Skip to main content

Studies of Neural Degeneration Indicate that Fasciculus Retroflexus Is a Weak Link in Brain for Many Drugs of Abuse

  • Chapter
Handbook of Neurotoxicology
  • 183 Accesses

Abstract

The research to be described in this chapter has followed a distinctively different historical path than most neurotoxic research, and this is because of the underlying goals that have guided it. A fundamental question is why one would study the neurotoxic effects of drugs of abuse. One obvious answer is because this is an issue of great relevance to society. Another is because most of the closest models of mental disorders such as schizophrenia, or compulsive disorders, or depression, are based on drug models from addicts. This leads to the hope that understanding the effects of addiction will shed light on many other psychopathologies as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellison, G. D. and Eison, M. S. (1983) Continuous amphetamine intoxication: an animal model of the acute psychotic episode. Psychol. Med. 13, 751–761.

    Article  PubMed  CAS  Google Scholar 

  2. Ellison, G. (1991) Animal models of hallucinations: continuous stimulants, in Neuromethods, vol 18: Animal Models in Psychiatry (Boulton, A., Baker, G., and Martin-Iverson, M., eds.), pp. 151–196.

    Google Scholar 

  3. Ellison, G. (1994) Stimulant-induced psychosis, the dopamine theory, and the habenula. Brain Res. Rev. 19, 223–239.

    Article  PubMed  CAS  Google Scholar 

  4. Connell, P. (1958) Amphetamine Psychosis. Maudsley Monographs No. 5. Oxford University Press, London.

    Google Scholar 

  5. Bell, D. (1965) Comparison of amphetamine psychosis and schizophrenia. Am. J. Psychiatry 111, 701–707.

    Article  CAS  Google Scholar 

  6. Ellinwood, E. H. Jr., (1967) Amphetamine psychosis: I. Description of the individuals and the process. J. Nerv. Mental Dis. 144, 273–283.

    Article  Google Scholar 

  7. Siegal, R. K. (1977) Cocaine: recreational use and intoxication, in NIDA Research Monograph 13 ( Petersen, R. C. and Stillman, R. C., eds.), US Government Printing Office, Washington, DC.

    Google Scholar 

  8. Lesko, L. M., Fischman, M., Javaid, J., and Davis, J. (1982) Iatrogenous cocaine psychosis. N. Engl. J. Med. 307, 1153–1156.

    PubMed  CAS  Google Scholar 

  9. Gawin, F. H. (1986) Neuroleptic reduction of cocaine-induced paranoia but not euphoria? Psychopharmacology 90, 142–143.

    Article  PubMed  CAS  Google Scholar 

  10. Manschreck, T. C., Laughery, J. A., Weisstein, C. C., Allen, D., Humblestone, B., Neville, M., et al. (1988) Characteristics of freebase cocaine psychosis. Yale J. Biol. Med. 61, 115–122.

    PubMed  CAS  Google Scholar 

  11. Brady, K., Lydiard, R., Malcolm, R., and Ballenger, J. (1991) Cocaine-induced psychosis. J. Clin. Psychiatry 52, 509–512.

    PubMed  CAS  Google Scholar 

  12. Elpern, D. (1988) Cocaine abuse and delusions of parasitosis. Cutis 42, 273–274.

    PubMed  CAS  Google Scholar 

  13. Mitchell, J. and Vierkant, A. (1991) Delusions and hallucinations of cocaine abusers and paranoid schizophrenics: a comparative study. J. Psychiatry 125, 301–310.

    CAS  Google Scholar 

  14. Kramer, J. C., Gischman, V., and Littlefield, D. (1967) Amphetamine abuse: pattern and effects of high doses taken intravenously. J. Am. Med. Assoc. 201, 89–93.

    Article  Google Scholar 

  15. Griffith, J., Cavanaugh, J., Held, N., and Oates, J. (1972) D-amphetamine: evaluation of psychotomimetic properties in man. Arch. Gen. Psychiatry 26, 97–100.

    Article  PubMed  CAS  Google Scholar 

  16. Bell, D. (1973) The experimental reproduction of amphetamine psychosis. Arch. Gen. Psychiatry 29, 35–40.

    Article  PubMed  CAS  Google Scholar 

  17. Satel, S., Southwick, S., and Gawin, F., (1992) Clinical features of cocaine-induced paranoia. Am. J. Psychiatry 148, 495–498.

    Google Scholar 

  18. Ellison, G. and Morris, W. (1981) Opposed stages of continuous amphetamine administration: parallel alterations in motor sterotypies and in vivo spiroperidol accumulation. Eur. J. Pharmacol. 74, 207–214.

    Article  PubMed  CAS  Google Scholar 

  19. Ellison, G. D., Eison, M. S., and Huberman, H. (1978b) Stages of constant amphetamine intoxication: delayed appearance of abnormal social behaviors in rat colonies. Psychopharmacology 56, 293–299.

    Article  PubMed  CAS  Google Scholar 

  20. Ellison, G. D., Nielsen, E. B., and Lyon, M. (1981) Animal models of psychosis: hallucinatory behaviors in monkeys during the late stage of continuous amphetamine intoxication. J. Psychiatry Res. 16, 13–22.

    Article  CAS  Google Scholar 

  21. Nielsen, E., Lee, T., and Ellison, G. (1980b) Following several days of continuous administration d-amphetamine acquires hallucinogen-like properties. Psychopharmacology 68, 197–200.

    Article  PubMed  CAS  Google Scholar 

  22. de Leon, J., Antelo, R., and Simpson, G. (1992) Delusion of parasitosis or chronic hallucinosis: hypothesis about their brain physiopathology. Compr. Psychiatry 33, 25–33.

    Article  PubMed  Google Scholar 

  23. Nielsen, E. B., Neilsen, M., Ellison, G., and Braestrup, E. (1980a) Decreased spiroperidol and LSD binding in rat brain after continuous amphetamine. Eur. J. Pharmacol. 66, 149–154.

    Article  PubMed  CAS  Google Scholar 

  24. Ellison, G. D., Eison, M., Huberman, H., and Daniel, F. (1978a) Long term changes in dopaminergic innervation of caudate nucleus after continuous amphetamine administration. Science 201, 276–278.

    Article  PubMed  CAS  Google Scholar 

  25. Nwanze, E. and Jonsson, G. (1981) Amphetamine neurotoxicity on dopamine nerve terminals in the caudate nucleus of mice. Neurosci. Lett. 26, 163–168

    Article  PubMed  CAS  Google Scholar 

  26. Ryan, L., Martone, M., Linder, J., and Groves, P. (1990) Histological and ultrastructural evidence that d-amphetamine causes degeneration in neostriatum and frontal cortex of rats. Brain Res. 518, 67–77.

    Article  PubMed  CAS  Google Scholar 

  27. Ryan, L. J., Martone, M., Linder, J., and Groves, P. M. (1988) Cocaine, in contrast to d-amphetamine, does not cause axonal terminal degeneration in neostriatum and agranular frontal cortex of long-evans rats. Life Sci. 43, 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  28. Hotchkiss, A. and Gibb, J. (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J. Pharmacol. Exp. Ther. 214, 257–262.

    PubMed  CAS  Google Scholar 

  29. Ricaurte, G. A., Schuster, C. R., and Seiden, L. S. (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res. 193, 153–163.

    Article  PubMed  CAS  Google Scholar 

  30. Steranka, L. and Sanders-Bush, E. (1980) Long-term effects of continuous exposure to amphetamine on brain dopamine concentration and synaptosomal uptake in mice. Eur. J. Pharmacol. 65, 439–443.

    Article  PubMed  CAS  Google Scholar 

  31. Fuller, R. and Hemrick-Luecke, S. (1980) Long-lasting depletion of striatal dopamine by a single injection of amphetamine in iprindole-treated rats. Science 209, 305–306.

    Article  PubMed  CAS  Google Scholar 

  32. Wagner, G., Lucot, J., Chuster, C., and Seiden, L. (1983) Alpha-methyltyrosine attenuates and reserpine increases methamphetamine-induced neuronal changes. Brain Res. 270, 285–288.

    Article  PubMed  CAS  Google Scholar 

  33. Fuller, R. and Hemrick-Luecke, S. (1982) Further studies on the long-term depletion of striatal dopamine in iprindole-treated rats by amphetamine. Neuropharmacology 21, 433–438.

    Article  PubMed  CAS  Google Scholar 

  34. Hanson, G. R., Matsuda, L., and Gibb, J. W. (1987) Effects of cocaine on methamphetamine-induced neurochemical changes: characterization of cocaine as a monoamine uptake blocker. J. Pharmacol. Exp. Ther. 242, 507–513.

    PubMed  CAS  Google Scholar 

  35. Sonsalla, P., Nicklas, W., and Heikkila, R. (1989) Role for excitatory amino acits in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243, 398–400.

    Article  PubMed  CAS  Google Scholar 

  36. Fuller, R., Hemrick-Luecke, S., and Ornstein, P. (1992) Protection against amphetamine-induced neurotoxicity toward striatal dopamine neurons in rodents by LY274614, an excitatory amino acid antagonist. Neuropharmacology 31, 1027–1032

    Article  PubMed  CAS  Google Scholar 

  37. Seiden, L. and Ricaurte, G. (1987) Neurotoxicity of methamphetamine and related drugs, in Psychopharmacology: The Third Generation of Progress ( Meltzer, H., ed.), Raven Press, New York, pp. 359–366.

    Google Scholar 

  38. Ellison, G. and Switzer, R. III (1996) Dissimilar patterns of degeneration in brain following four different addictive stimulants. NeuroReport 5, 17–20.

    Article  CAS  Google Scholar 

  39. Lipton, J., Zeigler, S., Wilkins, J., and Ellison, G. (1991) Silicone pellet for continuous cocaine administration: heightened late-stage behaviors compared to continuous amphetamine. Pharmacol. Biochem. Behay. 38, 927–930.

    Article  CAS  Google Scholar 

  40. Zeigler, S., Lipton, J., Toga, A., and Ellison, G. (1991) Continuous cocaine produces persistent changes in brain neurochemistry and behavior different from amphetamine. Brain Res. 552, 27–35.

    Article  PubMed  CAS  Google Scholar 

  41. Switzer, R. C. (1991) Strategies for assessing neurotoxicity. Neurosci. Biobehay. Rev. 15, 89–93.

    Article  Google Scholar 

  42. de Olmos, J., Ebbesson, S., and Heimer, L. (1981) Silver methods for the impregnation of degenerating axoplasm, in Neuroanatomical Tract-tracing Methods ( Heimer, L. and Robards, N., eds.), Plenum Press, New York, pp. 117–168.

    Chapter  Google Scholar 

  43. Ellison, G. (1992) Continuous amphetamine and cocaine have similar neurotoxic effects in lateral habenular nucleus and fasciculus retroflexus. Brain Res. 598, 353–356.

    Article  PubMed  CAS  Google Scholar 

  44. Herkenham, M. and Nauta, W. J. H. (1977) Afferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 173, 123–146.

    Article  PubMed  CAS  Google Scholar 

  45. Herkenham, M. and Nauta, W. J. H. (1979) Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187, 19–48.

    Article  PubMed  CAS  Google Scholar 

  46. Sutherland, R. J. (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci. Biobehay. Rev. 6, 1–13.

    Article  CAS  Google Scholar 

  47. London, E., Wilkerson, G., Goldberg, S., and Risner, M. (1986) Effects of L-cocaine on local cerebral glucose utilization in the rat. Neurosc. Lett. 68, 73–78.

    Article  CAS  Google Scholar 

  48. Sasaki, K., Suda, H., Watanabe, H., and Yagi, H. (1990) Involvement of the entopeduncular nucleus and the habenula in methamphetamine-induced inhibition of dopamine neurons in the substantia nigra of rats. Brain Res. Bull. 25, 121–127.

    Article  PubMed  CAS  Google Scholar 

  49. Lisoprawski, A., Herve, D., Blanc, G., Glowinski, J., and Tassin, J. (1980) Selective activation of the mesocortico-frontal dopaminergic neurons induced by lesions of the habenula in the rat. Brain Res. 183, 229–234.

    Article  PubMed  CAS  Google Scholar 

  50. Nishikawa, T., Fage, D., and Scatton, B. (1986) Evidence for, and nature, of the tonic inhibitory influence of habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat. Brain Res. 373, 324–336.

    Article  PubMed  CAS  Google Scholar 

  51. Christoph, C., Leonzio, R., and Wilcox, K. (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J. Neurosci. 6, 613–619.

    PubMed  CAS  Google Scholar 

  52. Keys, A. and Ellison, G. (1994) Continuous cocaine induces persisting alterations in dopamine overflow in caudate following perfusion with a D 1 agonist. J. Neur. Trans. Gen. Sect. 97, 225–233.

    Article  CAS  Google Scholar 

  53. Corodimas, K., Rosenblatt, J., and Morrell, J. (1992) The habenular complex mediates hormonal stimulation of maternal behavior in rats. Behay. Neurosci. 106, 853–865

    Article  CAS  Google Scholar 

  54. Ellison, G. D., Irwin, S., Keys, A., Noguchi, K., and Sulur, G. (1996) The neurotoxic effects of continuous cocaine and amphetamine in habenula: implications for the substrates of psychosis, in Neurotoxicity and Neuropathology Associated with Cocaine Abuse ( Majewska, M., ed.), NIDA Research Monograph, National Institute on Drug Abuse, Rockville MD, p. 163.

    Google Scholar 

  55. Araki, M., McGeer, P., and Kimura, H. (1988) The efferent projections of the rat lateral habenular nucleus revealed by the PHA-L anterograde tracing method. Brain Res. 441, 319–330.

    Article  PubMed  CAS  Google Scholar 

  56. Ellison, G. (1995) The NMDA antagonists phencyclidine, ketamine, and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res. Rev. 20, 250–267.

    Article  PubMed  CAS  Google Scholar 

  57. Sharp, F., Sagar, S., and Swanson, R. (1993) Metabolic mapping with cellular resolution: c-fos vs. 2-deoxyglucose. Crit. Rev. Neurobiol. 679, 205–228.

    Google Scholar 

  58. Wirtshafter, D., Asin, K., and Pitzer, M. (1994) Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula. Brain Res. 633, 21–26.

    Article  PubMed  CAS  Google Scholar 

  59. Keys, A. and Ellison, G. (1999) Long-term alterations in benzodiazepine, muscarinic and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor density following continuous cocaine administration. Pharmacol. Toxicol. 85, 144–150.

    Article  PubMed  CAS  Google Scholar 

  60. Meshul, C. K., Noguchi, K., Emire, N., and Ellison, G. (1998) Cocaine-induced changes in glutamate and GABA immunolabeling within rat habenula and nucleus accumbens. Synapse 30, 211–220.

    Article  PubMed  CAS  Google Scholar 

  61. Levin, E., Kim, P., Meray, R., Levin, E. D., Kim, P., and Meray, R. (1996) Chronic nicotine working and reference memory effects in the 16-arm radial maze: interactions with D1 agonist and antagonist drugs. Psychopharmacology 127, 25–30.

    Article  PubMed  CAS  Google Scholar 

  62. Levin, E., Lee, C., Rose, J. E., Reyes, A., Ellison, G., Jarvik, M., and Gritz, E. (1990) Chronic nicotine and withdrawal effects on radial-arm maze performance in rats. Behay. Neural Biol. 53, 269–276.

    Article  CAS  Google Scholar 

  63. Jias, L. M. and Ellison, G. (1990) Chronic nicotine induces a specific appetite for sucrose in rats. Pharmacol. Biochem. Behay. 35, 489–491.

    Article  CAS  Google Scholar 

  64. Potthoff, A. D., Ellison, G., and Nelson, L. (1983) Ethanol intake increases during continuous administration of amphetamine and nicotine, but not several other drugs. Pharmacol. Biochem. Behay. 18, 489–493.

    Article  CAS  Google Scholar 

  65. London, E. D., Waller, S. B., and Wamsley, J. K. (1985) Autoradiographic Localization of [3H]Nicotine Binding Sites in the Rat Brain. Neurosci. Lett. 53, 179–184.

    Article  PubMed  CAS  Google Scholar 

  66. Perry, D. C. and Kellar, K. J. (1995) [3H]Epibatidine labels nicotinic receptors in rat brain: an autoradiographic study. J. Pharmacol. Exp. Ther. 275, 1030–1034.

    PubMed  CAS  Google Scholar 

  67. Wolinsky, T. D., Carr, K. D., Hiller, J. M., and Simon, E. J. (1994) Effects of chronic food restriction on mu and kappa opioid binding in rat forebrain: a quantitative autoradiographic study. Brain Res. 656, 274–280.

    Article  PubMed  CAS  Google Scholar 

  68. Thornton, E. W., Murray, M., Connors-Eckenrode, T., and Haun, F. (1994) Dissociation of behavioral changes in rats resulting from lesions of the habenula versus fasciculus retroflexus and their possible anatomical substrates. Behay. Neurosci. 108, 1150–1162.

    Article  CAS  Google Scholar 

  69. Felton, T. M., Linton, L., Rosenblatt, J. S., and Morrell, J. I. (1998) Intact neurons of the lateral habenular nucleus are necessary for the nonhormonal, pup-mediated display of maternal behavior in sensitized virgin female rats. Behay. Neurosci. 112, 1458–1465.

    Article  CAS  Google Scholar 

  70. Valjakka, A., Vartiainen, J., Tuomisto, L., Tuomisto, J. T., Olkkonen, H., and Airaksinen, M. M. (1998) The fasciculus retroflexus controls the integrity of rem sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res. Bull. 47, 171–184.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ellison, G. (2002). Studies of Neural Degeneration Indicate that Fasciculus Retroflexus Is a Weak Link in Brain for Many Drugs of Abuse. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-165-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-165-7_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-194-3

  • Online ISBN: 978-1-59259-165-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics