Skip to main content

Nuclear β-Catenin Signaling as a Target for Anticancer Drug Development

  • Chapter
Targets for Cancer Chemotherapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 118 Accesses

Abstract

β-Catenin is a multifunctional protein that acts as a component of the adherens junction regulating homotypic cell—cell adhesion and as a co-activator of the transcription of lymphoid enhancer binding factor/T cell-specific factor (LEF/ TCF) target genes (1–3). β-Catenin was first identified as a 92–94 kDa protein associated with the cytoplasmic tail of the E-cadherin adhesion protein (4, 5). At that time, two other members of the catenin family, α and γ catenin, were also isolated in association with E-cadherin (6). The name catenin is derived from the Latin catena or chain, because the catenins were thought to link E-cadherin and the cytoskeleton (7). This hypothesis was substantiated when it was shown that the ability of E-cadherin to function as a mediator of homotypic cell—cell interactions is dependent on catenins (8–11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000; 11 (4): 273–282.

    PubMed  CAS  Google Scholar 

  2. Ben-Ze’ev A, Shtutman M, Zhurinsky J. The integration of cell adhesion with gene expression: the role of beta-catenin. Exp Cell Res 2000; 261 (1): 75–82.

    PubMed  Google Scholar 

  3. Zhurinsky J, Shtutman M, Ben-Ze’ev A. Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 2000; 113 (Pt 18): 3127–3139.

    PubMed  CAS  Google Scholar 

  4. McCrea PD, Gumbiner BM. Purification of a 92-kDa cytoplasmic protein tightly associated with the cell-cell adhesion molecule E-cadherin (uvomorulin). Characterization and extractability of the protein complex from the cell cytostructure. JBiol Chem 1991; 266 (7): 4514–4520.

    CAS  Google Scholar 

  5. Nagafuchi A, Takeichi M. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul 1989; 1 (1): 37–44.

    PubMed  CAS  Google Scholar 

  6. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989; 8 (6): 1711–1717.

    PubMed  CAS  Google Scholar 

  7. Ozawa M, Ringwald M, Kemler R. Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci USA 1990; 87 (11): 4246–4250.

    PubMed  CAS  Google Scholar 

  8. Butz S, Kemler R. Distinct cadherin-catenin complexes in Ca(2+)-dependent cell-cell adhesion. FEBS Lett 1994; 355 (2): 195–200.

    PubMed  CAS  Google Scholar 

  9. Hinck L, Nathke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol 1994; 125 (6): 1327–1340.

    PubMed  CAS  Google Scholar 

  10. Jou TS, Stewart DB, Stappert J, Nelson WJ, Mans JA. Genetic and biochemical dissection of protein linkages in the cadherin-catenin complex. Proc Natl Acad Sci USA 1995; 92 (11): 5067–5071.

    PubMed  CAS  Google Scholar 

  11. Nathke IS, Hinck L, Swedlow JR, PapkoffJ, Nelson WJ. Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J Cell Biol 1994; 125 (6): 1341–1352.

    PubMed  CAS  Google Scholar 

  12. McCrea PD, Turck CW, Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 1991; 254 (5036): 1359–1361.

    PubMed  CAS  Google Scholar 

  13. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103 (2): 311–320.

    PubMed  CAS  Google Scholar 

  14. Roose J, Clevers H. TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta 1999; 1424 (2–3): M23 - M37.

    PubMed  CAS  Google Scholar 

  15. Barker N, Clevers H. Catenins, Wnt signaling and cancer. Bioessays 2000; 22 (11): 961–965.

    PubMed  CAS  Google Scholar 

  16. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science 2000; 287 (5458): 1606–1609.

    PubMed  CAS  Google Scholar 

  17. Polakis P. Wnt signaling and cancer. Genes Dey 2000; 14 (15): 1837–1851.

    CAS  Google Scholar 

  18. Sieber OM, Tomlinson IP, Lamlum H. The adenomatous polyposis coli (APC) tumour suppressor-genetics, function and disease. Mol Med Today 2000; 6 (12): 462–469.

    PubMed  CAS  Google Scholar 

  19. Morin PJ. Beta-catenin signaling and cancer. Bioessays 1999; 21 (12): 1021–1030.

    PubMed  CAS  Google Scholar 

  20. Funayama N, Fagotto F, McCrea P, Gumbiner BM. Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling. J Cell Biol 1995; 128 (5): 959–968.

    PubMed  CAS  Google Scholar 

  21. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382 (6592): 638–642.

    PubMed  CAS  Google Scholar 

  22. Beavon IRG. The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur J Cancer 2000; 36: 1607–1620.

    PubMed  CAS  Google Scholar 

  23. Chung DC. The genetic basis of colorectal cancer: insights into critical pathways of tumori-genesis. Gastroenterology 2000; 119 (3): 854–865.

    PubMed  CAS  Google Scholar 

  24. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998; 153 (2): 333–339.

    PubMed  CAS  Google Scholar 

  25. Mareel M, Boterberg T, Noe V, Van Hoorde L, Vermeulen S, Bruyneel E, Bracke M. E-cadherin/catenin/cytoskeleton complex: a regulator of cancer invasion. J Cell Physiol 1997; 173 (2): 271–274.

    PubMed  CAS  Google Scholar 

  26. Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dey 1999; 9 (1): 15–21.

    CAS  Google Scholar 

  27. Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 2000; 87 (8): 992–1005.

    PubMed  CAS  Google Scholar 

  28. Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J2000; 19(8):1839–1850.

    Google Scholar 

  29. Miyagishi M, Fujii R, Hatta M, Yoshida E, Araya N, Nagafuchi A, Ishihara S, Nakajima T, Fukamizu A. Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. JBiol Chem 2000; 275(45):35,170–35,175.

    Google Scholar 

  30. Sun Y, Kolligs FT, Hottiger MO, Mosavin R, Fearon ER, Nabel GJ. Regulation of beta-catenin transformation by the p300 transcriptional coactivator. Proc Natl Acad Sci USA 2000; 97(23):12,613–12,618.

    Google Scholar 

  31. Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P. Regulation of intracellular betacatenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Nail Acad Sci USA 1995; 92 (7): 3046–3050.

    CAS  Google Scholar 

  32. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK-3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 1996; 272 (5264): 1023–1026.

    PubMed  CAS  Google Scholar 

  33. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK-3beta. Science 1998; 280 (5363): 596–599.

    PubMed  CAS  Google Scholar 

  34. Akiyama Y, Nagasaki H, Yagi KO, Nomizu T, Yuasa Y. Beta-catenin and adenomatous polyposis coli (APC) mutations in adenomas from hereditary non-polyposis colorectal cancer patients. Cancer Lett 2000; 157 (2): 185–191.

    PubMed  CAS  Google Scholar 

  35. Seidensticker MJ, Behrens J. Biochemical interactions in the wnt pathway. Biochim Biophys Acta 2000; 1495 (2): 168–182.

    PubMed  CAS  Google Scholar 

  36. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. Beta-catenin is a target for the ubiquitinproteasome pathway. EMBO J 1997; 16 (13): 3797–3804.

    PubMed  CAS  Google Scholar 

  37. Barth AI, Nathke IS, Nelson WJ. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 1997; 9 (5): 683–690.

    PubMed  CAS  Google Scholar 

  38. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 1997; 272(40):24,73524,738.

    Google Scholar 

  39. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 1999; 9 (4): 207–210.

    PubMed  CAS  Google Scholar 

  40. Rubinfeld B, Albert 1, Porfiri E, Munemitsu S, Polakis P. Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res 1997; 57 (20): 4624–4630.

    PubMed  CAS  Google Scholar 

  41. Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 1998; 58 (6): 1130–1134.

    PubMed  CAS  Google Scholar 

  42. Polakis P, Hart M, Rubinfeld B. Defects in the regulation of beta-catenin in colorectal cancer. Adv Exp Med Biol 1999; 470: 23–32.

    PubMed  CAS  Google Scholar 

  43. Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S, Aoki T, Miki Y, Mori T, Nakamura Y, Nishisho I, Utsunomiya J, Baba S, Petersen G, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Hum Mol Genet 1992; 1 (4): 229–233.

    PubMed  CAS  Google Scholar 

  44. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275 (5307): 1787–1790.

    PubMed  CAS  Google Scholar 

  45. Polakis P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta 1997; 1332 (3): F127 - F147.

    PubMed  CAS  Google Scholar 

  46. Munemitsu S, Albert I, Rubinfeld B, Polakis P. Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein. Mol Cell Biol 1996; 16 (8): 4088–4094.

    PubMed  CAS  Google Scholar 

  47. Rubinfeld B, Robbins P, El Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of betacatenin by genetic defects in melanoma cell lines. Science 1997; 275 (5307): 1790–1792.

    PubMed  CAS  Google Scholar 

  48. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 1997; 91 (2): 209–219.

    PubMed  CAS  Google Scholar 

  49. Fuchs SY, Chen A, Xiong Y, Pan ZQ, Ronai Z. HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullinl and targets the phosphorylation-dependent degradation of IkappaB and beta-catenin. Oncogene 1999; 18 (12): 2039–2046.

    PubMed  CAS  Google Scholar 

  50. Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K. An F-box protein, FWD 1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 1999; 18 (9): 2401–2410.

    PubMed  CAS  Google Scholar 

  51. Sadot E, Simcha I, Iwai K, Ciechanover A, Geiger B, Ben Ze’ev A. Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system. Oncogene 2000; 19 (16): 1992–2001.

    PubMed  CAS  Google Scholar 

  52. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 1998; 17 (5): 1371–1384.

    PubMed  CAS  Google Scholar 

  53. Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci USA 1998; 95 (6): 3020–3023.

    PubMed  CAS  Google Scholar 

  54. Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P. Association of the APC gene product with beta-catenin. Science 1993; 262(5140): 1731–1734.

    Google Scholar 

  55. Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, Kikuchi A. Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. JBiol Chem 1998; 273(18):10,823–10,826.

    Google Scholar 

  56. Hinoi T, Yamamoto H, Kishida M, Takada S, Kishida S, Kikuchi A. Complex formation of adenomatous polyposis coli gene product and axin facilitates glycogen synthase kinase-3 (3-dependent phosphorylation of (3-catenin and down-regulates (3-catenin. J Biol Chem 2000; 275(44):34,399–34,406.

    Google Scholar 

  57. Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A. GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 2000; 19 (4): 537–545.

    PubMed  CAS  Google Scholar 

  58. Kikuchi A. Roles of Axin in the Wnt signalling pathway. Cell Signal 1999; 11 (11): 777–788.

    PubMed  CAS  Google Scholar 

  59. Yamamoto H, Kishida S, Uochi T, Ikeda S, Koyama S, Asashima M, Kikuchi A. Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol 1998; 18 (5): 2867–2875.

    PubMed  CAS  Google Scholar 

  60. Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3-beta regulates its stability. J Biol Chem 1999; 274(16):10,681–10,684.

    Google Scholar 

  61. Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK-3 beta. Curr Biol 1998; 8 (10): 573–581.

    PubMed  CAS  Google Scholar 

  62. Hsu W, Zeng L, Costantini F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. JBiol Chem 1999; 274 (6): 3439–3445.

    CAS  Google Scholar 

  63. Strovel ET, Wu D, Sussman DJ. Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem 2000; 275 (4): 2399–2403.

    PubMed  CAS  Google Scholar 

  64. Willert K, Shibamoto S, Nusse R. Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev 1999; 13 (14): 1768–1773.

    PubMed  CAS  Google Scholar 

  65. Ratcliffe MJ, Itoh K, Sokol SY. A positive role for PP2A catalytic subunit in Wnt signal transduction. J Biol Chem 2000; 275(46):35,680–35,683.

    Google Scholar 

  66. Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol 1999; 19 (6): 4414–4422.

    PubMed  CAS  Google Scholar 

  67. Li L, Yuan H, Weaver CD, Mao J, Farr GH III, Sussman DJ, Jonkers J, Kimelman D, Wu D. Axin and Fratl interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-l. EMBO J 1999; 18 (15): 4233–4240.

    PubMed  CAS  Google Scholar 

  68. Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P. A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and betacatenin. FEBS Lett 1999; 458 (2): 247–251.

    PubMed  CAS  Google Scholar 

  69. Chen RH, Ding WV, McCormick F. Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J Biol Chem 2000; 275(23):17,894–17,899.

    Google Scholar 

  70. Kadoya T, Kishida S, Fukui A, Hinoi T, Michiue T, Asashima M, Kikuchi A. Inhibition of Wnt signaling pathway by a novel axin-binding protein. JBiol Chem 2000; 275(47):37,030–37,037.

    Google Scholar 

  71. Hino S-I, Kishida S, Michiue T, Fukui A, Sakamoto I, Takada S, Asashima M, Kikuchi A. Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol Cell Biol 2001; 21 (1): 330–342.

    PubMed  CAS  Google Scholar 

  72. Matsuyoshi N, Hamaguchi M, Taniguchi S, Nagafuchi A, Tsukita S, Takeichi M. Cadherinmediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol 1992; 118 (3): 703–714.

    PubMed  CAS  Google Scholar 

  73. Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 1993; 120 (3): 757–766.

    PubMed  CAS  Google Scholar 

  74. Birchmeier W, Weidner KM, Behrens J. Molecular mechanisms leading to loss of differentiation and gain of invasiveness in epithelial cells. J Cell Sci Suppl 1993; 17: 159–164.

    PubMed  CAS  Google Scholar 

  75. Hamaguchi M, Matsuyoshi N, Ohnishi Y, Gotoh B, Takeichi M, Nagai Y. p60v-src causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. EMBO J 1993; 12 (1): 307–314.

    PubMed  CAS  Google Scholar 

  76. Birchmeier C, Birchmeier W, Brand Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat Basel 1996; 156 (3): 217–226.

    PubMed  CAS  Google Scholar 

  77. Batt DB, Roberts TM. Cell density modulates protein-tyrosine phosphorylation. J Biol Chem 1998; 273 (6): 3408–3414.

    PubMed  CAS  Google Scholar 

  78. Porter AC, Vaillancourt RR. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 1998; 17 (11 Reviews): 1343–1352.

    PubMed  CAS  Google Scholar 

  79. Hoschuetzky H, Aberle H, Kemler R. Beta-catenin mediates the interaction of the cadherincatenin complex with epidermal growth factor receptor. J Cell Biol 1994; 127 (5): 1375–1380.

    PubMed  CAS  Google Scholar 

  80. Kinch MS, Clark GJ, Der CJ, Burridge K. Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. J Cell Biol 1995; 130 (2): 461–471.

    PubMed  CAS  Google Scholar 

  81. Daniel JM, Reynolds AB. Tyrosine phosphorylation and cadherin/catenin function. Bioessays 1997; 19 (10): 883–891.

    PubMed  CAS  Google Scholar 

  82. Papkoff J. Regulation of complexed and free catenin pools by distinct mechanisms. Differential effects of Wnt-1 and v-Src. J Biol Chem 1997; 272 (7): 4536–4543.

    Google Scholar 

  83. Rosato R, Veltmaat JM, Groffen J, Heisterkamp N. Involvement of the tyrosine kinase fer in cell adhesion. Mol Cell Biol 1998; 18 (10): 5762–5770.

    PubMed  CAS  Google Scholar 

  84. Hiscox S, Jiang WG. Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem Biophys Res Commun 1999; 261 (2): 406–411.

    PubMed  Google Scholar 

  85. Kapus A, Di Ciano C, Sun J, Zhan X, Kim L, Wong TW, Rotstein OD. Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. JBiol Chem 2000; 275(41):32,289–32,298.

    Google Scholar 

  86. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Engl J Med 1980; 303 (15): 878–880.

    PubMed  CAS  Google Scholar 

  87. Todaro GJ, Fryling C, De Larco JE. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci USA 1980; 77 (9): 5258–5262.

    PubMed  CAS  Google Scholar 

  88. Derynck R, Goeddel DV, Ullrich A, Gutterman JU, Williams RD, Bringman TS, Berger WH. Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors. Cancer Res 1987; 47 (3): 707–712.

    PubMed  CAS  Google Scholar 

  89. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235 (4785): 177–182.

    PubMed  CAS  Google Scholar 

  90. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244 (4905): 707–712.

    PubMed  CAS  Google Scholar 

  91. Ciardiello F, Kim N, Saeki T, Dono R, Persico MG, Plowman GD, Garrigues J, Radke S, Todaro GJ, Salomon DS. Differential expression of epidermal growth factor-related proteins in human colorectal tumors. Proc Natl Acad Sci USA 1991; 88 (17): 7792–7796.

    PubMed  CAS  Google Scholar 

  92. Chrysogelos SA, Yarden RI, Lauber AH, Murphy JM. Mechanisms of EGF receptor regulation in breast cancer cells. Breast Cancer Res Treat 1994; 31 (2–3): 227–236.

    PubMed  CAS  Google Scholar 

  93. Pilichowska M, Kimura N, Fujiwara H, Nagura H. Immunohistochemical study of TGFalpha, TGF-betal, EGFR, and IGF-1 expression in human breast carcinoma. Mod Pathol 1997; 10 (10): 969–975.

    PubMed  CAS  Google Scholar 

  94. Damstrup L, Voldborg BR, Spang-Thomsen M, Brunner N, Poulsen HS. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor. Br J Cancer 1998; 78 (5): 631–640.

    PubMed  CAS  Google Scholar 

  95. Chen BK, Ohtsuki Y, Furihata M, Takeuchi T, Iwata J, Liang SB, Sonobe H. Co-overexpression of p53 protein and epidermal growth factor receptor in human papillary thyroid carcinomas correlated with lymph node metastasis, tumor size and clinicopathologic stage. Int J Oncol 1999; 15 (5): 893–898.

    PubMed  CAS  Google Scholar 

  96. Liu D, el Hariry I, Karayiannakis AJ, Wilding J, Chinery R, Kmiot W, McCrea PD, Gullick WJ, Pignatelli M. Phosphorylation of beta-catenin and epidermal growth factor receptor by intestinal trefoil factor. Lab Invest 1997; 77 (6): 557–563.

    PubMed  CAS  Google Scholar 

  97. Takahashi K, Suzuki K, Tsukatani Y. Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence. Oncogene 1997; 15 (1): 71–78.

    PubMed  CAS  Google Scholar 

  98. Hazan RB, Norton L. The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem 1998; 273 (15): 9078–9084.

    PubMed  CAS  Google Scholar 

  99. Muller T, Choidas A, Reichmann E, Ullrich A. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem 1999; 274(15):10,173–10,183.

    Google Scholar 

  100. Nabeshima K, Shimao Y, Inoue T, Itoh H, Kataoka H, Koono M. Hepatocyte growth factor/ scatter factor induces not only scattering but also cohort migration of human colorectal-adenocarcinoma cells. Int J Cancer 1998; 78 (6): 750–759.

    PubMed  CAS  Google Scholar 

  101. Papkoff J, Aikawa M. WNT-1 and HGF regulate GSK3 beta activity and beta-catenin signaling in mammary epithelial cells. Biochem Biophys Res Commun 1998; 247 (3): 851–858.

    PubMed  CAS  Google Scholar 

  102. Noe V, Chastre E, Bruyneel E, Gespach C, Mareel M. Extracellular regulation of cancer invasion: the E-cadherin-catenin and other pathways. Biochem Soc Symp 1999; 65: 43–62.

    PubMed  CAS  Google Scholar 

  103. Shibata T, Ochiai A, Kanai Y, Akimoto S, Gotoh M, Yasui N, Machinami R, Hirohashi S. Dominant negative inhibition of the association between beta-catenin and c-erbB-2 by N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells. Oncogene 1996; 13 (5): 883–889.

    PubMed  CAS  Google Scholar 

  104. Roura S, Miravet S, Piedra J, de Herreros AG, Dunach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274(51):36,734–36,740.

    Google Scholar 

  105. Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo Dotto G. Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 1998; 141 (6): 1449–1465.

    PubMed  CAS  Google Scholar 

  106. Owens DW, McLean GW, Wyke AW, Paraskeva C, Parkinson EK, Frame MC, Brunton VG. The catalytic activity of the Src family kinases is required to disrupt cadherin-dependent cell-cell contacts. Mol Cell Biol 2000; 11: 51–64.

    CAS  Google Scholar 

  107. Piedra J, Martinez D, Castano J, Miravet S, Dunach M, de Herreros AG. Regulation of 3-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 2001; 276(23): 20,436–20,443.

    Google Scholar 

  108. Bonvini P, An WG, Rosolen A, Nguyen P, Trepel J, de Herreros AG, Dunach M, Neckers LM. Geldanamycin abrogates ErbB2 association with proteasome-resistant 13-catenin in melanoma cells, increases 3-catenin-E-cadherin association, and decreases 13-catenin-sensitive transcription. Cancer Res 2001; 61: 1671–1677.

    PubMed  CAS  Google Scholar 

  109. Fuchs M, Muller T, Lerch MM, Ullrich A. Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J Biol Chem 1996; 271(28):16,712–16,719.

    Google Scholar 

  110. Kypta RM, Su H, Reichardt LF. Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex. J Cell Biol 1996; 134 (6): 1519–1529.

    PubMed  CAS  Google Scholar 

  111. Brady Kalnay SM, Mourton T, Nixon JP, Pietz GE, Kinch M, Chen H, Brackenbury R, Rimm DL, Del Vecchio RL, Tonks NK. Dynamic interaction of PTPmu with multiple cadherins in vivo. J Cell Biol 1998; 141 (1): 287–296.

    Google Scholar 

  112. Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, Deuel TF. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA 2000; 97 (6): 2603–2608.

    PubMed  CAS  Google Scholar 

  113. Mourton T, Hellberg CB, Burden-Gulley SM, Hinman J, Rhee A, Brady-Kalnay SM. The PTPp protein tyrosine phosphatase binds and recruits the scaffolding protein RACK 1 to cell-cell contacts. J Biol Chem 2001; 276(18):14,896–14,901.

    Google Scholar 

  114. Sutherland C, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochern J 1993; 296 (Pt 1): 15–19.

    CAS  Google Scholar 

  115. Moule SK, Welsh GI, Edgell NJ, Foulstone EJ, Proud CG, Denton RM. Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J Biol Chem 1997; 272 (12): 7713–7719.

    PubMed  CAS  Google Scholar 

  116. Stambolic V, Woodgett JR. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochern J 1994; 303 (Pt 3): 701–704.

    CAS  Google Scholar 

  117. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996: 1 5(23):6541–6551.

    Google Scholar 

  118. Alessi DR, Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 1998; 8 (l): 55–62.

    PubMed  CAS  Google Scholar 

  119. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Der 1999; 13 (22): 2905–2927.

    CAS  Google Scholar 

  120. Playford MP, Bicknell D, Bodmer WF, Macaulay VM. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of (3-catenin. Proc Natl Acad Sci USA 2000; 97(22):12,103–12,108.

    Google Scholar 

  121. Novak A, Hsu SC, Leung Hagesteijn C, Radeva G, Papkoff J, Montesano R, Roskelley C, Grosschedl R, Dedhar S. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci USA 1998; 95 (8): 4374–4379.

    PubMed  CAS  Google Scholar 

  122. Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Chergui G, Perret C, Capeau J. Insulin and IGF-1 stimulate the (3-catenin pathway through two signaling cascades involving GSK-3(3 inhibition and Ras activation. Oncogene 2001; 20: 252–259.

    PubMed  CAS  Google Scholar 

  123. Fukumoto S, Hsieh C-M, Maemura K, Layne MD, Yet S-F, Lee K-H, Matsui T, Rosenzweig A, Taylor WG, Rubin JS, Perrella MA, Lee M-E. Akt participation in the Wnt signaling pathway through dishevelled. J Biol Chem 2001; 276(20);17,479–17,483.

    Google Scholar 

  124. Tan C, Costello P, Sanghera J, Dominguez D, Baulida J, de Herreros AG, Dedhar S. Inhibition of integrin linked kinase (ILK) suppresses (3-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/- human colon carcinoma cells. Oncogene 2001; 20: 133–140.

    PubMed  CAS  Google Scholar 

  125. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 1998; 95(19):11,211–11,216.

    Google Scholar 

  126. Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science 1993; 262 (5140): 1734–1737.

    PubMed  CAS  Google Scholar 

  127. Hulsken J, Birchmeier W, Behrens J. E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 1994; 127 (6 Pt 2): 2061–2069.

    PubMed  CAS  Google Scholar 

  128. Rubinfeld B, Souza B, Albert I, Munemitsu S, Polakis P. The APC protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-catenin, and plakoglobin. J Biol Chem 1995; 270 (10): 5549–5555.

    PubMed  CAS  Google Scholar 

  129. Papkoff J, Rubinfeld B, Schryver B, Polakis P. Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol Cell Biol 1996; 16 (5): 2128–2134.

    PubMed  CAS  Google Scholar 

  130. Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci 1999; 112 (Pt 8): 1237–1245.

    PubMed  CAS  Google Scholar 

  131. Shih IM, Yu J, He TC, Vogelstein B, Kinzler KW. The beta-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res 2000; 60 (6): 1671–1676.

    PubMed  CAS  Google Scholar 

  132. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991; 113 (1): 173–185.

    PubMed  CAS  Google Scholar 

  133. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991; 66 (1): 107–119.

    PubMed  CAS  Google Scholar 

  134. Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 1999; 24 (2): 73–76.

    PubMed  CAS  Google Scholar 

  135. Hsu MY, Meier FE, Nesbit M, Hsu JY, Van Belle P, Elder DE, Herlyn M. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol 2000; 156(5):15151525.

    Google Scholar 

  136. Neufeld KL, Nix DA, Bogerd H, Kang Y, Beckerle MC, Cullen BR, White RL. Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc Natl Acad Sci USA 2000; 97(22):12,085–12,090.

    Google Scholar 

  137. Zhang F, White RL, Neufeld KL. Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. P roc NatlAcad Sci USA 2000; 97(23): 12,577–12,582.

    Google Scholar 

  138. Seeling JM, Miller JR, Gil R, Moon RT, White R, Virshup DM. Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 1999; 283 (5410): 2089–2091.

    PubMed  CAS  Google Scholar 

  139. Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates 3-catenin subcellular localization and turnover. Nature Cell Biol 2000; 2: 653–660.

    PubMed  CAS  Google Scholar 

  140. Rosin Arbesfeld R, Townsley F, Bienz M. The APC tumour suppressor has a nuclear export function. Nature 2000; 406 (6799): 1009–1012.

    Google Scholar 

  141. Provost E, Rimm DL. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr Opin Cell Biol 1999; 11 (5): 567–572.

    PubMed  CAS  Google Scholar 

  142. Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 1999; 11 (5): 591–596.

    PubMed  CAS  Google Scholar 

  143. Meigs TE, Fields TA, McKee DD, Casey PJ. Interaction of Ga12 and Ga13 with the cytoplasmic domain of cadherin provides a mechanism for 13-catenin release. Proc Natl Acad Sci USA 2001; 98 (2): 519–524.

    PubMed  CAS  Google Scholar 

  144. Pece S, Chiariello M, Murga C, Gutkind JS. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J Biol Chem 1999; 274(27): 19,347–19,351.

    Google Scholar 

  145. Pece S, Gutkind JS. Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 2000; 275(52):41,227–41,233.

    Google Scholar 

  146. Ozawa M, Hoschutzky H, Herrenknecht K, Kemler R. A possible new adhesive site in the cell-adhesion molecule uvomorulin. Mech Dey 1990; 33 (1): 49–56.

    CAS  Google Scholar 

  147. Herrenknecht K, Ozawa M, Eckerskorn C, Lottspeich F, Lenter M, Kemler R. The uvomorulin-anchorage protein alpha catenin is a vinculin homologue. Proc Natl Acad Sci USA 1991; 88 (20): 9156–9160.

    PubMed  CAS  Google Scholar 

  148. Ozawa M, Kemler R. Molecular organization of the uvomorulin-catenin complex. J Cell Biol 1992; 116 (4): 989–996.

    PubMed  CAS  Google Scholar 

  149. Knudsen KA, Wheelock MJ. Plakoglobin, or an 83-kD homologue distinct from beta-catenin, interacts with E-cadherin and N-cadherin. J Cell Biol 1992; 118 (3): 671–679.

    PubMed  CAS  Google Scholar 

  150. Reynolds AB, Daniel J, McCrea PD, Wheelock MJ, Wu J, Zhang Z. Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 1994; 14 (12): 8333–8342.

    PubMed  CAS  Google Scholar 

  151. Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. The cadherin cytoplasmic domain is unstructured in the absence of (3-catenin. J Biol Chem 2001; 276(15):12,30112,309.

    Google Scholar 

  152. Sadot E, Simcha I, Shtutman M, Ben Ze’ ev A, Geiger B. Inhibition of beta-catenin-mediated transactivation by cadherin derivatives. Proc Natl Acad Sci USA 1998; 95(26):15,339–15,344.

    Google Scholar 

  153. Kitada T, Miyoshi E, Noda K, Higashiyama S, Ihara H, Matsuura N, Hayashi N, Kawata S, Matsuzawa Y, Taniguchi N. The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of (3-catenin. J Biol Chem 2001; 276 (1): 475–480.

    PubMed  CAS  Google Scholar 

  154. Galbiati F, Volonte D, Brown AM, Weinstein DE, Ben Ze’ev A, Pestell RG, Lisanti MP. Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem 2000; 275(30):23,368–23,377.

    Google Scholar 

  155. Bienz M. APC: the plot thickens. Curr Opin Genet Dev 1999; 9 (5): 595–603.

    PubMed  CAS  Google Scholar 

  156. Eastman Q, Grosschedl R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 1999; 11 (2): 233–240.

    PubMed  CAS  Google Scholar 

  157. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86 (3): 391–399.

    PubMed  CAS  Google Scholar 

  158. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997; 88(6):789799.

    Google Scholar 

  159. Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D. A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 1997; 11 (18): 2359–2370.

    CAS  Google Scholar 

  160. Fan MJ, Gruning W, Walz G, Sokol SY. Wnt signaling and transcriptional control of Siamois in Xenopus embryos. Proc Natl Acad Sci USA 1998; 95 (10): 5626–5631.

    PubMed  CAS  Google Scholar 

  161. Nelson RW, Gumbiner BM. Beta-catenin directly induces expression of the Siamois gene, and can initiate signaling indirectly via a membrane-tethered form. Ann NY Acad Sci 1998; 857: 86–98.

    PubMed  CAS  Google Scholar 

  162. Riese J, Yu X, Munnerlyn A, Eresh S, Hsu SC, Grosschedl R, Bienz M. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 1997; 88 (6): 777–787.

    PubMed  CAS  Google Scholar 

  163. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14: 59–88.

    PubMed  CAS  Google Scholar 

  164. Laurent MN, Blitz IL, Hashimoto C, Rothbacher U, Cho KW. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’ s organizer. Development 1997; 124 (23): 4905–4916.

    PubMed  CAS  Google Scholar 

  165. Lickert H, Domon C, Huls G, Wehrle C, Duluc I, Clevers H, Meyer BI, Freund JN, Kemler R. Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdxl in embryonic intestine. Development 2000; 127 (17): 3805–3813.

    PubMed  CAS  Google Scholar 

  166. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science 1998; 281 (5382): 1509–1512.

    PubMed  CAS  Google Scholar 

  167. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398(6726):422–426.

    Google Scholar 

  168. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96 (10): 5522–5527.

    PubMed  CAS  Google Scholar 

  169. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 2000; 97 (8): 4262–4266.

    PubMed  CAS  Google Scholar 

  170. He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 1999; 99 (3): 335–345.

    PubMed  CAS  Google Scholar 

  171. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ, Hanski C. Target genes of beta-catenin-T cell-factor/lymphoidenhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 1999; 96 (4): 1603–1608.

    PubMed  CAS  Google Scholar 

  172. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999; 155(4):10331038.

    Google Scholar 

  173. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Onco gene 1999; 18 (18): 2883–2891.

    CAS  Google Scholar 

  174. Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ. WISP-1 is a Wnt-1- and beta-cateninresponsive oncogene. Genes Dev 2000; 14 (5): 585–595.

    PubMed  CAS  Google Scholar 

  175. Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC. Gastrin is a target of the beta-catenin/LCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Invest 2000; 106 (4): 533–539.

    PubMed  CAS  Google Scholar 

  176. Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcfl. Science 1999; 285 (5435): 1923–1926.

    PubMed  CAS  Google Scholar 

  177. Howe LR, Subbaramaiah K, Chung WJ, Dannenberg AJ, Brown AM. Transcriptional activation of cyclooxygenase-2 in Wnt-l-transformed mouse mammary epithelial cells. Cancer Res 1999; 59 (7): 1572–1577.

    PubMed  CAS  Google Scholar 

  178. Fujita M, Furukawa Y, Nagasawa Y, Ogawa M, Nakamura Y. Down-regulation of monocyte chemotactic protein-3 by activated beta-catenin. Cancer Res 2000; 60 (23): 6683–6687.

    PubMed  CAS  Google Scholar 

  179. Yamada T, Takaoka AS, Naishiro Y, Hayashi R, Maruyama K, Maesawa C, Ochiai A, Hirohashi S. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res 2000; 60 (17): 4761–4766.

    PubMed  CAS  Google Scholar 

  180. Gradl D, Kuhl M, Wedlich D. The Wnt/Wg signal transducerbeta-catenin controls fibronectin expression. Mol Cell Biol 1999; 19 (8): 5576–5587.

    PubMed  CAS  Google Scholar 

  181. Labbe E, Letamendia A, Attisano L. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc Natl Acad Sci USA 2000; 97 (15): 8358–8363.

    PubMed  CAS  Google Scholar 

  182. Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’ s organizer. Nature 2000; 403 (6771): 781–785.

    PubMed  CAS  Google Scholar 

  183. Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998; 92 (5): 645–656.

    PubMed  CAS  Google Scholar 

  184. Tsutsui J, Moriyama M, Arima N, Ohtsubo H, Tanaka H, Ozawa M. Expression of cadherincatenin complexes in human leukemia cell lines. JBiochem (Tokyo) 1996; 120 (5): 1034–1039.

    CAS  Google Scholar 

  185. Yang S, Kohno N, Yokoyama A, Kondo K, Hamada H, Hiwada K. Decreased E-cadherin augments beta-catenin nuclear localization: studies in breast cancer cell lines. Mt J Oncol 2001; 18 (3): 541–548.

    CAS  Google Scholar 

  186. Sellin JH, Umar S, Xiao J, Morris AP. Increased beta-catenin expression and nuclear translocation accompany cellular hyperproliferation in vivo. Cancer Res 2001; 61 (7): 2899–2906.

    PubMed  CAS  Google Scholar 

  187. Gunther K, Brabletz T, Kraus C, Dworak O, Reymond MA, Jung A, Hohenberger W, Kirchner T, Kockerling F, Ballhausen WG. Predictive value of nuclear beta-catenin expression for the occurrence of distant metastases in rectal cancer. Dis Colon Rectum 1998; 41 (10): 1256–1261.

    PubMed  CAS  Google Scholar 

  188. Pukkila MJ, Virtaniemi JA, Kumpulainen EJ, Pirinen RT, Johansson RT, Valtonen HJ, Juhola MT, Kosma VM. Nuclear beta-catenin expression is related to unfavourable outcome in oropharyngeal and hypopharyngeal squamous cell carcinoma. J Clin Pathol 2001; 54 (1): 42–47.

    PubMed  CAS  Google Scholar 

  189. Sang PW, Ra OR, Young PJ, Joon KP, Sun SM, Heun LJ, Sug KH, Hyung LS, Young KS, Gyu PY, Gun AW, Seung KH, June JJ, Jin YN, Young LJ. Nuclear localization of beta-catenin is an important prognostic factor in hepatoblastoma. J Pathol 2001; 193: 483490.

    Google Scholar 

  190. Graham TA, Weaver C, Mao F, Kimelman D, Xu W. Crystal structure of a beta-catenin/Tcf complex. Cell 2000; 103 (6): 885–896.

    PubMed  CAS  Google Scholar 

  191. Easwaran V, Pishvaian M, Salimuddin, Byers S. Cross-regulation of beta-catenin-LEF/TCF and retinoid signaling pathways. Curr Biol 1999; 9 (23): 1415–1418.

    PubMed  CAS  Google Scholar 

  192. Byers S, Pishvaian M, Crockett C, Peer C, Tozeren A, Sporn M, Anzano M, Lechleider R. Retinoids increase cell-cell adhesion strength, beta-catenin protein stability, and localization to the cell membrane in a breast cancer cell line: a role for serine kinase activity. Endocrinology 1996; 137 (8): 3265–3273.

    PubMed  CAS  Google Scholar 

  193. Efstathiou JA, Noda M, Rowan A, Dixon C, Chinery R, Jawhari A, Hattori T, Wright NA, Bodmer WF, Pignatelli M. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc Natl Acad Sci USA 1998; 95 (6): 3122–3127.

    PubMed  CAS  Google Scholar 

  194. Hulsken J, Behrens J, Birchmeier W. Tumor-suppressor gene products in cell contacts: the cadherin-APC-armadillo connection. Curr Opin Cell Biol 1994; 6 (5): 711–716.

    PubMed  CAS  Google Scholar 

  195. Dihlmann S, Siermann A, von Knebel Doeberitz M. The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene 2001; 20 (5): 645–653.

    PubMed  CAS  Google Scholar 

  196. Averns H. Cox 2: the next stage in the NSAID story. Practitioner, 1996; 240 (1566): 532–534.

    PubMed  CAS  Google Scholar 

  197. Vane JR, Botting RM. The future of NSAID therapy: selective COX-2 inhibitors. Intl Clin Pract 2000; 54 (1): 7–9.

    CAS  Google Scholar 

  198. Elder DJ, Paraskeva C. COX-2 inhibitors for colorectal cancer. Nat Med 1998; 4 (4): 392–393.

    PubMed  CAS  Google Scholar 

  199. Watson AJ. Chemopreventive effects of NSAIDs against colorectal cancer: regulation of apoptosis and mitosis by COX-1 and COX-2. Histol Histopathol 1998; 13 (2): 591–597.

    PubMed  CAS  Google Scholar 

  200. Ryan AR, Rosita AR, Kamarul AK, Qureshi A. COX-2 inhibitors: a potential target for drug therapy in the management of colorectal cancer. Med J Malaysia 1999; 54 (3): 293–295.

    PubMed  CAS  Google Scholar 

  201. Bresalier RS. Prevention of colorectal cancer: tumor progression, chemoprevention, and COX-2 inhibition. Gastroenterology 2000; 119 (1): 267–268.

    PubMed  CAS  Google Scholar 

  202. Kune GA. Colorectal cancer chemoprevention: aspirin, other NSAID and COX-2 inhibitors. Aust N Z J Surg 2000; 70 (6): 452–455.

    PubMed  CAS  Google Scholar 

  203. Patrignani P. Nonsteroidal anti-inflammatory drugs, COX-2 and colorectal cancer. Toxicol Lett 2000; 112–113: 493–498.

    Google Scholar 

  204. Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane TF, Hla T. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001; 276(21): 18,563–18,569.

    Google Scholar 

  205. Oshima M, Murai N, Kargman S, Arguello M, Luk P, Kwong E, Taketo MM, Evans JF. Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 2001; 61 (4): 1733–1740.

    PubMed  CAS  Google Scholar 

  206. Smith ML, Hawcroft G, Hull MA. The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells: evidence of different mechanisms of action. EurJCancer 2000; 36 (5): 664–674.

    CAS  Google Scholar 

  207. Hiscox S, Jiang WG. Hepatocyte growth factor/scatter factor disrupts epithelial tumour cell-cell adhesion: involvement of beta-catenin. Anticancer Res 1999; 19 (1A): 509–517.

    PubMed  CAS  Google Scholar 

  208. Novak A, Dedhar S. Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci 1999; 56 (5–6): 523–537.

    PubMed  CAS  Google Scholar 

  209. D’Amico M, Hulit J, Amanatullah DF, Zafonte BT, Albanese C, Bouzahzah B, Fu M, Augenlicht LH, Donehower LA, Takemaru K, Moon RT, Davis R, Lisanti MP, Shtutman M, Zhurinsky J, Ben-Ze’ev A, Troussard AA, Dedhar S, Pestell RG. The integrin-linked kinase regulates the cyclin D1 gene through glycogen synthase kinase-3beta and cAMP-responsive element-binding protein-dependent pathways. J Biol Chem 2000; 275(42):32,649–32,657.

    Google Scholar 

  210. Persad S, Attwell S, Gray V, Delcommenne M, Troussard A, Sanghera J, Dedhar S. Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc NatlAcad Sci USA 2000; 97 (7): 3207–3212.

    CAS  Google Scholar 

  211. Yoganathan TN, Costello P, Chen X, Jabali M, Yan J, Leung D, Zhang Z, Yee A, Dedhar S, Sanghera J. Integrin-linked kinase (ILK): a “hot” therapeutic target. Biochem Pharmacol 2000; 60 (8): 1115–1119.

    PubMed  CAS  Google Scholar 

  212. Nakopoulou L, Gakiopoulou H, Keramopoulos A, Giannopoulou I, Athanassiadou P, Mavrommatis J, Davaris PS. c-met tyrosine kinase receptor expression is associated with abnormal beta-catenin expression and favourable prognostic factors in invasive breast carcinoma. Histopathology 2000; 36 (4): 313–325.

    PubMed  CAS  Google Scholar 

  213. Monick MM, Carter AB, Robeff PK, Flaherty DM, Peterson MW, Hunninghake GW. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J Immunol 2001; 166 (7): 4713–4720.

    PubMed  CAS  Google Scholar 

  214. Balaram SK, Agrawal DK, Allen RT, Kuszynski CA, Edwards JD. Cell adhesion molecules and insulin-like growth factor-1 in vascular disease. J Vasc Surg 1997; 25 (5): 866–876.

    PubMed  CAS  Google Scholar 

  215. Neckers L, Mimnaugh E, Schulte TW. The Hsp90 chaperone family. In: Latchman DS, ed. Handbook of Experimental Pharmacology. Springer-Verlag, Berlin, 1999, pp. 9–42.

    Google Scholar 

  216. Webb CP, Hose CD, Koochekpour S, Jeffers M, Oskarsson M, Sausville E, Monks A, Vande Woude GF. The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res 2000; 60 (2): 342–349.

    PubMed  CAS  Google Scholar 

  217. Mariadason JM, Bordonaro M, Aslam F, Shi L, Kuraguchi M, Velcich A, Augenlicht LH. Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Res 2001; 61 (8): 3465–3471.

    PubMed  CAS  Google Scholar 

  218. Ishiguro H, Furukawa Y, Daigo Y, Miyoshi Y, Nagasawa Y, Nishiwaki T, Kawasoe T, Fujita M, Satoh S, Miwa N, Fujii Y, Nakamura Y. Isolation and characterization of human NBL4, a gene involved in the beta-catenin/tcf signaling pathway. Jpn J Cancer Res 2000; 91 (6): 597–603.

    PubMed  CAS  Google Scholar 

  219. Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J, Brush J, Taneyhill LA, Deuel B, Lew M, Watanabe C, Cohen RL, Melhem MF, Finley GG, Quirke P, Goddard AD, Hillan KJ, Gurney AL, Botstein D, Levine AJ. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt- 1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci USA 1998; 95(25):14,717–14,722.

    Google Scholar 

  220. van der Heyden MA, Rook MB, Hermans MM, Rijksen G, Boonstra J, Defize LH, Destree OH. Identification of connexin43 as a functional target for Wnt signalling. J Cell Sci 1998; 111 (Pt 12): 1741–1749.

    PubMed  Google Scholar 

  221. Takahashi M, Mutoh M, Kawamori T, Sugimura T, Wakabayashi K. Altered expression of beta-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis 2000; 21 (7): 1319–1327.

    PubMed  CAS  Google Scholar 

  222. Danielian PS, McMahon AP. Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 1996; 383 (6598): 332–334.

    PubMed  CAS  Google Scholar 

  223. Arnold SJ, Stappert J, Bauer A, Kispert A, Herrmann BG, Kemler R. Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mech Dev 2000; 91 (1–2): 249–258.

    PubMed  CAS  Google Scholar 

  224. Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 1999; 13 (24): 3185–3190.

    PubMed  CAS  Google Scholar 

  225. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 1996; 59 (1): 3–10.

    PubMed  CAS  Google Scholar 

  226. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 1994; 79 (5): 779–790.

    PubMed  CAS  Google Scholar 

  227. McKendry R, Hsu SC, Harland RM, Grosschedl R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 1997; 192(2):420431.

    Google Scholar 

  228. McGrew LL, Takemaru K, Bates R, Moon RT. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech Dev 1999; 87 (1–2): 21–32.

    CAS  Google Scholar 

  229. Maloof JN, Whangbo J, Harris JM, Jongeward GD, Kenyon C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 1999; 126 (1): 37–49.

    CAS  Google Scholar 

  230. Korswagen HC, Herman MA, Clevers HC. Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature 2000; 406 (6795): 527–532.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chung, E.J., Bonvini, P., Oh, H.J., Neckers, L., Trepel, J. (2002). Nuclear β-Catenin Signaling as a Target for Anticancer Drug Development. In: La Thangue, N.B., Bandara, L.R. (eds) Targets for Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-153-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-153-4_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-263-6

  • Online ISBN: 978-1-59259-153-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics