Skip to main content

The AP-1 Family of Transcription Factors

Structure, Regulation, and Functional Analysis in Mice

  • Chapter
Targets for Cancer Chemotherapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 131 Accesses

Abstract

The history of the exploration of transcriptional regulation can be told as a tale of increasing complexity, from single regulatory proteins selecting genes and obeying linear arrays of signals, to huge multiprotein complexes that are embedded in a network of circuitry—involving so many and even seemingly redundant components that it has become difficult to recognize a pattern of rationale. The factor AP-1 can serve as a prime example for this development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta, 1991; 1072:129-157.

    PubMed  CAS  Google Scholar 

  2. Angel P, Herrlich P. The Fos and Jun families of transcription factors. CRC Press, Boca Raton, FL, 1994, pp. 1 - 310.

    Google Scholar 

  3. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997;9: 240 - 246.

    PubMed  CAS  Google Scholar 

  4. Wagner EF. AP-1. Oncogene 2001; 20: 2336 - 2497.

    Google Scholar 

  5. van Dam H, Huguier S, Kooistra K, et al. Autocrine growth and anchorage independence: two complementing Jun-controlled genetic programs of cellular transformation. Genes Dev 1998; 12: 1227 - 1239.

    PubMed  Google Scholar 

  6. Ryseck RP, Bravo R. c-Jun, JunB, and JunD differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene 1991; 6: 533 - 542.

    PubMed  CAS  Google Scholar 

  7. Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20: 2438 - 2452.

    PubMed  CAS  Google Scholar 

  8. Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene 2001; 20: 2476 - 2489.

    PubMed  CAS  Google Scholar 

  9. Gutman A, Wasylyk B. The collagenase gene promoter contains a TPA and oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO J 1990; 9: 2241 - 2246.

    Google Scholar 

  10. Stein B, Baldwin AS Jr, Ballard DW, Greene WC, Angel P, Herrlich P. Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 1993; 12: 3879 - 3891.

    PubMed  CAS  Google Scholar 

  11. Ahmad M, Theofanidis P, Medford RM. Role of activating protein- 1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-alpha. J Biol Chem 1998; 273: 4616 - 4621.

    PubMed  CAS  Google Scholar 

  12. Yang X, Chen Y, Gabuzda D. ERK MAP kinase links cytokine signals to activation of latent HIV-1 infection by stimulating a cooperative interaction of AP-1 and NF-kappaB. J. Biol Chem 1999; 274:27, 981-27, 988.

    Google Scholar 

  13. Li JJ, Cao Y, Young MR, Colburn NH. Induced expression of dominant-negative c-jun downregulates NFkappaB and AP-1 target genes and suppresses tumor phenotype in human keratinocytes. Mol Carcinog 2000; 29: 159 - 169.

    PubMed  CAS  Google Scholar 

  14. Lallemand D, Spyrou G, Yaniv M, Pfarr CM. Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 1997; 14: 819 - 830.

    PubMed  CAS  Google Scholar 

  15. Rutberg SE, Saez E, Glick A, Dlugosz AA, Spiegelman BM, Yuspa SH. Differentiation of mouse keratinocytes is accompanied by PKC-dependent changes in AP-1 proteins. Oncogene 1996; 13: 167 - 276.

    PubMed  CAS  Google Scholar 

  16. Carrasco D, Bravo R. Tissue-specific expression of the fos-related transcription factor fra-2 during mouse development. Oncogene 1995; 10: 1069 - 1079.

    PubMed  CAS  Google Scholar 

  17. Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 2001; 20: 2413 - 2423.

    PubMed  CAS  Google Scholar 

  18. Nordheim A, Janknecht R, Hipskind RA. Transcriptional regulation of the human c-fos proto-oncogene. In: Angel P, Herrlich P, eds. The Fos and Jun families of transcription factors. CRC Press, Boca Raton, FL, 1994, pp. 97 - 113.

    Google Scholar 

  19. Treisman R. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J 1995; 14: 4905 - 4913.

    PubMed  CAS  Google Scholar 

  20. Mechta F, Yaniv M. Structure and regulation of the c-jun promoter. In: Angel PE, Herrlich PA, eds. The Fos and Jun families of transcription factors. CRC Press, Boca Raton, FL, 1994, pp. 115 - 129.

    Google Scholar 

  21. Mechta-Grigoriou F, Gerald D, Yaniv M. The mammalian Jun proteins: redundancy and specificity. Oncogene 2001; 20: 2378 - 2389.

    PubMed  CAS  Google Scholar 

  22. Blattner C, Kannouche P, Litfin M, et al. UV-Induced stabilization of c-fos and other short-lived mRNAs. Mol Cell Biol 2000; 20: 3616 - 3625.

    PubMed  CAS  Google Scholar 

  23. Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta 1997; 1333: F85 - F104.

    PubMed  CAS  Google Scholar 

  24. Wilkinson MG, Millar JB. SAPKs and transcription factors do the nucleocytoplasmic tango. Genes Dev 1998; 12: 1391 - 1397.

    PubMed  CAS  Google Scholar 

  25. Gille H, Kortenjann M, Thomae O, et al. ERK phosphorylation potentiates Elk- I -mediated ternary complex formation and transactivation. EMBO J 1995; 14: 951 - 962.

    PubMed  CAS  Google Scholar 

  26. Yang SH, Withmarsh Ai, Davis RJ, Sharrocks AD. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J 1998; 17: 1740 - 1749.

    PubMed  CAS  Google Scholar 

  27. Hibi M, Lin A, Smeal T, Minden A, Karin M. Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 1993; 7: 2135 - 2148.

    PubMed  CAS  Google Scholar 

  28. Gupta S, Campbell D, Derijard B, Davis RJ. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 1995; 267: 389 - 393.

    PubMed  CAS  Google Scholar 

  29. van Dam H, Wilhelm D, Herr I, Steffen A, Herrlich P, Angel P. ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J 1995; 14: 1798 - 1811.

    PubMed  Google Scholar 

  30. Gupta S, Barrett T, Whitmarsh AJ, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 1996; 15: 2760 - 2770.

    PubMed  CAS  Google Scholar 

  31. Enslen H, Brancho DM, Davis RJ. Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J 2000; 19: 1301 - 1311.

    PubMed  CAS  Google Scholar 

  32. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev 2000; 14: 1553 - 1577.

    PubMed  CAS  Google Scholar 

  33. Treier M, Staszewski LM, Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 1994; 78: 787 - 798.

    PubMed  CAS  Google Scholar 

  34. Musti AM, Treier M, Bohmann D. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 1997; 275: 400 - 402.

    PubMed  CAS  Google Scholar 

  35. Papavassiliou AG, Treier M, Chavrier C, Bohmann D. Targeted degradation of c-Fos, but not v-Fos, by a phosphorylation-dependent signal on c-Jun. Science 1992; 258: 1941 - 1944.

    PubMed  CAS  Google Scholar 

  36. Boyle WJ, Smeal T, Defize LH, et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991; 64: 573-584.

    PubMed  CAS  Google Scholar 

  37. Lin A, Frost J, Deng T, et al. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 1992; 70: 777 - 789.

    PubMed  CAS  Google Scholar 

  38. Abate C, Patel L, Rauscher FJ, 3rd, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science 1990; 249: 1157 - 1161.

    PubMed  CAS  Google Scholar 

  39. Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 1992; 11: 3323 - 3335.

    PubMed  CAS  Google Scholar 

  40. Oehler T, Pintzas A, Stumm S, Darling A, Gillespie D, Angel P. Mutation of a phosphorylation site in the DNA-binding domain is required for redox-independent transactivation of AP1-dependent genes by v-Jun. Oncogene 1993; 8: 1141 - 1147.

    PubMed  CAS  Google Scholar 

  41. Chida K, Vogt PK. Nuclear translocation of viral Jun but not of cellular Jun is cell cycle dependent. Proc Natl Acad Sci USA 1992; 89: 4290 - 4294.

    PubMed  CAS  Google Scholar 

  42. Jackson SP, Tjian R. 0-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 1988; 55: 125 - 133.

    PubMed  CAS  Google Scholar 

  43. Karin M. New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell 1998; 93: 487 - 490.

    PubMed  CAS  Google Scholar 

  44. Herrlich P. Cross-talk between glucocorticoid receptor and AP-1.Onco gene 2001; 20: 2465 2475.

    Google Scholar 

  45. Phinney DG, Tseng SW, Ryder K. Complex genetic organization of junB: multiple blocks of flanking evolutionarily conserved sequence at the murine and human junB loci. Genomics 1995; 28: 228 - 234.

    PubMed  CAS  Google Scholar 

  46. Coffer P, de Jonge M, Mettouchi A, Binetruy B, Ghysdael J, Kruijer W. junB promoter regulation: Ras mediated transactivation by c-Ets-1 and c-Ets-2. Oncogene 1994; 9: 911 - 921.

    PubMed  CAS  Google Scholar 

  47. Nakajima K, Kusafuka T, Takeda T, Fujitani Y, Nakae K, Hirano T. Identification of a novel interleukin-6 response element containing an Ets-binding site and a CRE-like site in the junB promoter. Mol Cell Biol 1993; 13: 3027 - 3041.

    PubMed  CAS  Google Scholar 

  48. Christy B, Nathans D. DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci USA 1989; 86: 8737 - 8741.

    PubMed  CAS  Google Scholar 

  49. de Groot RP, Auwerx J, Karperien M, Staels B, Kruijer W. Activation of junB by PKC and PKA signal transduction through a novel cis-acting element. Nucleic Acids Res 1991; 19: 775 - 781.

    PubMed  Google Scholar 

  50. Tijin Tham Sjin RM, Lord KA, Abdollahi A, Hoffman B, Liebermann DA. Interleukin-6 and Leukemia inhibitory factor induction of JunB is regulated by distinct cell type-specific cis-acting elements. J Cell Biol 1999; 274:28, 697-28, 707.

    Google Scholar 

  51. Apel I, Yu C-L, Wang T, et al. Regulation of the junB Gene by v-src. Mol Cell Biol 1992; 12: 3356 - 3364.

    CAS  Google Scholar 

  52. Kitabayashi I, Kawakami Z, Matsuoka T, Chiu R, Gachelin G, Yokoyama K. Two cis-regulatory elements that mediate different signaling pathways for serum dependent activation of the junB gene. J Biol Chem 1993; 268:14, 482-14, 489.

    Google Scholar 

  53. Phinney DG, Tseng SW, Hall B, Ryder K. Chromosomal integration dependent induction of junB by growth factors requires multiple flanking evolutionarily conserved sequences. Oncogene 1996; 13: 1875 - 1883.

    PubMed  CAS  Google Scholar 

  54. Perez-Albuerne E, Schatteman G, Sanders LK, Nathans D. Transcriptional regulatory elements downstream of the JunB gene. Proc Natl Acad Sci USA 1993; 90:11, 960-11, 964.

    Google Scholar 

  55. Chalaux E, López-Rovira T, Rosa JL, Bartrons R, Ventura F. JunB is involved in the inhibition of myogenic differentiation by bone morphogenic protein-2. J Biol Chem 1998; 273: 537 - 543.

    PubMed  CAS  Google Scholar 

  56. Jonk LJC, Itoh S, Heldin C-H, ten Dijke P, Kruijer W. Identification and functional characterization of a Smad binding element (SBE) in the junB promoter that acts as a transforming growth factor-(3, activin, and bone morphogenic protein-inducible enhancer. J Biol Chem 1998; 1998:21, 145-21, 152.

    Google Scholar 

  57. López-Rovira T, Chalaux E, Rosa JL, Bartrons R, Ventura F. Interaction and functional cooperation of NF-1(13 with Smads. J Biol Chem 2000; 276:28, 937-28, 946.

    Google Scholar 

  58. Derijard B, Hibi M, Wu IH, et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994; 76: 1025 - 1037.

    PubMed  CAS  Google Scholar 

  59. Kallunki T, Deng T, Hibi M, Karin M. c-Jun can recruit JNK to phosphorlate dimerization partners via specific docking interactions. Cell 1996; 87: 929 - 939.

    PubMed  CAS  Google Scholar 

  60. Li B, Tournier C, Davis RJ, Flavell RA. Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J 1999; 18: 420 - 432.

    PubMed  Google Scholar 

  61. Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M. Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of Cyclin DI expression. EMBO J 2000; 19: 2056 - 2068.

    Google Scholar 

  62. Hirai SI, Ryseck RP, Mechta F, Bravo R, Yaniv M. Characterization of junD: a new member of the jun proto-oncogene family. EMBO J 1989; 8: 1433 - 1439.

    PubMed  CAS  Google Scholar 

  63. de Groot RP, Karperien M, Pals C, Kruijer W. Characterization of the mouse junD promoter-high basal level activity due to an octamer motif. EMBO J 1991; 10: 2523 - 2532.

    PubMed  Google Scholar 

  64. Nikolakaki E, Coffer PJ, Hemelsoet R, Woodgett JR, Defize LH. Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene 1993; 8: 833 - 840.

    PubMed  CAS  Google Scholar 

  65. Wang H, Xie Z, Scott RE. JunD phosphorylation, and expression of AP-1 DNA binding activity modulated by serum growth factors in quiescent murine 3T3T cells. Oncogene 1996; 13: 2639 - 2647.

    PubMed  CAS  Google Scholar 

  66. Rosenberger S, Finch JS, Gupta A, Bowden GT. Extracellular signal-regulated kinase 1/2-mediated phosphorylation of JunD and FosB is required for okadaic acid-induced Activator Protein 1 activation. J Biol Chem 1999; 274: 1124 - 1130.

    PubMed  CAS  Google Scholar 

  67. Lazo PS, Dorfman K, Noguchi T, Mattei MG, Bravo R. Structure and mapping of the fosB gene. FosB downregulates the activity of the fosB promoter. Nucleic Acids Res 1992; 20: 343350.

    Google Scholar 

  68. Bergers G, Garninger P, Braselmann S, Wrighton C, Busslinger M. Transcriptional regulation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol Cell Biol 1995; 15: 3748 - 3758.

    PubMed  CAS  Google Scholar 

  69. Mann B, Gelos M, Siedow A, et al. Target genes of 3-catenin-T cell-factor/lymphoid-enhancerfactor signaling in human colorectal carcinomas. P roc NatlAcad Sci USA 1999; 96: 1603 - 1608.

    PubMed  CAS  Google Scholar 

  70. Griffiths MR, Black EJ, Culbert AA, et al. Insulin-stimulated expression of c-fos, fra-1, and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex. Biochem J 1998; 335: 19 - 26.

    PubMed  CAS  Google Scholar 

  71. Rezzonico R, Loubat A, Lallemand D, et al. Cyclic AMP stimulates a JUnD/Fra-2 Ap-1 complex and inhibits the proliferation of interleukin-6-dependent cell lines. Oncogene 1995; 11: 1069 - 1078.

    PubMed  CAS  Google Scholar 

  72. Matsui M, Tokuhara M, Yonuma Y, Nomura N, Ishizaki R. Isolation of human for-related hgenes and their expression during monocyte-macrophage differentiation. Oncogene 1990: 249 - 255.

    Google Scholar 

  73. Murakami M, Ui M, Iba H. Fra-2 positive autoregulatory loop triggered by mitogen-activated protein kinase (MAPK) and Fra-2 phosphorylation sites by MAPK. Cell Growth Differ 1999; 10: 333 - 342.

    PubMed  CAS  Google Scholar 

  74. O'Shea EK, Rutkowski R, Kim PS. Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell 1992; 68: 699 - 708.

    PubMed  Google Scholar 

  75. Vinson CR, Hai T, Boyd SM. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes Dev 1993; 7: 1047 - 1058.

    PubMed  CAS  Google Scholar 

  76. Hilberg F, Aguzzi A, Howells N, Wagner EF. c-jun is essential for normal mouse development and hepatogenesis. Nature 1993; 365: 179 - 181.

    PubMed  CAS  Google Scholar 

  77. Johnson RS, van Lingen B, Papaioannou VE, Spiegelman BM. A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dey 1993; 7: 1309 - 1317.

    CAS  Google Scholar 

  78. Eferl R, Sibilia M, Hilberg F, et al. Functions of c-Jun in liver and heart development. J Cell Biol 1999; 145: 1049 - 1061.

    PubMed  CAS  Google Scholar 

  79. Chen J, Stewart V, Spyrou G, Hilberg F, Wagner EF, Alt FW. Generation of normal T and B lymphocytes by c-jun deficient embryonic stem cells. Immunity 1994; 1: 65 - 72.

    PubMed  CAS  Google Scholar 

  80. Jochum W, Passequé E, Wagner EF. AP-1 in mouse development and tumorigenesis. Oncogene 2001; 20: 2401 - 2412.

    PubMed  CAS  Google Scholar 

  81. Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21: 326 - 329.

    PubMed  CAS  Google Scholar 

  82. Behrens A, Sabapathy K, Graef I, Cleary M, Crabtree GR, Wagner EF. Jun N-terminal kinase 2 modulates thymocyte apoptosis and T cell activation through c-Jun and nuclear factor of activated T cell (NF-AT). Proc Natl Acad Sci USA 2001; 98: 1769 - 1774.

    PubMed  CAS  Google Scholar 

  83. Kuan CY, Yang DD, Samanta Roy DR, Davis R, Rakie P, Flavell RA. The Jnkl and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999; 22: 667 - 676.

    PubMed  CAS  Google Scholar 

  84. Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK 1 and JNK2. Mech Dey 1999; 89: 115 - 124.

    CAS  Google Scholar 

  85. Schorpp-Kistner M, Wang ZQ, Angel P, Wagner EF. JunB is essential for mammalian placentation. EMBO J 1999; 18: 934 - 948.

    PubMed  CAS  Google Scholar 

  86. Passegue E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U, Wagner EF. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 2001; 104: 21 - 32.

    PubMed  CAS  Google Scholar 

  87. Schreiber M, Wang ZQ, Jochum W, Fetka I, Elliott C, Wagner EF. Placental vascularisation requires the AP-1 component frai. Development 2000; 127: 4937 - 4948.

    PubMed  CAS  Google Scholar 

  88. Thepot D, Weitzman JB, Barra J, et al. Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development 2000; 127: 143 - 153.

    PubMed  CAS  Google Scholar 

  89. Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF. Bone and haematopoietic defects in mice lacking c-fos. Nature 1992; 360: 741 - 745.

    PubMed  CAS  Google Scholar 

  90. Johnson RS, Spiegelman BM, Papaioannou V. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 1992; 71: 577 - 586.

    PubMed  CAS  Google Scholar 

  91. Okada S, Wang ZQ, Grigoriadis AE, Wagner EF, von Ruden T. Mice lacking c-fos have normal hematopoietic stem cells but exhibit altered B-cell differentiation due to an impaired bone marrow environment. Mol Cell Biol 1994; 14: 382 - 390.

    PubMed  CAS  Google Scholar 

  92. Jain J, Nalefski EA, McCaffrey PG, et al. Normal peripheral T-cell function in c-Fosdeficient mice. Mol Cell Biol 1994; 14: 1566 - 1574.

    PubMed  CAS  Google Scholar 

  93. Matsuo K, Owens JM, Tonko M, Elliott C, Chambers TJ, Wagner EF. Fosl l is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 2000; 24: 184 - 187.

    PubMed  CAS  Google Scholar 

  94. Fleischmann A, Hafezi F, Elliott C, Reme CE, Ruther U, Wagner EF. Fra-1 replaces c-Fosdependent functions in mice. Genes Dev 2000; 14: 2695 - 2700.

    PubMed  CAS  Google Scholar 

  95. Gruda MC, van Amsterdam J, Rizzo CA, Durham SK, Lira S, Bravo R. Expression of FosB during mouse development: normal development of FosB knockout mice. Onco gene 1996; 12: 2177 - 2185.

    CAS  Google Scholar 

  96. Brown JR, Ye H, Bronson RT, Dikkes P, Greenberg ME. A defect in nurturing in mice lacking the immediate early gene fosB. Cell 1996; 86: 297 - 309.

    PubMed  CAS  Google Scholar 

  97. Foletta VC, Sonobe MH, Suzuki T, Endo T, Iba H, Cohen DR. Cloning and characterisation of the mouse fra-2 gene. Oncogene 1994; 9: 3305 - 3311.

    PubMed  CAS  Google Scholar 

  98. Smith M, Burke Z, Humphries A, et al. Tissue-specific knockdown of Fos-related antigen 2 (Fra-2) expression mediated by dominat negative Fra-2. Mol Cell Biol 2001; 21: 3704 - 3713.

    PubMed  CAS  Google Scholar 

  99. Beier F, Lee RJ, Taylor AC, Pestell RG, LuValle P. Identification of the cyclin Dl gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci USA 1999; 96: 1433 - 1438.

    PubMed  CAS  Google Scholar 

  100. Reimold AM, Grusby MJ, Kosaras B, et al. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 1996; 379: 262 - 265.

    PubMed  CAS  Google Scholar 

  101. Reimold AM, Kim J, Finberg R, Glimcher LH. Decreased immediate inflammatory gene induction in activating transcription factor-2 mutant mice. Int Immunol 2001; 13: 241 - 248.

    PubMed  CAS  Google Scholar 

  102. Maekawa T, Bernier F, Sato M, et al. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J Biol Chem 1999; 274:17, 813-17, 819.

    Google Scholar 

  103. Schutte J, Viallet J, Nau M, Segal S, Fedorko J, Minna J. jun-B inhibits and c-fos stimulates the transforming and trans-activating activities of c-jun. Cell 1989; 59: 987 - 997.

    CAS  Google Scholar 

  104. Grigoriadis AE, Schellander K, Wang ZQ, Wagner EF. Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol 1993; 122: 685 - 701.

    PubMed  CAS  Google Scholar 

  105. Wang ZQ, Liang J, Schellander K, Wagner EF, Grigoriadis AE. c-fos-induced osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of endogenous c-fos. Cancer Res 1995; 55: 6244 - 6251.

    PubMed  CAS  Google Scholar 

  106. Behrens A, Jochum W, Sibilia M, Wagner EF. Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 2000; 19: 2657 - 2663.

    PubMed  CAS  Google Scholar 

  107. Schuh AC, Keating SJ, Monteclaro FS, Vogt PK, Breitman ML. Obligatory wounding requirement for tumorigenesis in v-jun transgenic mice. Nature 1990; 346: 756 - 760.

    PubMed  CAS  Google Scholar 

  108. Ruther U, Komitowski D, Schubert FR, Wagner EF. c-fos expression induces bone tumors in transgenic mice. Oncogene 1989; 4: 861 - 865.

    PubMed  CAS  Google Scholar 

  109. Wang ZQ, Grigoriadis AE, Mohle-Steinlein U, Wagner EF. A novel target cell for c-fosinduced oncogenesis: development of chondrogenic tumors in embryonic stem cell chimeras. EMBO J 1991; 10: 2437 - 2450.

    PubMed  CAS  Google Scholar 

  110. Grigoriadis AE, Wang ZQ, Cecchini MG, et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994; 266: 443 - 448.

    PubMed  CAS  Google Scholar 

  111. Greenhalgh DA, Yuspa SH. Malignant conversion of murine squamous papilloma cell lines by transfection with the fos oncogene. Mol Carcinog 1988; 1: 134 - 143.

    PubMed  CAS  Google Scholar 

  112. Sabatakos G, Sims NA, Chen J, et al. Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 2000; 6: 985 - 990.

    PubMed  CAS  Google Scholar 

  113. Jochum W, David JP, Elliott C, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 2000; 6: 980 - 984.

    PubMed  CAS  Google Scholar 

  114. McHenry JZ, Leon A, Matthaei KI, Cohen DR. Overexpression of fra-2 in transgenic mice perturbs normal eye development. Onco gene 1998; 17: 1131 - 1140.

    CAS  Google Scholar 

  115. McBride K, Nemer M. The C-terminal domain of c-fos is required for activation of an AP-1 site specific for jun-fos heterodimers. Mol Cell Biol 1998; 18: 5073 - 5081.

    PubMed  CAS  Google Scholar 

  116. Santoro R, Wolfl S, Saluz HP. UV-Laser induced protein/DNA crosslinking reveals sequence variations of DNA elements bound by c-Jun in vivo. Biochem Biophys Res Commun 1999; 256: 68 - 74.

    PubMed  CAS  Google Scholar 

  117. Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot. Cell 1995; 83: 851 - 857.

    PubMed  CAS  Google Scholar 

  118. Jonat C, Rahmsdorf HJ, Park KK, et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 1990; 62: 1189 - 1204.

    PubMed  CAS  Google Scholar 

  119. Vayssiere BM, Dupont S, Choquart A, et al. Synthetic glucocorticoids that dissociate trans-activation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol 1997; 11: 1245 - 1255.

    PubMed  CAS  Google Scholar 

  120. de Kloet ER, Oitzl MS, Joels M. Functional implications of brain corticosteroid receptor diversity. Cell Mol Neurobiol 1993; 13: 433 - 455.

    PubMed  Google Scholar 

  121. Heck S, Kullmann M, Gast A, et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J 1994; 13: 4087 - 4095.

    PubMed  CAS  Google Scholar 

  122. Caelles C, Gonzalez-Sancho JM, Munoz A. Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dey 1997; 11: 3351 - 3364.

    CAS  Google Scholar 

  123. Reichardt HM, Kaestner KH, Tuckermann J, et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998; 93: 531 - 541.

    PubMed  CAS  Google Scholar 

  124. Gonzalez MV, Jimenez B, Berciano MT, et al. Glucocorticoids antagonize AP-1 by inhibiting the Activation/phosphorylation of JNK without affecting its subcellular distribution. J Cell Biol 2000; 150: 1199 - 1208.

    PubMed  CAS  Google Scholar 

  125. Cole TJ, Blendy JA, Monaghan AP, et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dey 1995; 9: 1608 - 1621.

    CAS  Google Scholar 

  126. Reichardt HM, Tuckermann JP, Göttlicher M, et al. DNA-binding by the glucocorticoid receptor is dispensable for the suppression of inflammatory responses in vivo. submitted 2001.

    Google Scholar 

  127. Konig H, Ponta H, Rahmsdorf HJ, Herrlich P. Interference between pathway-specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. EMBO J 1992; 11: 2241 - 2246.

    PubMed  CAS  Google Scholar 

  128. Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dey 2000; 14: 2314 - 2329.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schorpp-Kistner, M., Herrlich, P., Angel, P. (2002). The AP-1 Family of Transcription Factors. In: La Thangue, N.B., Bandara, L.R. (eds) Targets for Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-153-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-153-4_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-263-6

  • Online ISBN: 978-1-59259-153-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics