Skip to main content

Effects of SERMs on Bone in Clinical Studies

  • Chapter
Selective Estrogen Receptor Modulators

Part of the book series: Contemporary Endocrinology ((COE))

  • 201 Accesses

Abstract

Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration of bone tissue resulting in increased bone fragility and in an increase in fracture risk (1) The menopause induces an accelerated bone loss within five years, followed by a linear rate of bone loss that may accelerate after the age of 75 years. Hormone-replacement therapy (HRT) prevents postmenopausal bone loss but its longterm use is probably necessary to reduce the risk of fragilities fractures, as most of them occur after the age of 60 years (2) Long-term compliance to HRT however is limited by side effects such as uterine bleeding and breast tenderness and by the fear of breast cancer, the risk of which appears to increase after prolonged treatment (3) The clinical interest in SERMs in the management of osteoporosis is related to these limitations of HRT. The concept of SERMs is derived from the observation that tamoxifen, used in breast cancer for its antiestrogen effects on breast tissue, has estrogenlike effects on the skeleton and lipoproteins. Although tamoxifen has an excellent benefit/risk ratio as an adjuvant treatment in breast cancer, its use in healthy postmenopausal women is questionable because of its increased risk of endometrial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res 1994; 9: 1137–41.

    Article  PubMed  CAS  Google Scholar 

  2. Felson DT, Zhang Y, Hannan MT, et al. The effect of postmenopausal estrogen therapy on bone density in elderly women. N Engl J Med 1993; 329: 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  3. Collaborative Group on Hormonal therapy in breast cancer. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 1997; 350: 1047–59.

    Article  Google Scholar 

  4. Sato M, McClintock G, Kim J, Turner CH, et al. Dual-energy x-ray absorptiometry of raloxifene effects on the lumbar vertebrae and femora of ovariectomized rats. J Bone Miner Res 1994; 9: 715–24.

    Article  PubMed  CAS  Google Scholar 

  5. Black LJ, Sato M, Rowley ER, et al. Raloxifene (LY139481 HCL) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 1994; 93: 63–69.

    Article  PubMed  CAS  Google Scholar 

  6. Turner CH, Sato M, Bryant HU. Raloxifene preserves bone strength and bone mass in ovariectomized rats. Endocrinol 1994; 135: 2001–2005.

    Article  CAS  Google Scholar 

  7. Kenny AM, Prestwood KM, Pilbeam CC, Raisz LG. The short-term effects of tamoxifen on bone turnover in older women. J Clin Endocrinol Metab 1995; 80: 3287–3291.

    Article  PubMed  CAS  Google Scholar 

  8. Marttunen MB, Hietanen P, Titinen A, et al. Effects of tamoxifen and toremifene on urinary excretion of pyridinoline and deoxypyridinoline and bone density in postmenopausal patients with breast cancer. Calcif Tissue Int 1999; 65: 365–368.

    Article  PubMed  CAS  Google Scholar 

  9. Marttunen MB, Hietanen P, Titinen A, Ylikorkala O. Comparison of effects of tamoxifen and toremifene on bone biochemistry and bone mineral density in postmenopausal breast cancer patients. J Clin Endocrinol Metab 1998; 83: 1158–1162.

    Article  PubMed  CAS  Google Scholar 

  10. Powles Ti, Hardy JR, Ashley SE. A pilot trial to evaluate the acute toxicity and feasibility of tamoxifen for prevention of breast cancer. Br J Cancer 1989; 60: 126–33.

    Article  Google Scholar 

  11. Powles TJ, Hickish T, Kanis JA, et al. Effect of tamoxifen on bone mineral density measured by dual energy X-Ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol 1996; 14: 78–84.

    PubMed  CAS  Google Scholar 

  12. Turken S, Sins E, Seldin D, et al. Effects of tamoxifen on spinal bone density in women with breast cancer. J Natl Cancer Inst 1989; 81: 1086–88.

    Article  PubMed  CAS  Google Scholar 

  13. Kristensen B, Ejlertsen B, Dalgaard P, et al. Tamoxifen and bone metabolism in postmenopausal low-risk breast cancer patients: a randomized study. J Clin Oncol 1994; 12: 992–997.

    PubMed  CAS  Google Scholar 

  14. Love RR, Mazess RB, Barden HS et al. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 1992; 326: 852–856.

    Article  PubMed  CAS  Google Scholar 

  15. Love RR, Barden HS, Mazess RB, Epstein S, Chappell RJ. Effect of tamoxifen on lumbar spine bone mineral density in postmenopausal women after 5 years. Arch Intern Med 1994; 154: 2585–2588.

    Article  PubMed  CAS  Google Scholar 

  16. Delmas PD, Balena R, Confavreux E, et al. Bisphosphonate Risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double blind, placebo-controlled study. J Clin Oncol 1997; 15: 955–962.

    PubMed  CAS  Google Scholar 

  17. Chang J, Powles TJ, Ashley SE. The effect of tamoxifen and hormone replacement therapy on serum cholesterol bone mineral density and coagulation factors in healthy postmenopausal women participating in a randomised, controlled tamoxifen prevention study. Annals Oncol 1996; 671–675.

    Google Scholar 

  18. Grey AB, Stapleton JP, Evans MC, et al. The effect of antiestrogen tamoxifen on bone mineral density in normal late postmenopausal women. Am J Med 1995; 99: 636–41.

    Article  PubMed  CAS  Google Scholar 

  19. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst 1998; 90: 1371–1388.

    Article  PubMed  CAS  Google Scholar 

  20. Draper MW, Flowers DE, Huster WJ, Neild JA, Harper KD, Arnaud C. A controlled trial of raloxifene (LY139481) HC1: Impact on bone turnover and serum lipid profile in healthy postmenopausal women. J Bone Miner Res 1996; 11: 835–842.

    Article  PubMed  CAS  Google Scholar 

  21. Prestwood KM, Gunness M, Muchmore DB, Lu Y, Wong M, Raisz LG. A comparison of the effects of raloxifene and estrogen on bone in postmenopausal women. J Clin Endocrinol Metab 2000; 85: 2197–2202.

    Article  PubMed  CAS  Google Scholar 

  22. Delmas PD, Bjarnasson NH, Mitlak BH, et al. Effects of raloxifene on bone mineral density, serum cholesterolconcentrations, and uterine endometrium in postmenopausal women. N Engl J Med 1997; 337: 1641–47.

    Article  PubMed  CAS  Google Scholar 

  23. Lufkin EG, Whitaker MD, Nickelson T, et al. Treatment of established postmenopausal osteoporosis with raloxifene: a randomized trial. J Bone Miner Res 1998; 13: 1747–1754.

    Article  PubMed  CAS  Google Scholar 

  24. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene. JAMA 1999; 282: 637–645.

    CAS  Google Scholar 

  25. Meunier PJ, Vignot E, Garnero P, et al. Treatment of postmenopausal women with osteoporosis or low bone density with raloxifene. Osteoporisis Int 1999; 10: 330–336.

    Article  CAS  Google Scholar 

  26. Anonymous. Consensus development conference: Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993; 94: 646–650.

    Article  Google Scholar 

  27. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO technical report series 843. Geneva: WHO; 1994.

    Google Scholar 

  28. Riggs BI, Hodgson SF, O’Fallon WM, et al. Effects of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990; 322: 802–809.

    Article  PubMed  CAS  Google Scholar 

  29. Meunier PJ, Sebert JL, Reginster JY, et al. Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin D in postmenopausal osteoporosis: The FAVOS study. Osteoporosis Int 1998; 8: 4–12.

    Article  CAS  Google Scholar 

  30. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effects of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 1996; 348: 1535–1541.

    Article  PubMed  CAS  Google Scholar 

  31. Delmas PD. How does antiresorptive therapy decrease the risk of fracture in women with osteoporosis? Bone 2000; 27: 1–3.

    Google Scholar 

  32. Garnero P, Hausherr E, Chappuis MC, et al. Markers of bone resorption predict hip fracture in elderly women: The EPIDOS prospective study. J Bone Miner Res 1996; 11: 1531–1538.

    Article  PubMed  CAS  Google Scholar 

  33. Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 1999; 114: 919–923.

    Google Scholar 

  34. Parfitt AM, Mathews CHE, Villanueva AR, et al. Relationship between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis: Implications for the microanatomic and cellular mechanism of bone. J Clin Invest 1983; 72: 1396–1409.

    Article  PubMed  CAS  Google Scholar 

  35. Bjarnasson NH, Christiansen C, Sarkar S. Six months change in biochemical markers predict 3-year response in vertebral fracture rate in postmenopausal osteoporotic women: Results from the MORE study. J Bone Miner Res 1999; 14 (Suppl 1): S157.

    Google Scholar 

  36. Bjarnasson NH, Christiansen C, Duong T, Delmas PD. Pretreatment BMD and vertebral fracture status as well as change in osteocalein are all predictors for the risk of incident vertebral fracture during raloxifene therapy. Osteoporosis Int 2000; 11 (Suppl 2): S173.

    Google Scholar 

  37. Riggs B, Khosla S, Melton LJ. A unitary model for involuntional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998; 13: 763–773.

    Article  PubMed  CAS  Google Scholar 

  38. Ke QZ, Qi H, Crawford DT, et al. Lasofoxifene (CP-336,156), a selective estrogen receptor modulator, prevents bone loss induced by aging and orchidectomy in the adult rat. Endocrinology 2000; 141: 1338 1344.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Fontana, A., Delmas, P.D. (2002). Effects of SERMs on Bone in Clinical Studies. In: Manni, A., Verderame, M.F. (eds) Selective Estrogen Receptor Modulators. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-157-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-157-2_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9665-9

  • Online ISBN: 978-1-59259-157-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics