Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 118 Accesses

Abstract

One of the major defense mechanisms against the development of cancer is governed by the tumor-suppressor protein p53. The p53 protein can induce growth arrest and apoptosis, and, owing to these important functions in controlling cell proliferation, p53 itself has to be tightly regulated. The identification of Mdm2 as a major player that effects p53 protein stability, and the discovery that the tumor-suppressor protein p14ARF is an important regulator of Mdm2, initiated a series of discoveries that gave new insight into hitherto unknown molecular mechanisms that govern p53 functions. Although most of the research about Mdm2 and ARF concentrate on their roles in regulating p53, there is growing evidence that Mdm2 and ARF also possess p53-independent functions. Our increasing understanding of all functions of Mdm2 and ARF will further consolidate our knowledge about the interplay of key players of cell cycle regulation and will surely contribute to the development of new therapeutical approaches in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cahilly-Snyder L, Yang-Feng T, Francke U, George DL. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 1987; 13: 235–244.

    PubMed  CAS  Google Scholar 

  2. Fakharzadeh SS, Trusko SP, George DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 1991; 10: 1565–1569.

    PubMed  CAS  Google Scholar 

  3. Barak Y, Oren M. Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J 1992; 11: 2115–2121.

    PubMed  CAS  Google Scholar 

  4. Momand J, Zambetti GP, Olson DC, George D, Levine Ai. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    PubMed  CAS  Google Scholar 

  5. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80–83.

    PubMed  CAS  Google Scholar 

  6. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res 1998; 26: 3453–3459.

    PubMed  CAS  Google Scholar 

  7. Poremba C, Yandell DW, Metze D, Kamanabrou D, Bocker W, Dockhorn-Dworniczak B. Immunohistochemical detection of p53 in melanomas with rare p53 gene mutations is associated with mdm-2 overexpression. Oncol Res 1995; 7: 331–339.

    PubMed  CAS  Google Scholar 

  8. Jiang M, Shao ZM, Wu J, Lu JS, Yu LM, Yuan JD, Han QX, Shen ZZ, Fontana JA. p21 /waf l/ cip 1 and mdm-2 expression in breast carcinoma patients as related to prognosis. Int J Cancer 1997; 74: 529–534.

    PubMed  CAS  Google Scholar 

  9. Schlott T, Reimer S, Jahns A, Ohlenbusch A, Ruschenburg I, Nagel H, Droese M. Point mutations and nucleotide insertions in the MDM2 zinc finger structure of human tumours. J Pathol 1997; 182: 54–61.

    PubMed  CAS  Google Scholar 

  10. Piette J, Neel H, Maréchal V. Mdm2: keeping p53 under control. Oncogene 1997; 15: 1001–1010.

    PubMed  CAS  Google Scholar 

  11. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362: 857–860.

    PubMed  CAS  Google Scholar 

  12. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dey 1993; 7: 1126–1132.

    CAS  Google Scholar 

  13. Lin J, Chen J, Elenbaas B, Levine AJ. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dey 1994; 8: 1235–1246.

    CAS  Google Scholar 

  14. Haines DS, Landers JE, Engle LJ, George DL. Physical and functional interaction between wild-type p53 and mdm2 proteins. Mol Cell Biol 1994; 14: 1171–1178.

    PubMed  CAS  Google Scholar 

  15. Thut CJ, Goodrich JA, Tjian R. Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes and Dey 1997; 11: 1974–1986.

    CAS  Google Scholar 

  16. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    PubMed  CAS  Google Scholar 

  17. Kubbutat MHG, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    PubMed  CAS  Google Scholar 

  18. Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP. Design of a synthetic Mdm2binding mini protein that activates the p53 response in vivo. Curr Biol 1997; 7: 860–869.

    PubMed  CAS  Google Scholar 

  19. Ongkeko WM, Wang XQ, Siu WY, Lau AW, Yamashita K, Harris AL, Cox LS, Poon RY. MDM2 and MDMX bind and stabilize the p53-related protein p73. Curr Biol 1999; 9: 829–832.

    PubMed  CAS  Google Scholar 

  20. Balint E, Bates S, Vousden KH. Mdm2 binds p73 alpha without targeting degradation. Oncogene 1999; 18: 3923–3929.

    PubMed  CAS  Google Scholar 

  21. Dobbelstein M, Wienzek S, Konig C, Roth J. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 1999; 18: 2101–2106.

    PubMed  CAS  Google Scholar 

  22. Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, Kaelin WG Jr, Oren M, Chen J, Lu H. MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 1999; 19: 3257–3266.

    PubMed  CAS  Google Scholar 

  23. Martin K, Trouche D, Hagemeier C, Sorensen TS, La Thangue NB, Kouzarides T. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 1995; 375: 691–694.

    PubMed  CAS  Google Scholar 

  24. Juven-Gershon T, Shifman O, Unger T, Elkeles A, Haupt Y, Oren M. The Mdm2 oncoprotein interacts with the cell fate regulator Numb. Mol Cell Biol 1998; 18: 3974–3982.

    PubMed  CAS  Google Scholar 

  25. Vlatkovic N, Guerrera S, Li Y, Linn S, Haines DS, Boyd MT. MDM2 interacts with the C-terminus of the catalytic subunit of DNA polymerase epsilon. Nucleic Acids Res 2000; 28: 3581–3586.

    PubMed  CAS  Google Scholar 

  26. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX, Kumar S, Howley PM, Livingston DM. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 1998; 2: 405–415.

    PubMed  CAS  Google Scholar 

  27. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA. The Ink4a tumor suppressor gene product, pl9Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92: 713–723.

    PubMed  CAS  Google Scholar 

  28. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725–734.

    PubMed  CAS  Google Scholar 

  29. Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR, Livingston DM. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995; 375: 694–698.

    PubMed  CAS  Google Scholar 

  30. Elenbaas B, Dobbelstein M, Roth J, Shenk T, Levine AJ. The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol Med 1996; 2: 439–451.

    PubMed  CAS  Google Scholar 

  31. Boyd MT, Vlatkovic N, Haines DS. A novel cellular protein (MTBP) binds to MDM2 and induces a G1 arrest that is suppressed by MDM2. J Biol Chem 2000; 275: 31883–31890.

    PubMed  CAS  Google Scholar 

  32. Boddy MN, Freemont PS, Borden KL. The p53-associated protein MDM2 contains a newly characterized zinc-binding domain called the RING finger. Trends Biochem Sci 1994; 19: 198–199.

    PubMed  CAS  Google Scholar 

  33. Lai Z, Freedman DA, Levine AJ, McLendon GL. Metal and RNA binding properties of the hdm2 RING finger domain. Biochemistry 1998; 37: 7005–7015.

    PubMed  CAS  Google Scholar 

  34. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2- dependent ubiquitin-protein ligase. Science 1999; 286: 309–312.

    PubMed  CAS  Google Scholar 

  35. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999; 96: 11364–11369.

    PubMed  CAS  Google Scholar 

  36. Martinez-Noel G, Niedenthal R, Tamura T, Harbers K. A family of structurally related RING finger proteins interacts specifically with the ubiquitin-conjugating enzyme UbcM4. FEBS Lett 1999; 454: 257–261.

    PubMed  CAS  Google Scholar 

  37. Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van der Houven van Oordt W, Hateboer G, van der Eb AJ, Jochemsen AG. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 1996; 15: 5349–5357.

    Google Scholar 

  38. Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT, Merckx G, van Ham RC, van der Houven van Oordt W, van der Eb AJ, Jochemsen AG. Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics 1997; 43: 34–42.

    PubMed  CAS  Google Scholar 

  39. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 1999; 447: 5–9.

    PubMed  CAS  Google Scholar 

  40. Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J. Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 1996; 2: 912–917.

    PubMed  CAS  Google Scholar 

  41. de Oca Luna RM, Tabor AD, Eberspaecher H, Hulboy DL, Worth LL, Colman MS, Finlay CA, Lozano G. The organization and expression of the mdm2 gene. Genomics 1996; 33: 35 2357.

    Google Scholar 

  42. Lohrum MA, Ashcroft M, Kubbutat MH, Vousden KH. Identification of a cryptic nucleolarlocalization signal in MDM2. Nat Cell Biol 2000; 2: 179–181.

    PubMed  CAS  Google Scholar 

  43. Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998; 17: 554–564.

    PubMed  CAS  Google Scholar 

  44. Marston NJ, Crook T, Vousden KH. Interaction of p53 with MDM2 is independent of E6 and does not mediate wild type transformation suppressor function. Oncogene 1994; 9: 2707–2716.

    PubMed  CAS  Google Scholar 

  45. Reinke V, Lozano G. The p53 targets mdm2 and Fas are not required as mediators of apoptosis in vivo. Oncogene 1997; 15: 1527–1534.

    CAS  Google Scholar 

  46. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2deficient mice by absence of p53. Nature 1995; 378: 206–208.

    PubMed  CAS  Google Scholar 

  47. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.

    Google Scholar 

  48. de Rozieres S, Maya R, Oren M, Lozano G. The loss of mdm2 induces p53-mediated apoptosis. Oncogene 2000; 19: 1691–1697.

    PubMed  Google Scholar 

  49. Jones SN, Sands AT, Hancock AR, Vogel H, Donehower LA, Linke SP, Wahl GM, Bradley A. The tumorigenic potential and cell growth characteristics of p53- deficient cells are equivalent in the presence or absence of Mdm2. Proc Natl Acad Sci USA 1996; 93: 14106–14111.

    PubMed  CAS  Google Scholar 

  50. Barak Y, Juven T, Haffner R, Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J 1993; 12: 461–468.

    PubMed  CAS  Google Scholar 

  51. Vousden KH. p53. Death star. Cell 2000; 103: 691–694.

    PubMed  CAS  Google Scholar 

  52. Maki CG, Huibregtse JM, Howley PM. In vivo ubiquitination and proteasom-mediated degradation of p53. Cancer Res 1996; 56: 2649–2654.

    PubMed  CAS  Google Scholar 

  53. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 1998; 17: 7151–7160.

    PubMed  CAS  Google Scholar 

  54. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997; 420: 25–27.

    PubMed  CAS  Google Scholar 

  55. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275: 8945–8951.

    PubMed  CAS  Google Scholar 

  56. Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 2000; 19: 1473–1476.

    PubMed  CAS  Google Scholar 

  57. Kubbutat MH, Ludwig RL, Levine AJ, Vousden KH. Analysis of the degradation function of Mdm2. Cell Growth Differ 1999; 10: 87–92.

    PubMed  CAS  Google Scholar 

  58. Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, Gonda DK, Sangan P, Copeland NG, Jenkins NA, Varshaysky A. The mouse and human genes encoding the recognition component of the N- end rule pathway. Proc Natl Acad Sci USA 1998; 95: 7898–7903.

    PubMed  CAS  Google Scholar 

  59. Zachariae W, Shevchenko A, Andrews PD, Ciosk R, Galova M, Stark MJ, Mann M, Nasmyth K. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 1998; 279: 1216–1219.

    PubMed  CAS  Google Scholar 

  60. Tyers M, Willems AR. One ring to rule a superfamily of E3 ubiquitin ligases. Science 1999; 284:601, 603, 604.

    Google Scholar 

  61. Hatakeyama S, Jensen JP, Weissman AM. Subcellular localization and ubiquitin-conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases. J Biol Chem 1997; 272: 15085–15092.

    PubMed  CAS  Google Scholar 

  62. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 1995; 92: 2563–2567.

    PubMed  CAS  Google Scholar 

  63. Kubbutat MHG, Vousden, K.H.. Role of E6 and E7 oncoproteins in HPV-induced anogenital malignancies. Sem Virol 1996; 7: 295–304.

    CAS  Google Scholar 

  64. Middeler G, Zerf K, Jenovai S, Thulig A, Tschodrich-Rotter M, Kubitscheck U, Peters R. The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited. Oncogene 1997; 14: 1407–1417.

    PubMed  CAS  Google Scholar 

  65. Freedman DA, Levine AJ. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 1998; 18: 7288–7293.

    PubMed  CAS  Google Scholar 

  66. Tao W, Levine AJ. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2mediated degradation of p53. Proc Natl Acad Sci USA 1999; 96: 3077–3080.

    PubMed  CAS  Google Scholar 

  67. Lain S, Midgley C, Sparks A, Lane EB, Lane DP. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to UTA-positive nuclear bodies associated with the PODs. Exp Cell Res 1999; 248: 457–472.

    PubMed  CAS  Google Scholar 

  68. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 1999; 18: 1660–1672.

    PubMed  CAS  Google Scholar 

  69. Boyd SD, Tsai KY, Jacks T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol 2000; 2: 563–568.

    PubMed  CAS  Google Scholar 

  70. Geyer RK, Yu ZK, Maki CG. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol 2000; 2: 569–573.

    PubMed  CAS  Google Scholar 

  71. Lu W, Pochampally R, Chen L, Traidej M, Wang Y, Chen J. Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene 2000; 19: 232–240.

    PubMed  CAS  Google Scholar 

  72. Yu ZK, Geyer RK, Maki CG. MDM2-dependent ubiquitination of nuclear and cytoplasmic P53. Oncogene 2000; 19: 5892–5897.

    PubMed  CAS  Google Scholar 

  73. Buschmann T, Fuchs SY, Lee CG, Pan ZQ, Ronai Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 2000; 101: 753–762.

    PubMed  CAS  Google Scholar 

  74. Yuan ZM, Huang Y, Ishiko T, Nakada S, Utsugisawa T, Shioya H, Utsugisawa Y, Shi Y, Weichselbaum R, Kufe D. Function for p300 and not CBP in the apoptotic response to DNA damage. Oncogene 1999; 18: 5714–5717.

    PubMed  CAS  Google Scholar 

  75. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the C-terminal domain. Cell 1997; 90: 595–606.

    PubMed  CAS  Google Scholar 

  76. Kobet E, Zeng X, Zhu Y, Keller D, Lu H. MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci USA 2000; 97:12, 547–12, 552.

    Google Scholar 

  77. Marin MC, Kaelin WG Jr. p63 and p73: old members of a new family. Biochim Biophys Acta 2000; 1470: M93 - M100.

    PubMed  CAS  Google Scholar 

  78. Gu J, Chen D, Rosenblum J, Rubin RM, Yuan ZM. Identification of a sequence element from p53 that signals for Mdm2- targeted degradation. Mol Cell Biol 2000; 20: 1243–1253.

    PubMed  CAS  Google Scholar 

  79. Dubs-Poterszman M-C, Tocque B, Wasylyk B. MDM2 transformation in the absence of p53 and abrogation of the p107 GI cell-cycle arrest. Oncogene 1995; 11: 2445–2449.

    PubMed  CAS  Google Scholar 

  80. Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B. Barfield CR, Lozano G, Rosenberg MP, Finlay CA. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev 1997; 11: 714–725.

    PubMed  CAS  Google Scholar 

  81. Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA 1998; 95: 15608–15612.

    PubMed  CAS  Google Scholar 

  82. Alkhalaf M, Ganguli G, Messaddeq N, Le Meur M, Wasylyk B. MDM2 overexpression generates a skin phenotype in both wild type and p53 null mice. Oncogene 1999; 18: 1419–1434.

    PubMed  CAS  Google Scholar 

  83. Cordon-Cardo C, Latres E, Drobnjak M, Oliva MR, Pollack D, Woodruff JM, Marechal V, Chen J, Brennan MF, Levine AJ. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 1994; 54: 794–799.

    PubMed  CAS  Google Scholar 

  84. Muller H, Helin K. The E2F transcription factors: key regulators of cell proliferation. Biochim Biophys Acta 2000; 1470: M1 - M12.

    PubMed  CAS  Google Scholar 

  85. Loughran O, La Thangue NB. Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol Cell Biol 2000; 20: 2186–2197.

    PubMed  CAS  Google Scholar 

  86. Sun P, Dong P, Dai K, Hannon GJ, Beach D. p53-independent role of MDM2 in TGF-betal resistance. Science 1998; 282: 2270–2272.

    PubMed  CAS  Google Scholar 

  87. Yam CH, Siu WY, Arooz T, Chiu CH, Lau A, Wang XQ, Poon RY. MDM2 and MDMX inhibit the transcriptional activity of ectopically expressed SMAD proteins. Cancer Res 1999; 59: 5075–5078.

    PubMed  CAS  Google Scholar 

  88. Blain SW, Massague J. Different sensitivity of the transforming growth factor-beta cell cycle arrest pathway to c-Myc and MDM-2. J Biol Chem 2000; 275: 32066–32070.

    PubMed  CAS  Google Scholar 

  89. Boyd MT, Zimonjic DB, Popescu NC, Athwal R, Haines DS. Assignment(1) of the MDM2 binding protein gene (MTBP) to human chromosome band 8q24 by in situ hybridization. Cytogenet Cell Genet 2000; 90: 64–65.

    PubMed  CAS  Google Scholar 

  90. Ashcroft M, Taya Y, Vousden KH. Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 2000; 20: 3224–3233.

    PubMed  CAS  Google Scholar 

  91. Juven T, Barak Y, Zauberman A, George DL, Oren M. Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 1993; 8: 3411–3416.

    PubMed  CAS  Google Scholar 

  92. Zauberman A, Flusberg D, Haupt Y, Barak Y, Oren M. A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucl Acids Res 1995; 23: 2584–2592.

    PubMed  CAS  Google Scholar 

  93. Wu L, Levine AJ. Differential regulation of the p21 /WAF-1 and mdm2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene. Mol Med 1997; 3: 441–451.

    PubMed  CAS  Google Scholar 

  94. Arriola EL, Lopez AR, Chresta CM. Differential regulation of p2lwaf-1/cip-1 and Mdm2 by etoposide: etoposide inhibits the p53-Mdm2 autoregulatory feedback loop. Oncogene 1999; 18: 1081–1091.

    PubMed  CAS  Google Scholar 

  95. Blattner C, Sparks A, Lane D. Transcription factor E2F- 1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol 1999; 19: 3704–3713.

    PubMed  CAS  Google Scholar 

  96. Alarcon R, Koumenis C, Geyer RK, Maki CG, Giaccia AJ. Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res 1999; 59: 6046–6051.

    PubMed  CAS  Google Scholar 

  97. Zeng X, Keller D, Wu L, Lu H. UV but not gamma irradiation accelerates p53-induced apoptosis of teratocarcinoma cells by repressing MDM2 transcription. Cancer Res 2000; 60: 6184–6188.

    PubMed  CAS  Google Scholar 

  98. Mendrysa SM, Perry ME. The p53 tumor suppressor protein does not regulate expression of its own inhibitor, MDM2, except under conditions of stress. Mol Cell Biol 2000; 20: 2023–2030.

    PubMed  CAS  Google Scholar 

  99. Mosner J, Deppert W. p53 and mdm2 are expressed independently during cellular proliferation. Oncogene 1994; 9: 3321–3328.

    PubMed  CAS  Google Scholar 

  100. Mayo LD, Berberich SJ. Wild-type p53 protein is unable to activate the mdm-2 gene during F9 cell differeniation. Oncogene 1996; 13: 2315–2321.

    PubMed  CAS  Google Scholar 

  101. Burden AD, Stables GI, Campbell I, Thomson W, MacKie RM. Mdm-2 is not induced by p53 in human keratinocytes in vivo. J Cutan Pathol 1996; 23: 25–29.

    PubMed  CAS  Google Scholar 

  102. Shaulian E, Resnitzky D, Shifman O, Blandino G, Amsterdam A, Yayon A, Oren M. Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene 1997; 15: 2717–2725.

    PubMed  CAS  Google Scholar 

  103. Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999; 97: 727–741.

    PubMed  CAS  Google Scholar 

  104. Leri A, Liu Y, Claudio PP, Kajstura J, Wang X, Wang S, Kang P, Malhotra A, Anversa P. Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. Am J Pathol 1999; 154: 567–580.

    PubMed  CAS  Google Scholar 

  105. Qi JS, Yuan Y, Desai-Yajnik V, Samuels HH. Regulation of the mdm2 oncogene by thyroid hormone receptor. Mol Cell Biol 1999; 19: 864–872.

    PubMed  CAS  Google Scholar 

  106. Ries S, Biederer C, Woods D, Shifman O, Shirasawa S, Sasazuki T, McMahon M, Oren M, McCormick F. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 2000; 103: 321–330.

    PubMed  CAS  Google Scholar 

  107. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Nall Acad Sci USA 1999; 96: 14973–14977.

    CAS  Google Scholar 

  108. Mayo LD, Turchi JJ, Berberich SJ. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res 1997; 57: 5013–5016.

    PubMed  CAS  Google Scholar 

  109. Chang Y-C, Lee Y-S, Tejima T, Tanaka K, Omura S, Heintz NH, Mitsui Y, Magae J. mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway. Cell Growth and Duff 1998; 9: 79–84.

    CAS  Google Scholar 

  110. Hochstrasser M. Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2000; 2: E153 - E157.

    PubMed  CAS  Google Scholar 

  111. I 1 1. Johnson ES, Blobel G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 1997; 272: 26799–26802.

    Google Scholar 

  112. Johnson ES, Blobel G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 1999; 147: 981–994.

    PubMed  CAS  Google Scholar 

  113. Melchior F. Sumo Nonclassical Ubiquitin. Annu Rev Cell Dey Biol 2000; 16: 591–626.

    CAS  Google Scholar 

  114. Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M, Del Sal G. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 1999; 18: 6462–6471.

    PubMed  CAS  Google Scholar 

  115. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT. SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18: 6455–6461.

    PubMed  CAS  Google Scholar 

  116. Erhardt P, Tomaselli KJ, Cooper GM. Identification of the MDM2 oncoprotein as a substrate for CPP32-like apoptotic proteases. J Biol Chem 1997; 272: 15049–15052.

    PubMed  CAS  Google Scholar 

  117. Chen L, Marechals V, Moreau J, Levine AJ, Chen J. Proteolytic cleavage of the mdm2 oncoprotein during apoptosis. J. Biol Chem 1997; 272: 22966–22973.

    PubMed  CAS  Google Scholar 

  118. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998; 17: 3237–3245.

    PubMed  Google Scholar 

  119. Pochampally R, Fodera B, Chen L, Shao W, Levine EA, Chen J. A 60 kd MDM2 isoform is produced by caspase cleavage in non-apoptotic tumor cells. Oncogene 1998; 17: 2629–2636.

    PubMed  CAS  Google Scholar 

  120. Pochampally R, Fodera B, Chen L, Lu W, Chen J. Activation of an MDM2-specific caspase by p53 in the absence of apoptosis. J Biol Chem 1999; 274: 15271–15277.

    PubMed  CAS  Google Scholar 

  121. Sharp DA, Kratowicz SA, Sank MJ, George DL. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. JBiol Chem 1999; 274:38, 189–38, 196.

    Google Scholar 

  122. Jackson MW, Berberich SJ. MdmX protects p53 from Mdm2-mediated degradation. Mol Cell Biol 2000; 20: 1001–1007.

    PubMed  CAS  Google Scholar 

  123. Hsieh JK, Chan FS, O’Connor DJ, Mittnacht S, Zhong S, Lu X. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell 1999; 3: 181–193.

    PubMed  CAS  Google Scholar 

  124. Yap DB, Hsieh JK, Chan FS, Lu X. mdm2: a bridge over the two tumour suppressors, p53 and Rb. Oncogene 1999; 18: 7681–7689.

    PubMed  CAS  Google Scholar 

  125. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 704–707.

    PubMed  CAS  Google Scholar 

  126. Hannon GJ, Beach D. p15(INK4B) is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994; 371: 257–261.

    PubMed  CAS  Google Scholar 

  127. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day III RS, Johnson BE, Skolnick MH. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436–440.

    PubMed  CAS  Google Scholar 

  128. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver-Feldhaus J, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 1994; 8: 23–26.

    PubMed  CAS  Google Scholar 

  129. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998; 1378: F115 - F177.

    PubMed  CAS  Google Scholar 

  130. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19AR. Cell 1997; 91: 649–659.

    PubMed  CAS  Google Scholar 

  131. Groth A, Weber JD, Willumsen BM, Sherr CJ, Roussel MF. Oncogenic Ras induces p 19ARF and growth arrest in mouse embryo fibroblasts lacking p21Cipl and p27Kipl without activating cyclin D- dependent kinases. J Biol Chem 2000; 275: 27473–27480.

    PubMed  CAS  Google Scholar 

  132. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capapble of inducing cell cycle arrest. Cell 1995; 83: 993–1000.

    PubMed  CAS  Google Scholar 

  133. Stott F, Bates SA, James M, McConnell BB, Starborg M, Brookes S, Palmero I, Hara E, Ryan KM, Vousden KH, Peters G. The alternative product from the human CDKN2A locus, pl4AR, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17: 5001–5014.

    PubMed  CAS  Google Scholar 

  134. Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G. Regulation of p l6CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 1996; 16: 859–867.

    PubMed  CAS  Google Scholar 

  135. Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol 1998; 18: 6457–6473.

    PubMed  CAS  Google Scholar 

  136. Gonzalgo ML, Hayashida T, Bender CM, Pao MM, Tsai YC, Gonzales FA, Nguyen HD, Nguyen TT, Jones PA. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res 1998; 58: 1245–1252.

    PubMed  CAS  Google Scholar 

  137. Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB, Herman JG. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res 2000; 60: 129–133.

    PubMed  CAS  Google Scholar 

  138. lida S, Akiyama Y, Nakajima T, Ichikawa W, Nihei Z, Sugihara K, Yuasa Y. Alterations and hypermethylation of the p14(ARF) gene in gastric cancer. Int J Cancer 2000; 87: 654–658.

    Google Scholar 

  139. Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E, Aveyard J, Sibley K, Whitaker L, Knowles M, Newton Bishop J, Bishop DT. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001; 10: 55–62.

    PubMed  CAS  Google Scholar 

  140. Kamijo T, Bodner S, van de Kamp E, Randle DH, Sherr CJ. Tumor spectrum in ARF-deficient mice. Cancer Res 1999; 59: 2217–2222.

    PubMed  CAS  Google Scholar 

  141. Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, Sidransky D. A novel p 16INK4A transcript. Cancer Res 1995; 55: 2995–2997.

    PubMed  CAS  Google Scholar 

  142. Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, Peters G, Kamb A. Complex structure and regulation of the P16 (MTS1) locus. Cancer Res 1995; 55: 2988–2994.

    PubMed  CAS  Google Scholar 

  143. Duro D, Bernard O, Della Valle V, Berger R, Larsen CJ. A new type of p 16INK4/MTS 1 gene transcript expressed in B-cell malignancies. Oncogene 1995; 11: 21–29.

    PubMed  CAS  Google Scholar 

  144. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1: 20–26.

    PubMed  CAS  Google Scholar 

  145. Weber JD, Kuo ML, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF, Sherr CJ. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 2000; 20: 2517–2528.

    PubMed  CAS  Google Scholar 

  146. Rizos H, Darmanian AP, Mann GJ, Kefford RF. Two arginine rich domains in the p 14ARF tumour suppressor mediate nucleolar localization. Oncogene 2000; 19: 2978–2985.

    PubMed  CAS  Google Scholar 

  147. Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 1999; 3: 579–591.

    PubMed  CAS  Google Scholar 

  148. Lohrum MA, Ashcroft M, Kubbutat MH, Vousden KH. Contribution of two independent MDM2-binding domains in p14(ARF) to p53 stabilization. Curr Biol 2000; 10: 539–542.

    PubMed  CAS  Google Scholar 

  149. Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p 16) gene and human cancer. Mol Med 1997; 3: 5–20.

    PubMed  CAS  Google Scholar 

  150. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 8292–8297.

    PubMed  CAS  Google Scholar 

  151. Visintin R, Amon A. The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 2000; 12: 372–377.

    PubMed  CAS  Google Scholar 

  152. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradtion and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppressor pathways. Cell 1998; 92: 725–734.

    PubMed  CAS  Google Scholar 

  153. Honda R, Yasuda H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 1999; 18: 22–27.

    PubMed  CAS  Google Scholar 

  154. Tao W, Levine AJ. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 1999; 96: 6937–6941.

    PubMed  CAS  Google Scholar 

  155. Kurokawa K, Tanaka T, Kato J. pl9ARF prevents G1 cyclin-dependent kinase activation by interacting with MDM2 and activating p53 in mouse fibroblasts. Oncogene 1999; 18: 2718 2727.

    Google Scholar 

  156. Carnero A, Hudson JD, Price CM, Beach DH. p16INK4A and pl9ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2000; 2: 148–155.

    PubMed  CAS  Google Scholar 

  157. Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF, Sherr CJ, Zambetti GP. p53-independent functions of the pl9(ARF) tumor suppressor. Genes Dev 2000; 14: 2358 2365.

    Google Scholar 

  158. Sanchez-Cespedes M, Reed AL, Buta M, Wu L, Westra WH, Herman JG, Yang SC, Jen J, Sidransky D. Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non-small cell lung cancer. Oncogene 1999; 18: 5843–5849.

    PubMed  CAS  Google Scholar 

  159. Zindy F, Quelle DE, Roussel MF, Sherr CJ. Expression of the pl6INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 1997; 15: 203–211.

    PubMed  CAS  Google Scholar 

  160. Li Y, Nichols MA, Shay JW, Xiong Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 1994; 54: 6078–6082.

    PubMed  CAS  Google Scholar 

  161. Parry D, Bates S, Mann DJ, Peters G. Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p 1 6(INK4/MTS1) tumour suppressor gene product. EMBO J 1995; 14: 503–511.

    PubMed  CAS  Google Scholar 

  162. Khan SH, Moritsugu J, Wahl GM. Differential requirement for pl9ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc Natl Acad Sci USA 2000; 97: 3266–3271.

    PubMed  CAS  Google Scholar 

  163. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998; 12: 3008–3019.

    PubMed  CAS  Google Scholar 

  164. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and pl6INK4a Cell 1997; 88: 593–602.

    PubMed  CAS  Google Scholar 

  165. Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395: 125–126.

    PubMed  CAS  Google Scholar 

  166. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 1997; 94: 7245–7250.

    PubMed  CAS  Google Scholar 

  167. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson N. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996; 85: 537–548.

    PubMed  CAS  Google Scholar 

  168. Field SJ, Tsai F-Y, Kuo F, Zubiaga AM, Kaelin WG, Livingston DM, Orkin SH, Greenberg ME. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996; 85: 549–561.

    PubMed  CAS  Google Scholar 

  169. Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH. p14ARF links the tumour suppressors RB and p53. Nature 1998; 395: 124, 125.

    Google Scholar 

  170. de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dey 1998; 12: 2434–2442.

    Google Scholar 

  171. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dey 1998; 12: 2424–2433.

    CAS  Google Scholar 

  172. Radfar A, Unnikrishnan I, Lee HW, DePinho RA, Rosenberg N. p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc Natl Acad Sci USA 1998; 95: 13194–13199.

    PubMed  CAS  Google Scholar 

  173. Seavey SE, Holubar M, Saucedo LJ, Perry ME. The E7 oncoprotein of human papillomavirus type 16 stabilizes p53 through a mechanism independent of p19(ARF). J Virol 1999; 73: 7590–7598.

    PubMed  CAS  Google Scholar 

  174. Zhu J, Woods D, McMahon M, Bishop JM. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dey 1998; 12: 2997–3007.

    CAS  Google Scholar 

  175. Inoue K, Roussel MF, Sherr CJ. Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc Natl Acad Sci USA 1999; 96: 3993–3998.

    PubMed  CAS  Google Scholar 

  176. Hirai H, Sherr CJ. Interaction of D-type cyclins with a novel myb-like transcription factor, DMP1. Mol Cell Biol 1996; 16: 6457–6467.

    PubMed  CAS  Google Scholar 

  177. Inoue K, Sherr CJ. Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin-dependent-kinase-independent mechanism. Mol Cell Biol 1998; 18: 1590–1600.

    PubMed  CAS  Google Scholar 

  178. Inoue K, Wen R, Rehg JE, Adachi M, Cleveland JL, Roussel MF, Sherr CJ. Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis. Genes Dey 2000; 14: 1797–1809.

    CAS  Google Scholar 

  179. Cirielli C, Riccioni T, Yang C, Pili R, Gloe T, Chang J, Inyaku K, Passaniti A, Capogrossi MC. Adenovirus-mediated gene transfer of wild-type p53 results in melanoma cell apoptosis in vitro and in vivo. Int J Cancer 1995; 63: 673–679.

    PubMed  CAS  Google Scholar 

  180. Lin J, Jin X, Page C, Sondak VK, Jiang G, Reynolds RK. A modified p53 overcomes mdm2mediated oncogenic transformation: a potential cancer therapeutic agent. Cancer Res 2000; 60: 5895–5901.

    PubMed  CAS  Google Scholar 

  181. Selivanova G, Iotsova V, Okan I, Fritsche M, Strom M, Groner B, Grafstrom RC, Wiman KG. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med 1997; 3: 632–638.

    PubMed  CAS  Google Scholar 

  182. Chen J, Marechal V, Levine AJ. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 1993; 13: 4107–4114.

    PubMed  CAS  Google Scholar 

  183. Picksley SM, Vojtesek B, Sparks A, Lane DP. Immunochemical analysis of the interaction of p53 with MDM2;-fine mapping of the MDM2 binding site on p53 using synthetic peptides. Onco gene 1994; 9: 2523–2529.

    CAS  Google Scholar 

  184. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274: 948–953.

    PubMed  CAS  Google Scholar 

  185. Bottger V, Bottger A, Garcia-Echeverria C, Ramos YF, van der Eb AJ, Jochemsen AG, Lane DP. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 1999; 18: 189–199.

    PubMed  CAS  Google Scholar 

  186. Bottger V, Bottger A, Howard SF, Picksley SM, Chene P, Garcia-Echeverria C, Hochkeppel HK, Lane DP. Identification of novel mdm2 binding peptides by phage display. Oncogene 1996; 13: 2141–2147.

    PubMed  CAS  Google Scholar 

  187. Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT, Lane DP. An N-terminal p 14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 2000; 19: 2312–2323.

    PubMed  CAS  Google Scholar 

  188. Chen L, Agrawal S, Zhou W, Zhang R, Chen J. Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc Natl Acad Sci USA 1998; 95: 195–200.

    PubMed  CAS  Google Scholar 

  189. Wang H, Zeng X, Oliver P, Le LP, Chen J, Chen L, Zhou W, Agrawal S, Zhang R. MDM2 oncogene as a target for cancer therapy: an antisense approach. IntJ Oncol 1999; 15: 653–660.

    CAS  Google Scholar 

  190. Chen L, Lu W, Agrawal S, Zhou W, Zhang R, Chen J. Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Mol Med 1999; 5: 21–34.

    PubMed  CAS  Google Scholar 

  191. Tortora G, Caputo R, Damiano V, Bianco R, Chen J, Agrawal S, Bianco AR, Ciardiello F. A novel MDM2 anti-sense oligonucleotide has anti-tumor activity and potentiates cytotoxic drugs acting by different mechanisms in human colon cancer. Int.! Cancer 2000; 88: 804–809.

    CAS  Google Scholar 

  192. Yang CT, You L, Yeh CC, Chang JW, Zhang F, McCormick F, Jablons DM. Adenovirusmediated p 1 4(ARF) gene transfer in human mesothelioma cells. J Natl Cancerinst2000; 92: 636–641.

    Google Scholar 

  193. Gao L, Yang TH, Tourdot S, Sadovnikova E, Hasserjian R, Stauss HJ. Allo-major histocompatibility complex-restricted cytotoxic T lymphocytes engraft in bone marrow transplant recipients without causing graft-versus-host disease. Blood 1999; 94: 2999–3006.

    PubMed  CAS  Google Scholar 

  194. Sadovnikova E, Stauss HJ. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc Natl Acad Sci USA 1996; 93: 13114–13118.

    PubMed  CAS  Google Scholar 

  195. Dahl AM, Beverley PC, Stauss HJ. A synthetic peptide derived from the tumor-associated protein mdm2 can stimulate autoreactive, high avidity cytotoxic T lymphocytes that recognize naturally processed protein. J Immunol 1996; 157: 239–246.

    PubMed  CAS  Google Scholar 

  196. Nasir L, Burr PD, McFarlane ST, Gault E, Thompson H, Argyle DJ. Cloning, sequence analysis and expression of the cDNAs encoding the canine and equine homologues of the mouse double minute 2 (mdm2) proto-oncogene. Cancer Lett 2000; 152: 9–13.

    PubMed  CAS  Google Scholar 

  197. Veldhoen N, Metcalfe S, Milner J. A novel exon within the mdm2 gene modulates translation initiation in vitro and disrupts the p53-binding domain of mdm2 protein. Oncogene 1999; 18: 7026–7033.

    PubMed  CAS  Google Scholar 

  198. Chang KW, Laconi S, Mangold KA, Hubchak S, Scarpelli DG. Multiple genetic alterations in hamster pancreatic ductal adenocarcinomas. Cancer Res 1995; 55: 2560–2568.

    PubMed  CAS  Google Scholar 

  199. Marechal V, Elenbaas B, Taneyhill L, Piette J, Mechali M, Nicolas JC, Levine AJ, Moreau J. Conservation of structural domains and biochemical activities of the MDM2 protein from Xenopus laevis. Oncogene 1997; 14: 1427–1433.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klotzbücher, A., Kubbutat, M.H.G. (2002). Mdm2 and ARF. In: La Thangue, N.B., Bandara, L.R. (eds) Targets for Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-153-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-153-4_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-263-6

  • Online ISBN: 978-1-59259-153-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics