Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 129 Accesses

Abstract

The nucleosome is the repeating structural unit in the chromatin. It consists of the DNA and the protein part, the histones. The protein component is assembled by the core histones H2A, H2B, H3, and H4 (1).The amino-terminal ends of the histone proteins are subject to post-translational modifications, namely, acetylation, methylation (2), phosphorylation, and ADP-ribosylation. The reversible acetylation is an important regulator of chromatin higher-order structure and its interactions with nuclear non-histone proteins (3). The level of acetylation is maintained by histone acetyltransferases (HATS) and histone deacetylases (HDACs). This chapter reviews the literature concerning the impact of histone deacetylase on chromatin structure and gene activity especially in the context of the pathogenesis and potential treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davie JR. Nuclear matrix, dynamic histone acetylation and transcriptionally active chromatin. Mol Biol Rep 1997; 24: 197–207.

    PubMed  CAS  Google Scholar 

  2. Annunziato AT, Eason MB, Perry CA. Relationship between methylation and acetylation of arginine-rich histones in cycling and arrested HeLa cells. Biochemistry 1995; 34: 2916–2924.

    PubMed  CAS  Google Scholar 

  3. Hansen JC, Tse C, Wolffe AP. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 1998; 37:17, 637–17, 641.

    Google Scholar 

  4. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 1964; 51: 786–794.

    PubMed  CAS  Google Scholar 

  5. Tse C, Hansen JC. Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry 1997; 36:11, 381–11, 388.

    Google Scholar 

  6. Moore SC, Ausio J. Major role of the histones H3–H4 in the folding of the chromatin fiber. Biochem Biophys Res Commun 1997; 230: 136–139.

    PubMed  CAS  Google Scholar 

  7. Garcia-Ramirez M, Rocchini C, Ausio J. Modulation of chromatin folding by histone acetylation. J Biol Chem 1995; 270:17, 923–17, 928.

    Google Scholar 

  8. Davie JR. The nuclear matrix and the regulation of chromatin organization and function. Int Rev Cytol 1995; 191–250.

    Google Scholar 

  9. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nudeosome core particle at 2.8 A resolution. Nature 1997; 389: 251–260.

    PubMed  CAS  Google Scholar 

  10. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996; 272: 408–411.

    PubMed  CAS  Google Scholar 

  11. Kölle D, Brosch G, Lechner T, Lusser A, Loidl P. Biochemical methods for analysis of histone deacetylases. Methods 1998; 15: 323–331.

    PubMed  Google Scholar 

  12. Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, Cannova C, Meinke PT, Colletti SL, Bednarek MA, Singh SB, Goetz MA, Dombrowski AW, Polishook JD, Schmatz DM. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 1996; 93:13, 143–13, 147.

    Google Scholar 

  13. Nare B, Allocco JJ, Kuningas R, Galuska S, Myers RW, Bednarek MA, Schmatz DM. Development of a scintillation proximity assay for histone deacetylase using a biotinylated peptide derived from histone-H4. Anal Biochem 1999; 267: 390–396.

    PubMed  CAS  Google Scholar 

  14. Hoffmann K, Söll RM, Beck-Sickinger AG, Jung M. Fluorescence-labeled octapeptides as substrates for histone deacetylase. Bioconjugate Chem 2001; 12: 51–55.

    CAS  Google Scholar 

  15. Hoffmann K, Brosch G, Loidl P, Jung M. A non-isotopic assay for histone deacetylase activity. Nucleic Acids Res 1999; 27: 2057–2058.

    PubMed  CAS  Google Scholar 

  16. Hoffmann K, Brosch G, Loidl P, Jung M. First non-radioactive assay for in vitro screening of histone deacetylase inhibitors. Pharmazie 2000; 55: 601–606.

    PubMed  CAS  Google Scholar 

  17. Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D. The dermatomyositis-specific auto-antigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 1998; 95: 279–289.

    PubMed  CAS  Google Scholar 

  18. Stockwell BR, Haggarty SJ, Schreiber SL. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem Biol 1999; 6: 71–83.

    PubMed  CAS  Google Scholar 

  19. Yang WM, Inouye C, Zeng Y, Bearss D, Seto E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 1996; 93:12, 845–12, 850.

    Google Scholar 

  20. Emiliani S, Fischle W, Van Lint C, Al Abed Y, Verdin E. Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci USA 1998; 95: 2795–2800.

    PubMed  CAS  Google Scholar 

  21. Yang WM, Yao YL, Sun JM, Davie JR, Seto E. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 1997; 272:28, 001–28, 007.

    Google Scholar 

  22. Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johanson K, Sung CM, Liu R, Winkler J. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem 2000; 275:15, 254–15, 264.

    Google Scholar 

  23. Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci USA 1999; 96: 4868–4873.

    PubMed  CAS  Google Scholar 

  24. Kao HY, Downes M, Ordentlich P, Evans RM. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dey 2000; 14: 55–66.

    CAS  Google Scholar 

  25. Gray SG, Ekstrom TJ. The human histone deacetylase family. Exp Cell Res 2001; 262: 75–83.

    PubMed  CAS  Google Scholar 

  26. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410: 227–230.

    PubMed  CAS  Google Scholar 

  27. Imai S-I, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature Genet 2000; 403: 795–800.

    CAS  Google Scholar 

  28. Mahlknecht U, Hoelzer D, Bucala R, Verdin E. Cloning and characterization of the murine histone deacetylase (HDAC3). Biochem Biophys Res Commun 1999; 263: 482–490.

    PubMed  CAS  Google Scholar 

  29. Lechner T, Lusser A, Brosch G, Eberharter A, Goralik Schramel M, Loidl P. A comparative study of histone deacetylases of plant, fungal and vertebrate cells. Biochim Biophys Acta 1996; 1296: 181–188.

    PubMed  Google Scholar 

  30. Joshi MB, Lin DT, Chiang PH, Goldman ND, Fujioka H, Aikawa M, Syin C. Molecular cloning and nuclear localization of a histone deacetylase homologue in Plasmodium falciparum. Mol Biochem Parasitol 1999; 99: 11–19.

    PubMed  CAS  Google Scholar 

  31. Lusser A, Brosch G, Loidl A, Haas H, Loidl P. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 1997; 277: 88–91.

    PubMed  CAS  Google Scholar 

  32. Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 2000; 184: 1–16.

    PubMed  CAS  Google Scholar 

  33. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999; 401: 188–193.

    PubMed  CAS  Google Scholar 

  34. Leipe DD, Landsman D. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res 1997; 25: 3693–3697.

    PubMed  CAS  Google Scholar 

  35. Pazin MJ, Kadanoga JT. What’s up and down with histone deacetylation and transcription? Cell 1997; 86: 325–328.

    Google Scholar 

  36. Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 1999; 236: 197–208.

    PubMed  CAS  Google Scholar 

  37. Lee JS, Galvin KM, See RH, Eckner R, Livingston D, Moran E, Shi Y. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by EIA-associated protein p300 [published erratum appears in Genes Dey 1995; 9:1948–9]. Genes Dev 1995; 9:1188–1198.

    Google Scholar 

  38. Kadosh D, Struhl K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 1997; 89: 365–371.

    PubMed  CAS  Google Scholar 

  39. Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 1997; 89: 349–356.

    PubMed  CAS  Google Scholar 

  40. Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 1998; 392: 831–835.

    PubMed  CAS  Google Scholar 

  41. McArthur GA, Laherty CD, Queva C, Hurlin PJ, Loo L, James L, Grandori C, Gallant P, Shiio Y, Hokanson WC, Bush AC, Cheng PF, Lawrence QA, Pulverer B, Koskinen PJ, Foley KP, Ayer DE, Eisenman RN. The Mad protein family links transcriptional repression to cell differentiation. Cold Spring Harb Symp Quant Biol 1998; 63: 423–433.

    PubMed  CAS  Google Scholar 

  42. Yu J, Angelin-Duclos C, Greenwood J, Liao J, Calame K. Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol Cell Biol 2000; 20: 2592–2603.

    PubMed  CAS  Google Scholar 

  43. Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F, Tyner AL. Myc represses the p21 (WAF1 /CIPI) promoter and interacts with Spl/Sp3. Proc Natl Acad Sci USA 2001; 98: 4510–4515.

    PubMed  CAS  Google Scholar 

  44. Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 1996; 87: 85–94.

    PubMed  CAS  Google Scholar 

  45. Nicolas E, Morales V, Magnaghi-Jaulin L, Harel-Bellan A, Richard-Foy H, Trouche D. RbAp48 belongs to the histone deacetylase complex that associates with the retinoblastoma protein. J Biol Chem 2000; 275: 9797–9804.

    PubMed  CAS  Google Scholar 

  46. You A, Tong JK, Grozinger CM, Schreiber SL. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc Natl Acad Sci USA 2001; 98: 1454–1458.

    PubMed  CAS  Google Scholar 

  47. Laherty CD, Billin AN, Lavinsky RM, Yochum GS, Bush AC, Sun JM, Mullen TM, Davie JR, Rose DW, Glass CK, Rosenfeld MG, Ayer DE, Eisenman RN. SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol Cell 1998; 2: 33–42.

    PubMed  CAS  Google Scholar 

  48. Xue YT, Wong JM, Moreno GT, Young MK, Cote J, Wang WD. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 1998; 2: 851–861.

    PubMed  CAS  Google Scholar 

  49. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 1998; 395: 917–921.

    PubMed  CAS  Google Scholar 

  50. Brehm A, Kouzarides T. Retinoblastoma protein meets chromatin. Trends Biochem Sci 1999; 24: 142–145.

    PubMed  CAS  Google Scholar 

  51. Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell 1998; 92: 463–473.

    PubMed  CAS  Google Scholar 

  52. Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, Troalen F, Trouche D, Harel-Bellan A. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 1998; 391: 601–605.

    PubMed  CAS  Google Scholar 

  53. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998; 391: 597–601.

    PubMed  CAS  Google Scholar 

  54. Kim GD, Choi YH, Dimtchev A, Jeong SJ, Dritschilo A, Jung M. Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase. J Biol Chem 1999; 274:31, 127–31, 130.

    Google Scholar 

  55. Chen YM, Lee WH, Chew HK. Emerging roles of BRCA1 in transcriptional regulation and DNA repair. J Cell Physiol 1999; 181: 385–392.

    PubMed  CAS  Google Scholar 

  56. Yarden RI, Brody LC. BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci USA 1999; 96: 4983–4988.

    PubMed  CAS  Google Scholar 

  57. Zhou X, Richon VM, Wang AH, Yang XJ, Rifkind RA, Marks PA. Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras. Proc Natl Acad Sci USA 2000; 97:14, 329–14, 333.

    Google Scholar 

  58. Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E. Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet 2000; 26: 349–353.

    PubMed  CAS  Google Scholar 

  59. Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14–3–3–dependent cellular localization. Proc Natl Acad Sci USA 2000; 97: 7835 – 7840.

    PubMed  CAS  Google Scholar 

  60. Lee HJ, Chun M, Kandror KV. Tip60 and HDAC7 interact with the endothelin receptor A and may be involved in downstream signaling. J Biol Chem 2001; 276:16, 597–16, 600.

    Google Scholar 

  61. Koenig RJ. Thyroid hormone receptor coactivators and corepressors. Thyroid 1998; 8: 703713.

    Google Scholar 

  62. Garcia Villalba P, Jimenez Lara AM, Castillo AI, Aranda A. Histone acetylation influences thyroid hormone and retinoic acid-mediated gene expression. DNA Cell Biol 1997; 16: 421–431.

    Google Scholar 

  63. Minucci S, Pelicci PG. Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin Cell Dey Biol 1999; 10: 215–225.

    CAS  Google Scholar 

  64. Bollag W, Holdener EE. Retinoids in cancer prevention and therapy. Ann Oncol 1992; 3: 513–526.

    PubMed  CAS  Google Scholar 

  65. DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M. BRG- 1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol Cell Biol 2000; 20: 7541–7549.

    PubMed  CAS  Google Scholar 

  66. Schmidt K, Gust R, Jung M. Inhibitors of histone deacetylase suppress the growth of MCF17 breast cancer cells. Arch Pharm Pharm Med Chem 1999; 332: 353–357.

    CAS  Google Scholar 

  67. Yang X, Ferguson AT, Nass SJ, Phillips DL, Butash KA, Wang SM, Herman JG, Davidson NE. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res 2000; 60: 6890–6894.

    PubMed  CAS  Google Scholar 

  68. Gray SG, Eriksson T, Ekstrom TJ. Methylation, gene expression and the chromatin connection in cancer. Int J Mol Med 1999; 4: 333–350.

    PubMed  CAS  Google Scholar 

  69. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet 1998; 19: 187–191.

    PubMed  CAS  Google Scholar 

  70. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393: 386–389.

    PubMed  CAS  Google Scholar 

  71. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet 1999; 23: 58–61.

    PubMed  CAS  Google Scholar 

  72. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90: 595–606.

    PubMed  CAS  Google Scholar 

  73. Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, Wu CW. Histone deacetylases specifically down-regulate p53-dependent gene activation. JBiol Chem 2000; 275:20, 436–20, 443.

    Google Scholar 

  74. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000; 408: 377–381.

    PubMed  CAS  Google Scholar 

  75. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. E2F family members are differentially regulated by reversible acetylation. JBiol Chem 2000; 275:10, 887–10, 892.

    Google Scholar 

  76. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG. Fusion proteins of the retinoic acid receptor-A recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–818.

    PubMed  CAS  Google Scholar 

  77. Lin RJ, Nagy L, Inoue S, Shao W, Miller VH, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 811–814.

    PubMed  CAS  Google Scholar 

  78. Warrell RP Jr, He LZ, Richon V, Calleja E, Pandolfi PP. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998; 90: 1621–1625.

    PubMed  CAS  Google Scholar 

  79. Fenrick R, Hiebert SW. Role of histone deacetylases in acute leukemia. J Cell Biochem Suppl 1998; 31: 194–202.

    Google Scholar 

  80. Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998; 18: 7176–7184.

    PubMed  CAS  Google Scholar 

  81. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/ HDAC1 complex. Proc Natl Acad Sci USA 1998; 95:10, 860–10, 865.

    Google Scholar 

  82. Ferrara FF, Fazi F, Bianchini A, Padula F, Gelmetti V, Minucci S, Mancini M, Pelicci PG, Lo Coco F, Nervi C. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 2001; 61: 2–7.

    PubMed  Google Scholar 

  83. Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar MA, Landsberger N, Nervi C, Pelicci PG. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 2000; 5: 811–820.

    PubMed  CAS  Google Scholar 

  84. Dhordain P, Albagli O, Lin RJ, Ansieau S, Quief S, Leutz A, Kerckaert JP, Evans RM, Leprince D. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3BCL6 oncoprotein. Proc Natl Acad Sci USA 1997; 94:10, 762–10, 767.

    Google Scholar 

  85. Dhordain P, Lin RJ, Quief S, Lantoine D, Kerckaert JP, Evans RM, Albagli O. The LAZ3 (BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res 1998; 26: 4645–4651.

    PubMed  CAS  Google Scholar 

  86. Faretta M, Di Croce L, Pellici PG. Effects of the acute myeloid leukemia-associated fusion proteins on nuclear architecture. Semin Hematol 2001; 38: 42–53.

    PubMed  CAS  Google Scholar 

  87. Ciana P, Braliou GG, Demay FG, von Lindern M, Barettino D, Beug H, Stunnenberg HG. Leukemic transformation by the v-ErbA oncoprotein entails constitutive binding to and repression of an erythroid enhancer in vivo. EMBO J 1998; 17: 7382–7394.

    PubMed  CAS  Google Scholar 

  88. Urnov FD, Yee J, Sachs L, Collingwood TN, Bauer A, Beug H, Shi YB, Wolffe AP. Targeting of N-CoR and histone deacetylase 3 by the oncoprotein v-erbA yields a chromatin infrastructure-dependent transcriptional repression pathway. EMBO J 2000; 19: 4074–4090.

    PubMed  CAS  Google Scholar 

  89. Nomura T, Khan MM, Kaul SC, Dong HD, Wadhwa R, Colmenares C, Kohno I, Ishii S. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dey 1999; 13: 412–423.

    CAS  Google Scholar 

  90. Tokitou F, Nomura T, Khan MM, Kaul SC, Wadhwa R, Yasukawa T, Kohno I, Ishii S. Viral ski inhibits retinoblastoma protein (Rb)-mediated transcriptional repression in a dominant negative fashion. J Biol Chem 1999; 274: 4485–4488.

    PubMed  CAS  Google Scholar 

  91. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J 1999; 18: 2449–2458.

    PubMed  CAS  Google Scholar 

  92. Archer SY, Meng S, Shei A, Hodin RA. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 1998; 95: 6791–6796.

    PubMed  CAS  Google Scholar 

  93. Kim YB, Ki SW, Yoshida M Horinouchi S. Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. JAntibiot (Tokyo) 2000; 53: 1191–1200.

    CAS  Google Scholar 

  94. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 2000; 97:10, 014–10, 019.

    Google Scholar 

  95. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB, Grant S. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bc1–2/Bc1-X-L, c-Jun, and p21(CIP1), but independent of p53. Oncogene 1999; 18: 7016–7025.

    PubMed  CAS  Google Scholar 

  96. Davis T, Kennedy C, Chiew YE, Clarke CL, deFazio A. Histone deacetylase inhibitors decrease proliferation and modulate cell cycle gene expression in normal mammary epithelial cells. Clin Cancer Res 2000; 6: 4334–4342.

    PubMed  CAS  Google Scholar 

  97. Maeda T, Towatari M, Kosugi H, Saito H. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 2000; 96: 3847–3856.

    PubMed  CAS  Google Scholar 

  98. Guang RJ, Ford JL, Fu YN, Li YZ, Shaw LM, Pardee AB. Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer. Cancer Res 2000; 60: 749–755.

    Google Scholar 

  99. Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res 1997; 57: 3697–3707.

    PubMed  CAS  Google Scholar 

  100. Huang, L, Pardee AB. Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med 2000; 6: 849–866.

    PubMed  CAS  Google Scholar 

  101. Lee BI, Park SH, Kim JW, Sausville EA, Kim HT, Nakanishi O, Trepel JB, Kim SJ. MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells. Cancer Res 2001; 61: 931–934.

    PubMed  CAS  Google Scholar 

  102. Jung M. Inhibitors of histone deacetylase as new anticancer agents. Curr Med Chem 2001; 8: 1505–1511.

    PubMed  CAS  Google Scholar 

  103. Macleod AR, Li Z, Besterman JM. Inhibition of histone deacetylase. WO 00 /71703 A2. 2000.

    Google Scholar 

  104. Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 1982; 42: 65–82.

    PubMed  CAS  Google Scholar 

  105. Novogrodsky A, Dvir A, Ravid A, Shkolnik T, Stenzel KH, Rubin AL, Zaizov R. Effect of polar organic compounds on leukemic cells. Butyrate-induced partial remission of acute myelogenous leukemia in a child. Cancer 1983; 51: 9–14.

    PubMed  CAS  Google Scholar 

  106. Miller AA, Kurschel E, Osieka R, Schmidt CG. Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Cancer Clin Oncol 1987; 23: 1283–1287.

    PubMed  CAS  Google Scholar 

  107. Pouillart PR. Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sci 1998; 63: 1739–1760.

    PubMed  CAS  Google Scholar 

  108. Newmark HL, Young CW. Butyrate and phenylacetate as differentiating agents: practical problems and opportunities. J Cell Biochem Suppl 1995; 22: 247–253.

    PubMed  CAS  Google Scholar 

  109. Lea MA, Tulsyan N. Discordant effects of butyrate analogues on erythroleukemia cell proliferation, differentiation and histone deacetylase. Anticancer Res 1995; 15: 879–883.

    PubMed  CAS  Google Scholar 

  110. Maestri NE, Brusilow SW, Clissold DB, Bassett SS. Long-term treatment of girls with orni-thine transcarbamylase deficiency. N Engl J Med 1996; 335: 855–859.

    PubMed  CAS  Google Scholar 

  111. l 1. Collins AF, Pearson HA, Giardina P, McDonagh KT, Brusilow SW, Dover GJ. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood 1995; 85: 43–49.

    Google Scholar 

  112. Aviram A, Zimrah Y, Shaklai M, Nudelman A, Rephaeli A. Comparison between the effect of butyric-acid and its prodrug pivaloyloxymethylbutyrate on histones hyperacetylation in an HL-60 leukemic-cell line. lilt J Cancer 1994; 56: 906–909.

    CAS  Google Scholar 

  113. Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K. A new antifungal antibiotic, trichostatin. J Antibiot 1976; 29: 1–6.

    PubMed  CAS  Google Scholar 

  114. Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990; 265:17, 174–17, 179.

    Google Scholar 

  115. Yoshida M, Hoshikawa Y, Koseki K, Mori K, Beppu T. Structural specificity for biological activity of trichostatin A, a specific inhibitor of mammalian cell cycle with potent differentiation-inducing activity in Friend leukemia cells. JAntibiot 1990; 43: 1101–1106.

    CAS  Google Scholar 

  116. Mori K, Koseki K. Synthesis of trichostatin A, a potent differentiation inducer of Friend leukemic cells, and its antipode. Tetrahedron 1988; 44: 6013–6020.

    CAS  Google Scholar 

  117. Huang HJ, Reed CP, Zhang JS, Shridhar V, Wang L, Smith DI. Carboxypeptidase A3 (CPA3): a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cells. Cancer Res 1999; 59: 2981–2988.

    PubMed  CAS  Google Scholar 

  118. Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 2001; 7: 971–976.

    PubMed  CAS  Google Scholar 

  119. Jung M, Hoffmann K, Brosch G, Loidl P. Analogues of trichostatin A and trapoxin B as histone deacetylase inhibitors. Bioorg Med Chem Lett 1997; 7: 1655–1658.

    CAS  Google Scholar 

  120. Jung M, Brosch G, Kölle D, Scherf H, Gerhäuser C, Loidl P. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J Med Chem 1999; 42: 4669–4679.

    PubMed  CAS  Google Scholar 

  121. Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S. Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 1999; 18: 2461–2470.

    PubMed  CAS  Google Scholar 

  122. Su GH, Sohn TA, Ryu B, Kern SE. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res 2000; 60: 31373142.

    Google Scholar 

  123. Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetra-peptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 1993; 268:22, 429–22, 435.

    Google Scholar 

  124. Brosch G, Ransom R, LechnerT, Walton JD, Loidl P. Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 1995; 7: 1941 1950.

    Google Scholar 

  125. Taunton J, Collins J, Schreiber SL. Synthesis of natural and modified trapoxins, useful reagents for exploring histone deacetylase function. JAm Chem Soc 1996; 118:10, 412–10, 422.

    Google Scholar 

  126. Meinke PT, Rattray SJ, Schmatz DM. Antiprotozoal cyclic tetrapeptides. US 5,922, 837. 1999.

    Google Scholar 

  127. Mori H, Abe F, Yoshimura S, Takase S, Hino M. Inhibitor of histone deacetylase. WO 00/ 08048. 2000.

    Google Scholar 

  128. Nishino N, Yoshida M, Horinouchi S, Komatsu Y, Mimoto T. Novel cyclic tetrapeptide derivatives and medicinal use thereof. WO 99 /1 1659. 1999.

    Google Scholar 

  129. Tomizaki K-Y, Kato T, Nishino N, Yoshida M, Komatsu Y. Histone deacetylase inhibitors based on trapoxin B. Pept Sci 1999; 35: 181–184.

    Google Scholar 

  130. Colletti SL, Li C, Fisher MH, Wyvratt MJ, Meinke PT. Tryptophan-replacement and indole-modified apicidins: synthesis of potent and selective antiprotozoal agents. Tetrahedron Lett 2000; 41: 7825–7829.

    CAS  Google Scholar 

  131. Meinke PT, Colletti SL, Doss G, Myers RM, Gurnett AM, Dulski PM, Darkin-Rattray SJ, Allocco JJ, Galuska S, Schmatz DM, Wyvratt MJ, Fisher MH. Synthesis of apicidin-derived quinolone derivatives: parasite-selective histone deacetylase inhibitors and antiproliferative agents. J Med Chem 2000; 43: 4919–4922.

    PubMed  CAS  Google Scholar 

  132. Meinke PT, Coletti SL, Ayer MB, Darkin-Rattray SJ, Myers RM, Schmatz DM, Wyvratt MJ, Fisher MH. Synthesis of side chain modified apicidin derivatives: potent mechanism-based histone deacetylase inhibitors. Tetrahedron Lett 2000; 41: 7831–7835.

    CAS  Google Scholar 

  133. Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW, Lee HW. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cipl and gelsolin. Cancer Res 2000; 60: 6068–6074.

    PubMed  CAS  Google Scholar 

  134. Kim MS, Son MW, Kim WB, In Park Y, Moon A. Apicidin, an inhibitor of histone deacetylase, prevents H-ras-induced invasive phenotype. Cancer Lett 2000; 157: 23–30.

    PubMed  CAS  Google Scholar 

  135. Masuoka Y, Shin-Ya K, Kim YB, Yoshida M, Nagai K, Suzuki K, Hayakawa Y, Seto H. Diheteropeptin, a new substance with TGF-beta-like activity, produced by a fungus, Diheterospora chlamydosporia. I. Production, isolation and biological activities. JAntibiot (Tokyo) 2000; 53: 788–792.

    CAS  Google Scholar 

  136. Kwon HJ, Owa T, Hassig CA, Shimada J, Schreiber SL. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci USA 1998; 95: 3356–3361.

    PubMed  CAS  Google Scholar 

  137. Marks PA, Richon VM, Rifkind RA. Cell cycle regulatory proteins are targets for induced differentiation of transformed cells: molecular and clinical studies employing hybrid polar compounds. Int J Hematol 1996; 63: 1–17.

    PubMed  CAS  Google Scholar 

  138. Marks PA, Rifkind RA. Hexamethylene bisacetamide-induced differentiation of transformed cells: molecular and cellular effects and therapeutic application. Int J Cell Cloning 1988; 6: 230–240.

    PubMed  CAS  Google Scholar 

  139. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 1998; 95: 3003–3007.

    PubMed  CAS  Google Scholar 

  140. Cohen LA, Amin S, Marks PA, Rifkind RA, Desai D, Richon VM. Chemoprevention of carcinogen-induced mammary tumorigenesis by the hybrid polar cytodifferentiation agent, suberanilohydroxamic acid (SAHA). Anticancer Res 1999; 19: 4999–5006.

    PubMed  CAS  Google Scholar 

  141. Phase I Study of Suberoylanilide Hydroxamic Acid (SAHA) in Patients With Advanced Solid Tumors. http://cancernet.nci.nih.gov/cgi-bin/srchcgi.exe?TYPE=searchandDBID= allprotocolandZUI=199_14964andPASSTHRU=%3aip%3a148%2e84%2e4%2e60%3a%3 aprof%3a: ip: 148.84.4.60:prof:: recno:1: andSFMT=prot_summary/1/0/0. 05/2000.

    Google Scholar 

  142. Butler LM, Webb Y, Agus DB, Higgins B, Tolentino TR, Kutko MC, LaQuaglia MP, Drobnjak M, Cordon-Cardo C, Scher HI, Breslow R, Richon VM, Rifkind RA, Marks PA. Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. Clin Cancer Res 2001; 7: 962–970.

    PubMed  CAS  Google Scholar 

  143. Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 2000; 11: 2069–2083.

    PubMed  CAS  Google Scholar 

  144. Nakayima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 1998; 241: 126–133.

    Google Scholar 

  145. Rajgolikar G, Chan KK, Wang HC. Effects of a novel antitumor depsipeptide, FR901228, on human breast cancer cells. Breast Cancer Res Treat 1998; 51: 29–38.

    PubMed  CAS  Google Scholar 

  146. Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagosklonny MV, Bates SE. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer 2000; 83: 817–825.

    CAS  Google Scholar 

  147. Marshall JL, Dahut WL, Rizvi N, Wainer IW, Chassaing C, Figiuiera M, Hawkins MJ. In: 10th NCI-EORTC-Symposium on new drugs in cancer therapy. Amsterdam, 1998.

    Google Scholar 

  148. Li KW, Wu J, Xing W, Simon JA. Total synthesis of the antitumor depsipeptide FR-901,228. JAm Chem Soc 1996; 118: 7237–7238.

    CAS  Google Scholar 

  149. Lea MA, Randolph VM, Patel M. Increased acetylation of histones induced by diallyl disulfide and structurally related molecules. Int J Oncol 1999; 15: 347–352.

    PubMed  CAS  Google Scholar 

  150. Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y, Yamashita T, Nakanishi O. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. JMed Chem 1999; 42: 3001–3003.

    CAS  Google Scholar 

  151. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O. A synthetic inhibitor of histone deacetylase, MS-27–275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999; 96: 4592–4597.

    PubMed  CAS  Google Scholar 

  152. el Beltagi HM, Martens AC, Lelieveld P, Haroun EA, Hagenbeek A. Acetyldinaline: a new oral cytostatic drug with impressive differential activity against leukemic cells and normal stem cells-preclinical studies in a relevant rat model for human acute myelocytic leukemia. Cancer Res 1993; 53: 3008–3014.

    PubMed  Google Scholar 

  153. Perez LB, Bair K, Dean K, Green M, Lamberson C, Remiszewski SW, Sambucetti LC. Psammaplin and its analogues as novel inhibitors of histone deacetylase. Proc Am Assoc Cancer Res 2001; 42: 927.

    Google Scholar 

  154. Minucci S, Horn V, Bhattacharyya N, Russanova V, Ogryzko VV, Gabriele L, Howard BH, Ozato K. A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Proc Natl Acad Sci USA 1997; 94:11, 295–11, 300.

    Google Scholar 

  155. Coffey DC, Kutko MC, Glick RD, Butler LM, Heller G, Rifkind RA, Marks PA, Richon VM, La Quaglia MP. The histone deacetylase inhibitor, CBHA, inhibits growth of human neuro-blastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res 2001; 61: 3591–3594.

    PubMed  CAS  Google Scholar 

  156. Chen WY, Bailey EC, McCune SL, Dong JY, Townes TM. Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase. Proc Natl Acad Sci USA 1997; 94: 5798–5803.

    PubMed  CAS  Google Scholar 

  157. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schubel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001; 10: 687–692.

    PubMed  CAS  Google Scholar 

  158. Zhu WG, Lakshmanan RR, Beal MD, Otterson GA. DNA methyltransferase inhibition enhances apoptosis induced by histone deactylase inhibitors. Cancer Res 2001; 61: 1327–1333.

    PubMed  CAS  Google Scholar 

  159. Blagosklonny MV, Robey R, Bates S, Fojo T. Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest 2000; 105: 533–539.

    PubMed  CAS  Google Scholar 

  160. Cui YH, Konig J, Buchholz U, Spring H, Leier I, Keppler D. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 1999; 55: 929–937.

    PubMed  CAS  Google Scholar 

  161. Johnson CA, Padget K, Austin CA, Turner BM. Deacetylase activity associates with topoisomerase II and is necessary for etoposide-induced apoptosis. J Biol Chem 2001; 276: 4539–4542.

    PubMed  CAS  Google Scholar 

  162. Redner RL, Wang J, Liu JM. Chromatin remodeling and leukemia: new therapeutic paradigms. Blood 1999; 94: 417–428.

    PubMed  CAS  Google Scholar 

  163. Davie JR, Chadee DN. Regulation and regulatory parameters of histone modifications. J Cell Biochem 1998; Suppl. 30/31:203–213.

    Google Scholar 

  164. Torchia J, Glass C, Rosenfeld MG. Co-activators and co-repressors in the integration of transcriptional responses. Curr Opinion Cell Biol 1998; 10: 373–383.

    PubMed  CAS  Google Scholar 

  165. Jacobson S, Pillus L. Modifying chromatin and concepts of cancer. Curr Opin Genet Dev 1999; 9: 175–184.

    PubMed  CAS  Google Scholar 

  166. Davie JR, Samuel SK, Spencer VA, Holth LT, Chadee DN, Peltier CP, Sun JM, Chen HY, Wright JA. Organization of chromatin in cancer cells: role of signalling pathways. Biochem Cell Biol 1999; 77: 265–275.

    PubMed  CAS  Google Scholar 

  167. Kizaki M, Fukuchi Y, Ikeda Y. A novel retinoic acid-resistant acute promyelocytic leukemia model in vitro and in vivo (review). Int J Mol Med 1999; 4: 359–364.

    PubMed  CAS  Google Scholar 

  168. Lania L, Majello B, Napolitano G. Transcriptional control by cell-cycle regulators: a review. J Cell Physiol 1999; 179: 134–141.

    PubMed  CAS  Google Scholar 

  169. Thormeyer D, Baniahmad A. The v-erbA oncogene (review). IntJMol Med 1999; 4: 351–358.

    CAS  Google Scholar 

  170. Davie JR, Spencer VA. Signal transduction pathways and the modification of chromatin structure. Prog Nucleic Acid Res Mol Biol 2000; 65: 299–340.

    Google Scholar 

  171. Zwiebel JA. New agents for acute myelogenous leukemia. Leukemia 2000; 14: 488–490.

    PubMed  CAS  Google Scholar 

  172. Gore SD, Carducci MA. Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin Investig Drugs 2000; 9: 2923–2934.

    PubMed  CAS  Google Scholar 

  173. Weidle UH, Grossmann A. Inhibition of histone deacetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res 2000; 20: 1471–1485.

    PubMed  CAS  Google Scholar 

  174. Nervi C, Borello U, Fazi F, Buffa V, Pelicci PG, Cossu G. Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis without apparent toxicity. Cancer Res 2001; 61: 1247–1249.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jung, M. (2002). Histone Deacetylases. In: La Thangue, N.B., Bandara, L.R. (eds) Targets for Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-153-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-153-4_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-263-6

  • Online ISBN: 978-1-59259-153-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics