of heparan sulfate from endothelial cells. Implications for pathogenesis of hyper-acute rejection. J Exp Med 1990; 171: 1363–1368.

    Article  PubMed  CAS  Google Scholar 

  74. Pruitt SK, Baldwin WM 3d, Marsh HC Jr, Lin SS, Yeh CG, Bollinger RR. The effect of soluble complement receptor type 1 on hyperacute xenograft rejection. Transplantation 1991; 52: 868–873.

    Article  PubMed  CAS  Google Scholar 

  75. Ravindran B, Satapathy AK, Das MK. Naturally-occurring anti-a-galactosyl antibodies in human plasmodium falciparum infections: a possible role for autoantibodies in malaria. Immunol Lett 1988; 19: 137–141.

    Article  PubMed  CAS  Google Scholar 

  76. Sandrin M, Vaughan HA, Dabkowsky PL, McKenzie IFC. Anti pig IgM antibodies in human serum react predominantly with Gal al -3Gal epitopes. Proc Natl Acad Sci USA 1993; 90: 11391–11395.

    Article  PubMed  CAS  Google Scholar 

  77. Satake M, Kumagai-Braesch M, Korsgren O. Andersson A, Möller E. Characterization of humoral human anti-porcine xenoreactivity. Clin Transplantation 1993; 7: 281–288.

    Google Scholar 

  78. Satake M, Kawagishi N, Rydberg L, et al. Limited specificity of xenoantibodies in diabetic patients transplanted with fetal porcine islet cell clusters. Main antibody reactivity against a-linked galactose-containing epitopes. Xenotransplantation 1994; 1: 89–101.

    Article  Google Scholar 

  79. Shaaphender AFM, Wolvekamp MCJ, Te Bulte MTJW, Bouwman E, Gooszen HG, Daha MR. Porcine islet cells of Langerhans are destroyed by human complement and not by antibody-dependent cell-mediated mechanisms. Transplantation 1996; 62: 29–33.

    Article  Google Scholar 

  80. Söderlund J. Wennberg L. Castanos-Velez E, et al. Fetal porcine islet-like cell cluster transplanted to cynomolgus monkeys. Transplantation 1999: 67: 784–791.

    Article  PubMed  Google Scholar 

  81. Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47 187–374.

    Article  PubMed  CAS  Google Scholar 

  82. von Albertini M, Ferran C, Brostjan C, Bach FH, Goodman DJ. Membrane-associated lymphotoxin on natural killer cells activates endothelial cells via an NF-kappaBdependent pathway. Transplantation 1998; 66: 1211–1219.

    Article  Google Scholar 

  83. Yokoyama WM. Recognition structures on natural killer cells. Curr Opin Immunol 1993; 5: 67–73.

    Article  PubMed  CAS  Google Scholar 

  84. Yu PB, Parker W, Everett ML, Fox IJ, Platt JL. Immunochemical properties of antigala1–3Gal antibodies after sensitization with xenogeneic tissues. J Clin Immunol 1999; 19: 116–126.

    Article  PubMed  CAS  Google Scholar 

  85. Yu P, Holzknecht ZE, Bruno D, Parker W, Platt JH. Modulation of natural IgM binding and complement activation by natural IgG antibodies. A role for IgG antiGalal-3Gal antibodies. J Immunol 1996; 157: 5163–5168.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pileggi, A., Molano, R.D., Berney, T., Inverardi, L. (2002). Antibody-Dependent Effects on Cellular Immunity. In: Platt, J.L. (eds) Xenotransplantation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-166-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-166-4_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-127-1

  • Online ISBN: 978-1-59259-166-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics