Skip to main content

NMDA Antagonist-Induced Neurotoxicity and Psychosis

The Dissociative Stimulation Hypothesis

  • Chapter
Handbook of Neurotoxicology
  • 175 Accesses

Abstract

There has been much research on N-methyl-D-aspartate (NMDA) antagonists since they were first discovered in mid-part of the 20th century. Initially, it was hoped that that some noncompetitive NMDA antagonists (the most common being ketamine, phencyclidine [PCP], and, more recently, MK-801) could be utilized as a new class of anesthetics with quick onset, short duration, and surprisingly good preservation of brainstem reflexes (1). Unfortunately, while these drugs induced an anesthetic state, they concomitantly induced certain aspects of arousal and even seizures (2–4).This finding correlated quite well with these drug’s ability to selectively depress neocortical areas while stimulating limbic areas as measured by the electroencephalogram (EEG) (3,4).To reflect this paradoxical ability to both inhibit and excite, these types of drugs were placed in their own drug class named dissociative anesthetics (4,5). Another unfortunate property of NMDA antagonists included the ability to induce a model psychosis almost indistinguishable from schizophrenia (for an excellent review, see Jentsch and Roth [6]).As ketamine and PCP developed as drugs of abuse, this psychosis became familiar in emergency rooms across the country (7). After further research, it became apparent that this class of drugs possessed the ability to produce both positive and negative symptoms of schizophrenia, which has made it one of the most widely accepted animal models for this disease (6). This made NMDA antagonists a more complete animal model than dopamine agonists, the only other class of psychotomimetic drugs that induce only the positive symptoms of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corssen, G., Groves, E., and Gomez, S. (1969) Ketamine: its place in anesthesia for neurosurgical diagnostic procedures. Anesth. Analg. 48, 181–188.

    PubMed  CAS  Google Scholar 

  2. Bennett, D., Madsen, J., Jordan, W., and Wiser, W. (1973) Ketamine anesthesia in brain-damaged epileptics: Electroencephalographic and clinical observations. Neurology 23 (5), 449–460.

    PubMed  CAS  Google Scholar 

  3. Corssen, G., Miyasaka, M., and Domino, E. (1968) Changing concepts in pain control during surgery: dissociative anesthesia with CI-581. a progress report. Anesth. Analg. 47, 746–759.

    PubMed  CAS  Google Scholar 

  4. Kayama, Y. and Iwama, K. (1972) The EEG, evoked potentials, and single unit activity during ketamine anesthesia in the cat. Anesthesiology 36, 316–328.

    PubMed  CAS  Google Scholar 

  5. Myasaka, M. and Domino, E. (1968) Neuronal mechanisms of ketamine induced anesthesia. Int. J. Neuropharmacol. 7, 557–573.

    Google Scholar 

  6. Jentsch, J. D. and Roth, R. H. (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20 (3), 201–225.

    PubMed  CAS  Google Scholar 

  7. Siegel, R. (1978) Phencyclidine and ketamine intoxication: a study of four populations of recreational users. NIDA Res. Monograph 21, 119–147.

    Google Scholar 

  8. Olney, J. (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J. Neuropathol. Exp. Neurol. 30, 75–90.

    PubMed  CAS  Google Scholar 

  9. Choi, D. (1992) Excitotoxic cell death. J. Neurobiol. 23 (9), 1261–1276.

    PubMed  CAS  Google Scholar 

  10. Olney, J. (1985) Excitatory transmitters and epilepsy-related brain damage. Int. Rev. Neurobiol. 27, 337–362.

    PubMed  CAS  Google Scholar 

  11. Olney, J. (1993) Role of excitotoxins in developmental neuropathology. APMIS 40 (Suppl. 1), 103–112.

    CAS  Google Scholar 

  12. Olney, J., Labruyere, J., and Price, M. (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244 (4910), 1360–1362.

    PubMed  CAS  Google Scholar 

  13. Moghaddam, B., Adams, B., Verma, A., and Daly, D. (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17 (8), 2921–2927.

    PubMed  CAS  Google Scholar 

  14. Adams, B. and Moghaddam, B. (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J. Neurosci. 18 (14), 5545–5554.

    PubMed  CAS  Google Scholar 

  15. Bustos, G., Abarca, J., Forray, M., Gysling, K., Bradberry, C., and Roth, R. (1992) Regulation of excitatory amino acid release by N-methyl-D-asparate receptors in rat striatum: in vivo microdialysis studies. Brain Res. 585, 105–115.

    PubMed  CAS  Google Scholar 

  16. Noguchi, K. and Ellison, G. unpublished results

    Google Scholar 

  17. Liu, J. and Moghaddam, B. (1995) Regulation of glutamate efflux by excitatory amino acid receptors: evidence for tonic inhibitory and phasic excitatory regulation. J. Pharmacol. Exp. Ther. 274 (3), 1209–1215.

    PubMed  CAS  Google Scholar 

  18. Domesick, V. (1969) Projections from the cingulate cortex in the rat. Brain Res. 12, 296–320.

    PubMed  CAS  Google Scholar 

  19. Corso, T., Sesma, M., Tenkova, T., Der, T., Wozniak, D., Farber, N., and Olney, J. (1997) Multifocal brain damage induced by phencyclidine is augmented by pilocarpine. Brain Res. 752, 1–14.

    PubMed  CAS  Google Scholar 

  20. Ellison, G. (1995) The N-methyl-D-aspartate antagonists phencyclidine, ketamine, and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res. Brain Res. Rev. 20, 250–267.

    PubMed  CAS  Google Scholar 

  21. Wozniak, D. F., Dikranian, K., Ishimaru, M. J., Nardi, A., Corso, T., Tenkova, T., Olney, J. W., and Fix, A. S. (1998) Disseminated corticolimbic neuronal degeneration induced in rat brain by MK-801: potential relevance to Alzheimer’s Disease. Neurobiol. Diss. 5, 305–322.

    CAS  Google Scholar 

  22. Gass, P., Prior, P., and Kiessling, M. (1995) Correlation between seizure intensity and stress protien expression after limbic epilepsy in the rat brain. Neuroscience 65 (1), 27–36.

    PubMed  CAS  Google Scholar 

  23. Wasterlain, C., Fujikawa, D., LaRoy, P., and Sankar, R. (1993) Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 34 (Suppl. 1), S37 - S53.

    PubMed  Google Scholar 

  24. Olney, J., Collins, R., and Sloviter, R. (1986) Excitotoxic mechanisms of epileptic brain damage. Adv. Neurol. 44, 857–877.

    PubMed  CAS  Google Scholar 

  25. O’Shaughnessy, D. and Gerber, G. (1986) Damage induced by systemic kainic acid in rats is dependent upon seizure activity-A behavioral and morphological study. Neurotoxicology 7 (3), 187–202.

    PubMed  Google Scholar 

  26. Nunn, J. and Jarrard, L. (1994) Silver impregnation reveals neuronal damage in cingulate cortex following 4 VO ischaemia in the rat. NeuroReport 5, 2363–2366.

    PubMed  CAS  Google Scholar 

  27. Horvath, Z. C., Czopf, J., and Buzsaki, G. (1997) MK-801-induced neuronal damage in rats. Brain Res. 753 (2), 181–195.

    PubMed  CAS  Google Scholar 

  28. Tomitaka, S., Tomitaka, M., Tolliver, B., and Sharp, F. (2000) Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK-801) injures pyramidal neurons in the rat retrosplenial cortex. Eur. J. Neurosci. 12, 1420–1430.

    PubMed  CAS  Google Scholar 

  29. Brown, J. and Nijjar, M. (1995) The release of glutamate and aspartate from rat brain synaptosomes in response to domoic acid (amnesic shellfish toxin) and kainic acid. Mol. Cell Biochem. 151, 49–54.

    PubMed  CAS  Google Scholar 

  30. Frandsen, A. and Schousboe, A. (1993) Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J. Neurochem. 60 (4), 1202–1211.

    PubMed  CAS  Google Scholar 

  31. Shinozaki, H. (1994) Neuron damage induced by some potent kainoids and neuroprotective action of new agonists for metabotropic glutamate receptors. Eur. Neurol. 34 (Suppl. 3), 2–9.

    Google Scholar 

  32. Finch, D. M., Derian, E., and Babb, T. (1984) Afferent fibers to rat cingulate cortex. Exp. Neurol. 83, 468–485.

    PubMed  CAS  Google Scholar 

  33. Wyss, J. and Van Groen, T. (1992) Connections between the retrosplenial cortex and the hippocampal formation in the rat: a review. Hippocampus 2 (1), 1–11.

    PubMed  CAS  Google Scholar 

  34. Wieser, H. (1983) Electroclinical Features of the Psychomotor Seizure: A Stereoelectroencephalographic Study of Ictal Symptoms and Chronotopographical Seizure Patterns Including Clinical Effects oflntracerebral Stimulation. Gustav Fischer Verlag: New York, pp. 193–196.

    Google Scholar 

  35. Auer, R. (1994) Assessing structural changes in the brain to evaluate neurotoxicological effects of NMDA receptor antagonists. Psychopharmacol. Bull. 30, 585–591.

    PubMed  CAS  Google Scholar 

  36. Lassmann, H., Petsche, U., Kitz, K., Baran, H., Sperk, G., Seitelberger, F., and Hornykiewicz, O. (1984) The role of brain edema in epileptic brain damage induced by systemic kainic acid injection. Neuroscience 13 (3), 691–704.

    PubMed  CAS  Google Scholar 

  37. Sperk, G., Lassman, H., Baran, H., Kish, S., Seitelberger, F., and Homykiewicz, O. (1983) Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10 (4), 1301–1315.

    PubMed  CAS  Google Scholar 

  38. Frandsen, A. and Schousboe, A. (1993) Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J. Neurochem. 60 (4), 1202–1211.

    PubMed  CAS  Google Scholar 

  39. Auer, R. and Coulter, K. (1994) The nature and time course of neuronal vacuolation induced by the NMDA antagonist MK-801. Acta Neuropathol. (Berl.) 87 (1), 1–7.

    CAS  Google Scholar 

  40. Auer, R. (1996) Effect of age and sex on N-methyl-D-aspartate antagonist-induced neuronal necrosis in rats. Stroke 27 (4), 743–746.

    PubMed  CAS  Google Scholar 

  41. Randall, R. D. and Thayer, S. A. (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12 (5), 1882–1895.

    PubMed  CAS  Google Scholar 

  42. Sperk, G. (1994) Kainic acid seizures in the rat. Prog. Neurobiol. 42, 1–32.

    PubMed  CAS  Google Scholar 

  43. Coyle, J. (1983) Neurotoxic action of kainic acid. J. Neurochem. 4, 1–11.

    Google Scholar 

  44. Farber, N., Wozniak, D., Price, M., Labruyere, J., Huss, J., Peter, H., and Olney, J. (1995)

    Google Scholar 

  45. Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia. Biol. Psychiatry 38, 788–796.

    Google Scholar 

  46. MacDonald, J. and Johnston, M. (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system developement. Brain Res. Brain Res. Rev. 15, 41–70.

    Google Scholar 

  47. Wozniak, D., Stewart, G., Miller, P., and Olney, J. (1991) Age-related sensitivity to kainate neurotoxicity. Exp. Neurol. 114, 250–253.

    PubMed  CAS  Google Scholar 

  48. Herzog, A. and Eisenberg, C. (1997) Hormonal treatment, in Epilepsy: A Comprehensive Textbook ( Engel, J. and Pedley, T., ed.), Lippincott-Raven, Philadelphia, pp. 1345–1351.

    Google Scholar 

  49. Backstrom, T. and Rosciszewska, D. (1997) Effect of hormones on seizure expression, in Epilepsy: A Comprehensive Textbook ( Engel, J. and Pedley, T., ed.), Lippincott-Raven, Philadelphia, pp. 1345–1351.

    Google Scholar 

  50. Regan, R. and Guo, Y. (1997) Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures. Brain Res. 764, 133–140.

    PubMed  CAS  Google Scholar 

  51. Nabeshima, T., Yamaguchi, K., Yamada, K., Hiramatsu, M., Kuwabara, Y., Furukawa, H., and Kameyama, T. (1984) Sex-dependent differences in the pharmacological actions and pharmacokinetics of phencyclidine in rats. Eur. J. Pharmacol. 97 (3–4), 217–227.

    PubMed  CAS  Google Scholar 

  52. Shelnutt, S., Gunnell, M., and Owens, S. (1999) Sexual dimorphism in phencyclidine in vitro metabolism and pharmacokinetics in rats. J. Pharmacol. Exp. Ther. 290 (3), 1292–1298.

    PubMed  CAS  Google Scholar 

  53. Nabeshima, T., Yamaguchi, K., Furukawa, H., and Kameyama, T. (1984a) Role of sex hormones in sex-dependent differences in phencyclidine-induced stereotyped behaviors in rats. Eur. J. Pharmacol. 105 (3–4), 197–206.

    PubMed  CAS  Google Scholar 

  54. Adachi, N., Onuma, T., Nishiwaki, S., Murauchi, S., Akanuma, N., Ishida, S., and Takei, N. (2000) Inter-ictal and post-ictal psychoses in frontal lobe epilepsy: a retrospective comparison with psychoses in temporal lobe epilepsy. Seizure 9, 328–335.

    PubMed  CAS  Google Scholar 

  55. Reynolds, E. H. and Trimble, M. R. (eds.) (1981) Epilepsy and Psychiatry. Churchill Livingstone, Edinburgh.

    Google Scholar 

  56. Sindrup, E. H. and Kristensen, O. (1980) Psychosis and temporal lobe epilepsy, in Epilepsy and Behavior ‘79 ( Kulig, B., Meinardi, H., and Stores, G. eds.), Swets and Zeitlinger B.V., Lisse, pp. 133–139.

    Google Scholar 

  57. Wieser, H. (1983) Depth recorded limbic seizures and psychopathology. Neurosci. Biobehay. Rev. 7, 427–440.

    CAS  Google Scholar 

  58. Hughes, P., Young, D., and Dragunow, M. (1993) MK-801 sensitizes rats to pilocarpine induced limbic seizures and status epilepticus. NeuroReport 4, 314–316.

    PubMed  CAS  Google Scholar 

  59. Gilbert, M. (1994) The NMDA antagonist MK-801 suppresses behavioral seizures, augments afterdischarges, but does not block development of perforant path kindling. Epilepsy Res. 17, 145–156.

    PubMed  CAS  Google Scholar 

  60. Lee, M., Chou, J., Lee, K., Choi, B., Kim, S., and Kim, C. (1997) MK-801 augments pilocarpine-induced electrographic seizure but protects against brain damage in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 331–344.

    PubMed  CAS  Google Scholar 

  61. Fariello, R., Golden, G., Smith, G., and Reyes, P. (1989) Potentiation of kainic acid epileptogenicity and sparing from neuronal damage by an NMDA receptor antagonist. Epilepsy Res. 3, 206–213.

    PubMed  CAS  Google Scholar 

  62. Wada, Y., Hasegawa, H., Nakamura, M., and Yamaguchi, N. (1992) The NMDA receptor antagonist MK-801 has a dissociative effect on seizure activity of hippocampal cats. Pharmacol., Biochem. Behavior 43, 1269–1272.

    CAS  Google Scholar 

  63. Sagratella, S. (1995) NMDA antagonists: Antiepileptic-neuroprotective drugs with diversified neuropharmacological profiles. Pharmacolog. Res. 32 (1), 1–13.

    CAS  Google Scholar 

  64. Young, D. and Dragunow, M. (1993) Non-NMDA glutamate receptors are involved in the maintenance of status epilepticus. NeuroReport 5, 81–83.

    PubMed  CAS  Google Scholar 

  65. Lothman, E., Bertram, E., and Stringer, J. (1991) Functional anatomy of hippocampal seizures. Prog. Neurobiol. 37, 1–82.

    PubMed  CAS  Google Scholar 

  66. Starr, M. and Starr, B. (1993) Paradoxical facilitation of pilocarpine-induced seizures in the mouse by MK-801 and the nitric oxide synthesis inhibitor L-NMDA. Pharmacol., Biochem. Behavior 45, 321–325.

    CAS  Google Scholar 

  67. Turski, L., Niemann, W., and Stephans, D. (1990) Differential effects of antiepileptic drugs and beta-carbolines on seizures induced by excitatory amino acids. Neuroscience 39 (3), 799–807.

    PubMed  CAS  Google Scholar 

  68. Corssen, G. and Domino, E. (1966) Dissociative anesthesia: Further pharmacologic studies and first clinical experience with the phencyclidine derivitive CI-581. Anesth. Analg. 45 (1), 29–39.

    PubMed  CAS  Google Scholar 

  69. Corssen, G., Litle, S., and Tavakoli, M. (1974) Ketamine and epilepsy. Anesth. Analg. 53 (2), 319–333.

    PubMed  CAS  Google Scholar 

  70. Mori, K., Kawamata, M., Mitani, H., Yamazaki, Y., and Fujita, M. (1971) A neurophysiologic study of ketamine anesthesia in the cat. Anesthesiology 35, 373–383.

    PubMed  CAS  Google Scholar 

  71. Greifenstein, F., DeVault, M., Yoshitake, J., and Gajewski, J. (1958) 1-Aryl cyclo hexyl amine for anesthesia. Anesthesiology 37(5), 283–294.

    Google Scholar 

  72. Contreras, C., Guzman-Flores, C., Mexicano, G., Ervin, F., and Palmour, R. (1984) Spike and wave complexes produced by four hallucinogenic compounds in the cat. Physiol. Behay. 33 (6), 981–984.

    CAS  Google Scholar 

  73. Feinberg, I., Campbell, I., and Marrs, J. (1995) Intraperitoneal dizocilpine induces cortical spike-wave seizure discharges in rat. Neurosci. Lett. 196 (3), 157–160.

    PubMed  CAS  Google Scholar 

  74. Meldrum, B. (1993) Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol. 3, 405–412.

    PubMed  CAS  Google Scholar 

  75. Meldrum, B. (1993) Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol. 3, 405–412.

    PubMed  CAS  Google Scholar 

  76. Noguchi, K. and Ellison, G. unpublished results.

    Google Scholar 

  77. Wolf, P. (1991) Acute behavioral symptomatology at disappearance of epileptiform EEG abnormality: paradoxical or forced normilazation. Adv. Neurol. 55, 127–142.

    PubMed  CAS  Google Scholar 

  78. Pakalnis, A., Drake, M., John, K., and Kellum, J. (1987) Forced Normalization: Acute psychosis after seizure control in seven patients. Arch. Neurol. 44, 289–292.

    PubMed  CAS  Google Scholar 

  79. Landolt, H. (1953) Some clinical electroencephalographical correlations in epileptic psychoses (twilight states). Electroencephalogr. Clin. Neurophysiol. 5, 121.

    Google Scholar 

  80. Mega, M., Cummings, J., Salloway, S., and Malloy, P. (1997) The limbic system: An anatomic, phylogenetic, and clinical perspective. J. Neuropsychiatry Clin. Neurosci. 9, 315–330.

    PubMed  CAS  Google Scholar 

  81. Krishnamoorthy, E. and Trimble, M. (1999) Forced normalization: clinical and therapeutic relevance. Epilepsia 40 (Suppl. 10), S57 - S64.

    PubMed  Google Scholar 

  82. Wieser, H. (1979) ‘Psychische Anfalle’ and deren stereo-electroenzephpalographisches Korrelat. Z EEG-EMG 10, 197–206.

    Google Scholar 

  83. Pacia, S. and Ebersole, J. (1997) Intracranial EEG substrates of scalp ictal patterns from temporal lobe foci. Epilepsia 38 (6), 642–654.

    PubMed  CAS  Google Scholar 

  84. Trimble, M. (ed.) (1991) The Psychosis of Epilepsy. Raven Press, New York.

    Google Scholar 

  85. Engel, J., Caldecott-Hazard, S., and Bandler, R. (1986) Neurobiology of behavior: anatomic and physiological implications related to epilepsy. Epilepsia 27 (Suppl. 2), S3 - s13.

    PubMed  Google Scholar 

  86. Sachdev, P. (1998) Schizophrenia-like psychosis and epilepsy: the status of the association. Am. J. Psychiatry 155, 325–336.

    PubMed  CAS  Google Scholar 

  87. Lancman, M. (1999) Psychosis and peri-ictal confusional states. Neurology 53 (Suppl. 2), S33 - S38.

    PubMed  CAS  Google Scholar 

  88. Slater, E. and Beard, A. W. (1963) The schizophrenia-like psychoses of epilepsy, V: Discussion and conclusions. J. Neuropsychiatry Clin. Neurosci. 7 (3), 372–378.

    Google Scholar 

  89. Meduna, L. (1934) Uber experimentelle Campherepilepsie Arch. fur Psychiatrie 102, 333–339.

    Google Scholar 

  90. Yde, A., Lohse, E., and Faurbye, A. (1940) On the relation between schizophrenia, epilepsy, and induced convulsions. Acta Psychiatry Scand. 15, 325–388.

    Google Scholar 

  91. Smith, P. and Darlington, C. (1996) The development of psychosis in epilepsy: a reexamination of the kindling hypothesis. Behay. Brain Res. 75 (1–2), 59–66.

    CAS  Google Scholar 

  92. Harrison, P. (1999) The neuropathology of schizophrenia: A critical review of the data and their interpretation. Brain 122, 593–624.

    PubMed  Google Scholar 

  93. Bogerts, B. (1999) The neuropathology of schizophrenic diseases: historical aspects and present knowledge. Eur. Arch. Psychiatry Clin. Neurosci. 249(Suppl. 4), IV/2-IV/13.

    Google Scholar 

  94. Davis, K., Kahn, R., Ko, G., and Davidson, M. (1991) Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148 (11), 1474–1486.

    PubMed  CAS  Google Scholar 

  95. Ingvar, D. and Franzen, G. (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet 2, 1484–1486.

    PubMed  CAS  Google Scholar 

  96. Liddle, P. Friston, K., Frith, C., Hirsch, S. Jones, T., and Frackowiak, R. (1992) Patterns of cerebral blood flow in schizophrenia. Br. J. Psychiatry 160, 179–186.

    CAS  Google Scholar 

  97. Silbersweig, D., Stern, E., Frith, C., Cahill, C., Holmes, A., Grootoonk, S., et al. (1995) A functonal neuroanatomy of hallucinations in schizophrenia. Nature 378, 176–179.

    PubMed  CAS  Google Scholar 

  98. Haznedar, M., Buchsbaum, M., Luu, C., Hazlett, E., Siegel, B., Lohr, J., et al. (1997) Decreased anterior cingulate gyms metabolic rate in schizophrenia. Am. J. Psychiatry 154, 682–684.

    PubMed  CAS  Google Scholar 

  99. Andreasen, N., O’Leary, D., Flaum, M., Nopoulos, P., Watkins,G., Boles Ponto, L., and Hichwa, R. (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 349, 1730–1734.

    CAS  Google Scholar 

  100. Fu, C. and McGuire, P. K. (1999) Functional neuroimaging in psychiatry. Philos. Trans. R. Soc. Lond. 354, 1359–1370.

    CAS  Google Scholar 

  101. Flor-Henry, P. (1969) Psychosis and temporal lobe epilepsy. Epilepsia 10, 363–395.

    PubMed  CAS  Google Scholar 

  102. Lieb, J., Walsh, G., Babb, T., Walter, R., and Crandell, P. (1976) A comparison of EEG seizure patterns recorded with surface and depth electrodes in patients with temporal lobe epilepsy. Epilepsia 17, 137–160.

    PubMed  CAS  Google Scholar 

  103. Gibbs, F., Gibbs, E., and Lennox, W. (1938) The likeness of the cortical dysrhythmias of schizophrenia and psychomotor epilepsy. Am. J. Psychiatry 95, 255–269.

    Google Scholar 

  104. Sem Jacobsen, C., Petersen, M., Lazarte, J., Dodge, H., and Holman, C. (1955) Electroencephalographic rhythms from the depths of the frontal lobe in 60 psychotic patients. Electroencephalogr. Clin. Neurophysiol. 7, 193–210.

    PubMed  CAS  Google Scholar 

  105. Sem Jacobsen, C., Petersen, M., Lazarte, J., Dodge, H., and Holman, C. (1955) Intracerebral electrographic recordings from psychotic patients during hallucinations and agitation. Am. J. Psychiatry 112, 278–288.

    PubMed  CAS  Google Scholar 

  106. Kendrick, J. and Gibbs, F. (1957) Origin, spread and neurosurgical treatment of the psychomotor type of seizure discharge. J. Neurosurg. 14, 270–284.

    PubMed  CAS  Google Scholar 

  107. Heath, R. (1962) Common characteristics of epilepsy and schizophrenia: clinical observation and depth electrode studies. Am. J. Psychiatry 118, 1013–1026.

    PubMed  CAS  Google Scholar 

  108. Klass, D. and Westmoreland, B. (1985) Nonepileptogenic epileptiform electroencephalographic activity. Ann. Neurol. 18, 627–635.

    PubMed  CAS  Google Scholar 

  109. Vogt, B. (1993) Structural organization of the cingulate cortex: areas, neurons, and somatodendritic transmitter receptors, in Neurobiology of the Cingulate Cortex and Limbic Thalamus ( Vogt, B. and Gabriel, M., eds.), Birkhauser, Boston, MA, pp. 19–69.

    Google Scholar 

  110. Loscher, W. (1998) Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog. Neurobiol. 54, 721–741.

    PubMed  CAS  Google Scholar 

  111. Hertzman, M., Reba, R., and Kotlyarove, E. (1990) Single photon emission computerized tomography in phencyclidine and related drug abuse. Am. J. Psychiatry 147, 255256.

    Google Scholar 

  112. Kalivas, P., Duffy, P., and Barrow, J. (1989) Regulation of the mesocorticolimbic dopamine system by glutamic acid receptor subtypes. J. Pharmacol. Exp. Ther. 251 (1), 378–387.

    PubMed  CAS  Google Scholar 

  113. Hondo, H., Yonezawa, Y., Nakahara, T., Nakamura, K., Hirano, M., Uchimura, H., and Tashiro, N. (1994) Effects of phencyclidine on dopamine release in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res. 633, 337–342.

    PubMed  CAS  Google Scholar 

  114. Morris, R., Patrides, M., and Pandya, D. (1999) Architecture and connection of the retrosplenial area 30 in the rhesus monkey (macaca mulatta). Eur. J. Neuroscience 11, 2506–2518.

    CAS  Google Scholar 

  115. Morris, R., Patrides, M., and Pandya, D. (2000) Architectonic analysis of the human retrosplenial cortex. J. Comp. Neurol. 421, 14–28.

    PubMed  CAS  Google Scholar 

  116. Meibach, R. C. and Siegel, A. (1977) Subicular projections to the posterior cingulate cortex in rats. Exp. Neurol. 57, 264–274.

    PubMed  CAS  Google Scholar 

  117. Sripanidkulchai, K. and Wyss, J. M. (1987) The laminar organization of efferent neuronal cell bodies in the retrosplenial granular cortex. Brain Res. 406, 255–269.

    Google Scholar 

  118. Van Groen, T. and Wyss, J. (1990) Connections of the retrosplenial granular a cortex in the rat. J. Comp. Neurol. 300, 593–606.

    PubMed  Google Scholar 

  119. Stewart, D. J., MacFabe, D. F., and Leung, L. W. (1985) Topographical projection of cholinergic neurons in the basal forebrain to the cingulate cortex in the rat. Brain Res. 358 (1–2), 404–407.

    PubMed  CAS  Google Scholar 

  120. Krieg, W. (1946) Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas. J. Comp. Neurol. 84, 277–323.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noguchi, K. (2002). NMDA Antagonist-Induced Neurotoxicity and Psychosis. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-165-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-165-7_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-194-3

  • Online ISBN: 978-1-59259-165-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics