Skip to main content

Cardiogenic Shock

Physiological and Biochemical Concepts

  • Chapter
Cardiogenic Shock

Abstract

Because cardiogenic shock is the culmination of cumulative abnormalities in the heart and because it is associated with the most dire of prognoses, any attempt at its diagnosis and appropriate management demands a clear understanding of the pathophysiological processes involved in the individual patient. For example, treating cardiogenic shock with aggressive diuresis to reduce the central venous pressure when the shock is predominantly secondary to extensive right ventricular infarction may significantly reduce filling of the left ventricle, thereby further exacerbating the cardiogenic shock. Similarly, a misplaced attempt at alleviating the distress of severe dyspnea secondary to acute pulmonary edema by using large doses of morphine or diamorphine may result in marked respiratory depression and precipitate respiratory arrest or alternatively may reduce the arterial pressure so as to compromise the coronary perfusion further, worsening the cardiogenic shock. Erroneous concepts lead to erroneous treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schoen FJ, Bernhard WF, Khuri SF, Koster JK Jr, Van Devanter SJ, Weintraub RM. Pathologic findings in postcardiotomy patients managed with a temporary left ventricular assist pump. Am J Surg 1982; 143: 508–514.

    Article  PubMed  CAS  Google Scholar 

  2. Asou T, Kawachi Y, Imaizumi T, Tokunaga K, Life-saving pericardiectomy in cardiogenic shock due to impairment of diastolic pump function by myocardial swelling. Scand J Thorac Cardiovasc Surg 1995; 29: 83–85.

    Article  PubMed  CAS  Google Scholar 

  3. Risoe C, Hall C, Smiseth OA. Blood volume changes in liver and spleen during cardiogenic shock in dogs. Am J Physiol 1991; 261: H1763 - H1768.

    PubMed  CAS  Google Scholar 

  4. Hollenberg SM, Kavinsky CJ, Parrillo JE. Cardiogenic shock (review). Ann Intern Med 1999; 131: 47–59

    Article  PubMed  CAS  Google Scholar 

  5. Willerson JT, Scales F, Mukherjee A, Platt M, Templeton GH, Fink GS, et al. Abnormal myocardial fluid retention as an early manifestation of ischemic injury. Am J Pathol 1977; 87: 159–188.

    PubMed  CAS  Google Scholar 

  6. Jennings RB. Early phase of myocardial ischemic injury and infarction. Am J Cardiol 1969; 24: 753–765.

    Article  PubMed  CAS  Google Scholar 

  7. Harris P. Evolution and the cardiac patient (review). Cardiovasc Res 1983; 17: 313–319.

    Article  PubMed  CAS  Google Scholar 

  8. Harris P. Evolution and the cardiac patient (review). Cardiovasc Res 1983; 17: 373–378.

    Article  PubMed  CAS  Google Scholar 

  9. Harris P. Evolution and the cardiac patient (review). Cardiovasc Res 1983; 17: 437–445.

    Article  PubMed  CAS  Google Scholar 

  10. Harris P. Congestive cardiac failure: central role of the arterial blood pressure. St Cyres Lecture 1986. Br Heart J 1987; 58: 190–203.

    Article  PubMed  CAS  Google Scholar 

  11. Afifi AA, Chang PC, Liu VY, da Luz PL, Weil MH, Shubin H. Prognostic indexes in acute myocardial infarction complicated by shock. Am J Cardiol 1974; 33: 826–832.

    Article  PubMed  CAS  Google Scholar 

  12. Armiger LC, Herdson PB, Gavin JB. Mitochondrial changes in dog myocardium induced by lowered pH in vitro. Lab Invest 1975; 32: 223–226.

    PubMed  CAS  Google Scholar 

  13. Udhoji VN, Weil MH. Circulatory effects of angiotensin, levarterenol and metaraminol in the treatment of shock. N Engl J Med 1964; 270: 501–507.

    Article  PubMed  CAS  Google Scholar 

  14. Abboud FM, Heistad DD, Mark AL, Schmid PG. Reflex control of the peripheral circulation. Prog Cardiovasc Dis 1976; 1: 371–403.

    Article  Google Scholar 

  15. Gilbert RP, Aldrich SL, Anderson L. Cardiac output in acute myocardial infarction. J Clin Invest 1951; 30: 640.

    Google Scholar 

  16. Freis ED, Schnaper HW, Johnson RL, Schneider GE. Hemodynamic alterations in acute myocardial infarction: I. Cardiac output, mean arterial pressure, total peripheral resistance, “central” and total blood volumes, venous pressure and average circulation time. J Clin Invest 1952; 31: 131–140.

    Article  PubMed  CAS  Google Scholar 

  17. Smith WW, Wickler NS, Fox AC. Hemodynamic studies of patients with myocardial infarction. Circulation 1954; 9: 352–362.

    Article  PubMed  CAS  Google Scholar 

  18. Malmcrona R, Schroder G, Werko L. Hemodynamic effects of metaraminol: II. Patients with acute myocardial infarction. Am J Cardiol 1964; 13: 15–24.

    Article  PubMed  CAS  Google Scholar 

  19. Smulyan H, Cuddy RP, Eich RH. Hemodynamic effects of pressor agents in septic and myocardial infarction shock. JAMA 1964; 190: 188.

    Article  PubMed  CAS  Google Scholar 

  20. Shubin H, Weil MH. Hemodynamic effects of vasopressor agents in shock due to myocardial infarction. Am J Cardiol 1965; 15: 147.

    Google Scholar 

  21. Gunnar RM, Cruz A, Boswell J, Co BS, Pietras RJ, Tobin JR Jr. Myocardial infarction with shock. Hemodynamic studies and results of therapy. Circulation 1966; 33: 753–762.

    Article  PubMed  CAS  Google Scholar 

  22. Smith HJ, Oriol A, Morch J, McGregor M. Hemodynamic studies in cardiogenic shock. Treatment with isoproterenol and metaraminol. Circulation 1967; 35: 1084–1091.

    Article  PubMed  CAS  Google Scholar 

  23. Ratshin RA, Rackley CE, Russell RO. Hemodynamic evaluation of left ventricular function in shock complicating myocardial infarction. Circulation 1972; 45: 127–139.

    Article  PubMed  CAS  Google Scholar 

  24. Swan HJC, Forrester JS, Diamond G, Chatterjee K, Parmley WW. Hemodynamic spectrum of myocardial infarction and cardiogenic shock. A conceptual model. Circulation 1972; 45: 1097–1110.

    Article  PubMed  CAS  Google Scholar 

  25. Scheidt S, Wilner G, Fillmore S, Shapiro M, Killip T. Objective hemodynamic assessment after acute myocardial infarction. Br Heart J 1973; 35: 908–916.

    Article  PubMed  CAS  Google Scholar 

  26. Tan LB, Littler WA. Measurement of cardiac reserve in cardiogenic shock: implications for prognosis and management. Br Heart J 1990; 64: 121–128.

    Article  PubMed  CAS  Google Scholar 

  27. Hasdai D, Holmes DR Jr, Calif RM, Thompson TD, Hochman JS, Pfisterer M, et al. Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO (Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries) Investigators. Am Heart J 1999; 138: 21–31.

    Article  PubMed  CAS  Google Scholar 

  28. Williams SG, Wright DJ, Tan LB. Management of cardiogenic shock complicating acute myocardial infarction: towards evidence based medical practice. Heart 2000; 83: 621–626.

    Article  PubMed  CAS  Google Scholar 

  29. Gunnar RM, Loeb HS. Shock in acute myocardial infarction: evolution of physiologic therapy. J Am Coll Cardiol 1983; 1: 154–163.

    Article  PubMed  CAS  Google Scholar 

  30. Waltier DC. Ventricular Function. Williams and Wilkins, Baltimore, 1995.

    Google Scholar 

  31. Spodick DH. Assessment of Ventricular Function. Karger, Basel, 1985.

    Google Scholar 

  32. Tan LB. Clinical and research implications of new concepts in the assessment of cardiac pumping performance in heart failure. Cardiovasc Res 1987; 21: 615–622.

    Article  PubMed  CAS  Google Scholar 

  33. Tan LB. Evaluation of cardiac dysfuncton, cardiac reserve and inotropic response. Postgrad Med J 1991; 67 (suppl 1): S10 - S20.

    PubMed  Google Scholar 

  34. Hochman JS, Sleeper LA, Godfrey E, et al. Should we emergently revascularize occluded coronaries for cardiogenic shock: an international randomized trial of emergency PTCA/CABG-trial design. Am Heart J 1999; 137: 313–321.

    Article  PubMed  CAS  Google Scholar 

  35. Wackers FJ, Lie KI, Becker AE, et al. Coronary artery disease in patients dying from cardiogenic shock or Congestive heart failure in the setting of acute myocardial infarction. Br Heart J 1976; 38: 906.

    Article  PubMed  CAS  Google Scholar 

  36. Page DL, Caulfield JB, Kastor JA, et al. Myocardial changes associated with cardiogenic shock. N Engl J Med 1972; 285: 133.

    Article  Google Scholar 

  37. Alonso DR, Scheidt S, Post M, et al. Pathophysiology of cardiogenic shock: quantification of myocardial necrosis, clinical, pathologic and electrocardiographic correlation. Circulation 1973; 48: 588.

    Article  PubMed  CAS  Google Scholar 

  38. Goldberg RJ, Samad NA, Yarzebski J, Gurwitz J, Bigelow C, Gore JM. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med 1999; 340: 1162–1168.

    Article  PubMed  CAS  Google Scholar 

  39. Hasdai D, Topol EJ, Califf RM, Berger PB, Holmes DR Jr. Cardiogenic shock complicating acute coronary syndromes. Lancet 2000; 356: 749–756.

    Article  PubMed  CAS  Google Scholar 

  40. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996; 28: 2005–2016.

    Article  PubMed  CAS  Google Scholar 

  41. Tan LB. Cardiac pumping capability and prognosis in heart failure. Lancet 1986;ii:1360–1363.

    Google Scholar 

  42. Williams SG, Cooke GA, Wright DJ, Tan LB. Disparate results of ACE inhibitor dosage on exercise capacity in heart failure: a reappraisal of vasodilator therapy and study design. Int J Cardiol 2001; 77: 239–245.

    Article  PubMed  CAS  Google Scholar 

  43. Wylam ME, Samsel RW, Umans JG, Mitchell RW, Leff AR, Schumacker PT. Endotoxin in vivo impairs endothelium-dependent relaxation of canine arteries in vitro. Am Rev Respir Dis 1990; 142: 1263–1267.

    Article  PubMed  CAS  Google Scholar 

  44. Schumacker PT. Peripheral vascular responses in septic shock. Chest 1991; 99: 1057–1058.

    Article  PubMed  CAS  Google Scholar 

  45. Umans JG, Wylam ME, Samsel RW, Edwards J, Schumacker PT. Effects of endotoxin in vivo on endothelial and smoothe-muscle function in rabbit and rat aorta. Am Rev Res Dis 1993; 148: 1638–1645.

    Article  CAS  Google Scholar 

  46. Strandgaard S, Olesen J, Skinhoj E, Lassen NA. Autoregulation of brain circulation in severe arterial hypertension. Br Med J 1973; 159: 507–510.

    Article  Google Scholar 

  47. Marcus ML, Harrison DG, Chilian WM, et al. Alterations in the coronary circulation in hypertrophied ventricles. Circulation 1987;75(suppl I):I-19-I-25.

    Google Scholar 

  48. Polese A, De Cesare N, Montorsi P, et al. Upward shift of the lower range of coronary flow autoregulation in hypertensive patients with hypertrophy of the left ventricle. Circulation 1991; 83: 845–853.

    Article  PubMed  CAS  Google Scholar 

  49. SUPPORT Principal Investigators. A controlled trial to improve care for seriously ill hospitalized patients. The Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT). JAMA 1995; 274: 1591–198.

    Google Scholar 

  50. Roul G, Moulichon ME, Bareiss P, et al. Prognostic factors of chronic heart failure in NYHA class II or III: value of invasive exercise haemodynamic data. Eur Heart J 1995; 16: 1387–1398.

    PubMed  CAS  Google Scholar 

  51. Williams SG, Cooke GA, Wright DJ, Parsons WJ, Riley RL, Marshall P, et al. Peak exercise cardiac power output: a direct indicator of cardiac function strongly predictive of prognosis in chronic heart failure. Eur Heart J 2001, 22: 1496–1503.

    Article  PubMed  CAS  Google Scholar 

  52. Tan LB. Cardiac function. In: Glasby MA, Huang CL-H, eds. Applied Physiology for Surgery and Critical Care. Butterworth-Heinemann, Oxford, 1995, pp. 138–150.

    Google Scholar 

  53. Bing RJ. Cardiac metabolism. Physiol Rev 1965; 45: 171.

    PubMed  CAS  Google Scholar 

  54. Rushmer RF. Cardiovascular Dynamics. WB Saunders, Philadelphia, 1970.

    Google Scholar 

  55. Lentner C, ed. Geigy Scientific Tables. Heart and Circulation. Ciba-Geigy, Basel, 1990.

    Google Scholar 

  56. Randle MJ, Morgan HE. Regulation of glucose uptake by muscle. Vitam Horm 1962; 20: 199–249.

    Article  CAS  Google Scholar 

  57. Mirsky I, Ghista DN, Sandler H, eds. Cardiac Mechanics: Physiological, Clinical and Mathematical Considerations. Wiley, New York, 1974.

    Google Scholar 

  58. Gibbs CL. Cardiac energetics. In: Langer GA, Brady AJ, eds. The Mammalian Myocardium. Wiley, New York, 1974.

    Google Scholar 

  59. Whitman G Jr, Chance B, Bode H, et al. Diagnosis and therapeutic evaluation of a pediatric case of cardiomyopathy using phosphorus-31 magnetic resonance spectroscopy. J Am Coll Cardiol 1985; 5: 745–749.

    Article  PubMed  CAS  Google Scholar 

  60. Bittl JA, Ingwall JS. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem 1985; 260: 3512–3527.

    PubMed  CAS  Google Scholar 

  61. Opie LH. The Heart: Physiology, Metabolism, Pharmacology and Therapy. Grune and Stratton, London, 1984.

    Google Scholar 

  62. Coleman HN, Sonnenblick EH, Braunwald E. Myocardial oxygen consumption associated with external work. The Fenn effect. Am J Physiol 1969; 217: 291–296.

    PubMed  CAS  Google Scholar 

  63. Rooke GA, Feigl ER. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 1982; 50: 273–286.

    Article  PubMed  CAS  Google Scholar 

  64. Gibbs CL, Mommaerts WFHM, Ricchiuti NV. Energetics of cardiac contractions. J Physiol 1967; 191: 25–46.

    PubMed  CAS  Google Scholar 

  65. Rodbard S, Williams CB, Rodbard D, et al. Myocardial tension and oxygen uptake. Circ Res 1964; 14: 139–149.

    Article  PubMed  CAS  Google Scholar 

  66. Klocke FJ, Braunwald E, Ross J Jr. Oxygen cost of electrical activation of the heart. Circ Res 1966; 18: 357.

    Article  PubMed  CAS  Google Scholar 

  67. Boerth RC, Covell JW, Pool PE, Ross J. Increased myocardial oxygen consumption and contractile state associated with increased heart rate in dogs. Circ Res 1969; 24: 725.

    Article  PubMed  CAS  Google Scholar 

  68. Gibbs CL. Cardiac energetics and the Fenn effect. Basic Res Cardiol 1987; 82 (suppl 2): 61–68.

    PubMed  Google Scholar 

  69. Sonnenblick EH, Ross J Jr, Braunwald E. Oxygen consumption of the heart. Newer concepts of its multifactoral determination. Am J Cardiol 1968; 22: 328–360.

    Article  PubMed  CAS  Google Scholar 

  70. Braunwald E, Sarnoff SJ, Case RB, Stainsby WN, Welch GH. Hemodynamic determinants of coronary flow: effect of changes in aortic pressure and cardiac output on the relationship between myocardial oxygen consumption and coronary flow. Am J Physiol 1958; 192: 157–163.

    PubMed  CAS  Google Scholar 

  71. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 1971; 27: 416–432.

    Article  PubMed  CAS  Google Scholar 

  72. Braunwald E. Myocardial oxygen consumption: the quest for its determinants and some clinical fallout. JACC 1999; 34: 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  73. Li JK-L. Comparative cardiac mechanics: LaPlace’s Law. J Theor Biol 1986; 118: 339–343.

    Article  PubMed  CAS  Google Scholar 

  74. Vik-Mo H, Mjos OD. Influence of free fatty acids on myocardial oxygen consumption and ischemic injury. Am J Cardiol 1981; 48361–365.

    Google Scholar 

  75. Brachfeld N, Scheuer J. Metabolism of glucose by the ischemic dog heart. Am J Physiol 1967; 212: 603–606.

    PubMed  CAS  Google Scholar 

  76. Danforth WH, Naegle S, Bing RJ. Effects of ischemia and reoxygenation on glycolytic reactions and adenosine triphosphate in heart muscle. Circ Res 1960; 8: 965–971.

    Article  PubMed  CAS  Google Scholar 

  77. Shea TM, Watson RM, Protrowski SF, Dermksian G, Case RB. Anaerobic myocardial metabolism. Am J Physiol 1962; 203: 463–469.

    PubMed  CAS  Google Scholar 

  78. Huckabee WE. Relationship of pyruvate and lactate during anaerobic metabolism. V. Coronary adequacy. Am J Physiol 1961; 200: 1169–1176.

    Google Scholar 

  79. Parker JO, Chiong MA, West RO, Case RB. Sequential alterations in myocardial lactate metbolism, ST segments and left ventricular function during angina induced by atrial pacing. Circulation 1969; 40: 113–131.

    Article  PubMed  CAS  Google Scholar 

  80. Kubler W. Glycolytic pathway in the myocardium. In: Muir JR, ed. Prospects in the Management of Ischaemic Heart Disease. CIBA Lab, Horsham, UK, 1972.

    Google Scholar 

  81. Green DE, Goldberger RF. Pathways of metabolism in heart muscle. Am J Med 1961; 30: 666–678.

    Article  PubMed  CAS  Google Scholar 

  82. Lehninger AL. Bioenergetics. Benjamin, New York, 1971.

    Google Scholar 

  83. Hollenberg SM, Parrillo JE. Shock. In: Fauci AS, Braunwald E, Wilson JD, et al., eds. Harrison’s Principles of Internal Medicine. 14th ed. McGraw-Hill, New York, 1998, pp. 214–222.

    Google Scholar 

  84. Bartling B, Holtz J, Darmer D. Contribution of myocyte apoptosis to myocardial infarction. Basic Res Cardiol 1998; 93: 71–84.

    Article  PubMed  CAS  Google Scholar 

  85. Nascimben L, Pauletto P, Pessina AC, Reis I, Ingwall JS. Decreased energy reserve may cause pump failure in human dilated cardiomyopathy. Circulation 1991; 84 (suppl II): II - 563.

    Google Scholar 

  86. Massie BM, Conway M, Yonge R, et al. P(31) nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol 1987; 60: 309–315.

    Article  PubMed  CAS  Google Scholar 

  87. Nascimben L, Friedrich J, Liao R, Pauleto P, Pessina AC, Ingwall JS. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Circulation 1995; 91: 1824–1833.

    Article  PubMed  CAS  Google Scholar 

  88. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974; 36: 413–459.

    Article  PubMed  CAS  Google Scholar 

  89. Oliver MF, Opie LH. Effects of glucose and fatty acids on myocardial ischemia and arrhythmias. Lancet 1994; 343: 155–158.

    Article  PubMed  CAS  Google Scholar 

  90. Liedtke AJ. Lipid burden in ischemic myocardium. J Moll Cell Cardiol 1988; 20 (suppl II): 65–74.

    Article  CAS  Google Scholar 

  91. Svedjeholm R, Hakanson E, Vanhanen I. Rationale for metabolic support with amino acids and glucose-insulin-potassium (GIK) in cardiac surgery. Ann Thorac Surg 1995; 59 (2 suppl): S15 - S22.

    Article  PubMed  CAS  Google Scholar 

  92. Svedjeholm R, Huljebrant R, Hakanson E, Vanhanen I. Glutamate and high-dose glucose-insulin-potassium (GIK) in the treatment of severe cardiac failure after cardiac operations. Ann Thorac Surg 1995; 59: S23 - S30.

    Article  PubMed  CAS  Google Scholar 

  93. Apstein CS. Increased glycolytic substrate protection improves ischemic cardiac dysfunction and reduces injury. Am Heart J 2000; 139 (suppl2); S107 - S114.

    Article  PubMed  CAS  Google Scholar 

  94. Sodi-Pallares D, Testelli M, Fishleder F. Effects of an intravenous infusion of a potassium-insulin-glucose solution on the electrocardiographic signs of myocardial infarction. Am J Cardiol 1962; 9: 166–181.

    Article  PubMed  CAS  Google Scholar 

  95. Apstein CS. Glucose-insulin-potassium for acute myocardial infarction: remarkable results from a new prospective, randomized trial. Circulation 1998; 98: 2223–2226.

    Article  PubMed  CAS  Google Scholar 

  96. Fath-Ordoubadi F, Beatt KJ. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials. Circulation 1997; 96: 1152–1156.

    Article  PubMed  CAS  Google Scholar 

  97. Malmberg K, Ryden L, Hamsten A, Herlitz J, Waldenstrom A, Wedel H. Effects on insulin treatment on cause specific one-year mortality and morbidity in diabetic patients with acute myocardial infarction: DIGAMI study group: diabetes insulin-glucose in acute myocardial infarction. Eur Heart J 1996; 17: 1337–1344.

    Article  PubMed  CAS  Google Scholar 

  98. Diaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction. The ECLA (Estudios Cardiologicos Latinoamerica) Collaborative Group. Circulation 1998; 98: 2227–2234.

    Article  PubMed  CAS  Google Scholar 

  99. Stanley AW, Moraski RE, Russell RO, et al. Effects of glucose-insulin-potassium on myocardial substrate availability and utilization in stable coronary artery disease: studies on myocardial carbohydrates, lipid and oxygen arterial-coronary sinus differences in patients with coronary artery disease. Am J Cardiol 1975; 36: 929–937.

    Article  PubMed  Google Scholar 

  100. Coleman GM, Gradinac S, Taegtmeyer H, Sweeney M, Frazier OH. Efficacy of metabolic support with glucose-insulin-potassium for left ventricular pump failure after aortocoronary bypass surgery. Circulation 1989; 80 (suppl I): I91–196.

    PubMed  CAS  Google Scholar 

  101. Gradinac S, Coleman GM, Taegtmeyer H, Sweeney MS, Frazier OH. Improved cardiac function with glucose-insulin-potassium after aortocoronary bypass grafting. Ann Thorac Surg 1989; 48: 484–489.

    Article  PubMed  CAS  Google Scholar 

  102. Svedjeholm R, Hallhagen S, Ekroth R, Joachimsson PO, Ronquist G. Dopamine and high-dose insulin infusion (glucose—insulin—potassium) after a cardiac operation: effects on myocardial metabolism. Ann Thorac Surg 1991; 51: 262–270.

    Article  PubMed  CAS  Google Scholar 

  103. Taegtmeyer H, Goodwin GW, Doenst T, Frazier OH. Substrate metabolism as a determinant for postischemic functional recovery of the heart. Am J Cardiol 1997; 80: 3A - 10A.

    Article  PubMed  CAS  Google Scholar 

  104. Donohoe JF, Venkatachalam MA, Bernard DB, Levinsky NG. Tubular leakage and obstruction after renal ischemia: structural—functional correlations. Kidney Int 1978; 13: 208–222.

    Article  PubMed  CAS  Google Scholar 

  105. Brown R, Babcock R, Talbert J, Gruenberg J, Czurak C, Campbell M. Renal function in critically ill postoperative patients: sequential assessment of creatinine osmolar and free water clearance. Crit Care Med 1980; 8: 68–72.

    Article  PubMed  CAS  Google Scholar 

  106. Rinaldo JE, Rogers RM. Adult respiratory-distress syndrome: changing concepts of lung injury and repair. N Engl J Med 1982; 306: 900–909.

    Article  PubMed  CAS  Google Scholar 

  107. Johnson G III, Henderson D, Bond RF. Morphological differences in cutaneous and skeletal muscle vasculature during compensatory and decompensatory hemorrhagic hypotension. Circ Shock 1985; 15: 111–121.

    PubMed  Google Scholar 

  108. Henning RJ, Shubin H, Weil MH. The measurement of the work of breathing for the clinical assessment of ventilator dependence. Crit Care Med 1977; 5: 264–268.

    Article  PubMed  CAS  Google Scholar 

  109. Shubin H, Weil MH. Acute elevation of serum transaminase and lactate dehydrogenase during circulatory shock. Am J Cardiol 1963; 11: 327–332.

    Article  PubMed  CAS  Google Scholar 

  110. Herlihy BL, Lefer AM. Alterations in pancreatic acinar cell organelles during circulatory shock. Circ Shock 1975; 2: 143–146.

    CAS  Google Scholar 

  111. Johansson B, Standgaard S, Lassen NA. On the pathogenesis of hypertensive encephalopathy. The hypertensive breakthrough of autoregulation of cerebral blood flow with forced vasodilatation, flow increase, and blood brain-barrier damage. Circ Res 1974; 35: 167–177.

    Google Scholar 

  112. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 1991; 68: 1560–1568.

    Article  PubMed  CAS  Google Scholar 

  113. Milnor WR. Cardiovascular Physiology. Oxford University Press, New York, 1990.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, S.G., Tzeng, B.H., Tan, LB. (2002). Cardiogenic Shock. In: Hasdai, D., Berger, P.B., Battler, A., Holmes, D.R. (eds) Cardiogenic Shock. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-154-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-154-1_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-312-1

  • Online ISBN: 978-1-59259-154-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics