Skip to main content

The Effects of Triphenylethylene Antiestrogens on Parameters of Multistage Hepatocarcinogenesis in the Rat

  • Chapter
  • 329 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Knowledge of environmental factors that are causative of human cancer has been gained primarily from epidemiologic studies. Since neoplastic disease occurs spontaneously in lower mammals and can be induced in at least one species by virtually all of the agents shown to be carcinogenic by epidemiologic studies (1), animals may be appropriate counterparts for the assessment of human disease. Since the earliest studies demonstrating the chemical induction of cancer in mice and rats, the use of such rodents for determining the carcinogenicity of chemical agents has represented the “gold standard” in classifying an agent as a carcinogen. However, since the numbers of new chemicals entering our environment every year are in the thousands (2), the “gold standard” cannot be applied to every chemical for reasons of expense and time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vainio H, Hemminki K, Wilbourn J. Data on the carcinogenicity of chemicals in the IARC Monographs programme. Carcinogenesis 1985; 6:1653–1665.

    Article  PubMed  CAS  Google Scholar 

  2. Huff J, Haseman J, Rall D. Scientific concepts, value, and significance of chemical carcinogenesis studies. Annu Rev Pharmacol Toxicol 1991; 31:621–652.

    Article  PubMed  CAS  Google Scholar 

  3. Meijers JMM, Swaen GMH, Bloemen LJN. The predictive value of animal data in human cancer risk assessment. Reg Toxicol Pharmacol 1997; 25:94–102.

    Article  CAS  Google Scholar 

  4. Neumann F. Early indicators for carcinogenesis in sex-hormone-sensitive organs. Mutat Res 1991; 248:341–356.

    PubMed  CAS  Google Scholar 

  5. Foran JA. Principles for the selection of doses in chronic rodent bioassays. Environ Health Perspect 1997; 105:18–20.

    Article  PubMed  CAS  Google Scholar 

  6. Apostolou A. Relevance of maximum tolerated dose to human carcinogenic risk. Reg Toxicol Pharmacol 1990; 11:68–80.

    Article  CAS  Google Scholar 

  7. Wiltse J, Dellarco VL. U.S. Environmental Protection Agency guidelines for carcinogen risk assessment: past and future. Mutat Res 1996; 365:3–15.

    PubMed  Google Scholar 

  8. Knudson AG Jr. Hereditary cancers disclose a class of cancer genes. Cancer 1989; 63:1888–1891.

    Article  PubMed  Google Scholar 

  9. Moolgavkar SH, Knudson AG Jr. Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst 1981; 66:1037–1052.

    PubMed  CAS  Google Scholar 

  10. Moolgavkar SH, Venzon DJ. Two event models for carcinogenesis: incidence curves for childhood and adult tumors. Math Biosci 1979; 47:55–77.

    Article  Google Scholar 

  11. Moolgavkar SH. Carcinogenesis modeling: from molecular biology to epidemiology. Annu Rev Public Health 1986; 7:151–169.

    Article  PubMed  CAS  Google Scholar 

  12. Moolgavkar SH, Luebeck EG. Multistage carcinogenesis: population-based model for colon cancer. J Natl Cancer Inst 1992; 84:610–618.

    Article  PubMed  CAS  Google Scholar 

  13. Cohen SM, Ellwein LB. Genetic errors, cell proliferation, and carcinogenesis. Cancer Res 1991; 51:6493–6505.

    PubMed  CAS  Google Scholar 

  14. Cohen SM, Purtilo DT, Ellwein LB. Ideas in pathology. Pivotal role of increased cell proliferation in human carcinogenesis. Mod Pathol 1991; 4:371–382.

    PubMed  CAS  Google Scholar 

  15. Cohen SM, Ellwein LB. Cell proliferation in carcinogenesis. Science 1990; 249:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  16. Baylin SB. Tying it all together: epigenetics, genetics, cell cycle, and cancer. Science 1997; 277:1948–1949.

    Article  PubMed  CAS  Google Scholar 

  17. Laird PW, Jaenisch R. The role of DNA methylation in cancer genetics and epigenetics. Annu Rev Genet 1996; 30:441–464.

    Article  PubMed  CAS  Google Scholar 

  18. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61:759–767.

    Article  PubMed  CAS  Google Scholar 

  19. Harris CC. Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology, and human risk assessment. Prev Med 1996; 25:10–12.

    Article  PubMed  CAS  Google Scholar 

  20. Pitot HC. Stages in neoplastic development, in Cancer Epidemiology and Prevention 2nd ed. (Schottenfeld D, Fraumeni JF, eds). Oxford University Press, NY, 1996, pp 65–79.

    Google Scholar 

  21. Nowell PC. Cytogenetic approaches to human cancer genes. FASEB J 1994; 8:408–413.

    PubMed  CAS  Google Scholar 

  22. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutation Res 1983; 113:173–215.

    PubMed  CAS  Google Scholar 

  23. Gee P, Maron DM, Ames BN. Detection and classification of mutagens: a set of base-specific Salmonella tester strains. Proc Natl Acad Sci USA 1994; 91:11606–11610.

    Article  PubMed  CAS  Google Scholar 

  24. Swierenga SHH, Heddle JA, Sigal EA, Gilman JPW, Brillinger RL, Douglas GR, Nestmann ER. Recommended protocols based on a survey of current practice in genotoxicity testing laboratories, IV. Chromosome aberration and sister-chromatid exchange in Chinese hamster ovary, V79 Chinese hamster lung and human lymphocyte cultures. Mutation Res 1991; 246:301–322.

    PubMed  CAS  Google Scholar 

  25. Hoffmann GR. Genetic toxicology, in Casarett and Doull’s Toxicology, The Basic Science of Poisons, 5th ed. (Klaassen C, ed). McGraw Hill, New York, 1995, pp 269–300.

    Google Scholar 

  26. Yamasaki H, Ashby J, Bignami M, Jongen W, Linnainmaa K, Newbold RF, et al. Nongenotoxic carcinogens: development of detection methods based on mechanisms: a European project. Mutat Res 1996; 353:47–63.

    PubMed  Google Scholar 

  27. Isfort RJ, LeBoeuf RA. The Syrian hamster embryo (SHE) cell transformation system: a biologically relevant in vitro model – with carcinogen predicting capabilities – of in vivo multistage neoplastic transformation. Crit Rev Oncogen 1995; 6:251–260.

    CAS  Google Scholar 

  28. Sontag JM. Aspects in carcinogen bioassay, in Origins of Human Cancer (Hiatt H, Watson J, Winsten J, eds). Cold Spring Harbor Laboratory, 1997, pp 1327–1338.

    Google Scholar 

  29. Ames BN, Gold LS. Animal cancer tests and cancer prevention. J Natl Cancer Inst Monogr 1992; 12:125–132.

    PubMed  Google Scholar 

  30. Ames BN, Shigenaga MK, Gold LS. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect 1993; 101(Suppl 5):35–44.

    Article  PubMed  CAS  Google Scholar 

  31. McClain RM. Mechanistic considerations in the regulation and classification of chemical carcinogens, in Nutritional Toxicology (Kotsonis FN, Mackey M, Hjelle J, eds). Raven Press, Ltd., NY, 1994, pp 273–304.

    Google Scholar 

  32. Green T. Species differences in carcinogenicity: the role of metabolism in human risk evaluation. Teratogen Carcinogen Mutagen 1990; 10:103–113.

    Article  CAS  Google Scholar 

  33. Contrera JF, Jacobs AC, DeGeorge JJ. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. Reg Toxicol Pharmacol 1997; 25:130–145.

    Article  CAS  Google Scholar 

  34. Butterworth BE, Eldridge SR. A decision tree approach for carcinogen risk assessment. Prog Clin Biol Res 1995; 391:49–70.

    PubMed  CAS  Google Scholar 

  35. Goldsworthy TL, Butterworth BE, Maronpot RR. Concepts, labeling procedures, and design of cell proliferation studies relating to carcinogenesis. Environ Health Perspect 1993; 5:59–65.

    Article  Google Scholar 

  36. Collins JM, Grieshaber CK, Chabner BA. Pharmacologically guided Phase I clinical trials based upon preclinical drug development. J Natl Cancer Inst 1990; 82:1321–1326.

    Article  PubMed  CAS  Google Scholar 

  37. Monro AM. Interspecies comparisons in toxicology: the utility and futility of plasma concentrations of the test substance. Reg Toxicol Pharmacol 1990; 12:137–160.

    Article  CAS  Google Scholar 

  38. Peck CC, Barr WH, Benet LZ, Collins J, Desjardins RE, Furst DE, et al. Opportunities for integration of pharmacokinetics, pharmacodynamics and toxicokinetics in rational drug development. Pharmaceut Res 1992; 9:826–833.

    Article  CAS  Google Scholar 

  39. Couch DB. Carcinogenesis: basic principles. Drug Chem Toxicol 1996; 19:133–148.

    Article  PubMed  CAS  Google Scholar 

  40. Clayson DB, Iverson F. Cancer risk assessment at the crossroads: the need to turn to a biological approach. Reg Toxicol Pharmacol 1996; 24:45–59.

    Article  CAS  Google Scholar 

  41. Comings DE. A general theory of carcinogenesis. Proc Natl Acad Sci USA 1973; 70:3324–3328.

    Article  PubMed  CAS  Google Scholar 

  42. Jacks T. Tumor suppressor gene mutation in mice. Annu Rev Genet 1996; 30:603–636.

    Article  PubMed  CAS  Google Scholar 

  43. Boutwell RK. Some biological aspects of skin carcinogenesis. Progr Exp Tumor Res 1964; 4:207–250.

    PubMed  CAS  Google Scholar 

  44. Slaga TJ, Fischer SM, Weeks CE, Klein-Szanto AJP, Reiners J. Studies on the mechanisms involved in multistage carcinogenesis in mouse skin. J Cell Biochem 1982; 18:99–119.

    Article  PubMed  CAS  Google Scholar 

  45. Hennings H, Glick AB, Greenhalgh DA, Morgan DL, Strickland JE, Tennenbaum T, Yuspa SH. Critical aspects of initiation, promotion, and progression in multistage epidermal carcinogenesis. Proc Soc Exp Biol Med 1993; 202:1–8.

    PubMed  CAS  Google Scholar 

  46. Nagase H, Bryson S, Fee F, Balmain A. Multigenic control of skin tumour development in mice. Ciba Foundation Symp 1996; 197:156–168.

    CAS  Google Scholar 

  47. Goldsworthy TL, Hanigan MH, Pitot HC. Models of hepatocarcinogenesis in the rat: contrasts and comparisons. CRC Crit Rev Toxicol 1986; 17:61–89.

    Article  CAS  Google Scholar 

  48. Farber E, Sarma DSR. Biology of disease, Hepatocarcinogenesis: a dynamic cellular perspective. Lab Invest 1987; 56:4–22.

    PubMed  CAS  Google Scholar 

  49. Shackney SE, Shankey TV. Common patterns of genetic evolution in human solid tumors. Cytometry 1997; 29:1–27.

    Article  PubMed  CAS  Google Scholar 

  50. Dragan YP, Sargent L, Xu YD, Xu YH, Pitot HC. The initiation-promotion-progression model of rat hepatocarcinogenesis. Proc Soc Exp Biol Med 1993; 202:16–24.

    PubMed  CAS  Google Scholar 

  51. Boutwell RK. Some biological aspects of skin carcinogenesis. Prog Exp Tumor Res 1964; 4:207–250.

    PubMed  CAS  Google Scholar 

  52. Goldsworthy TL, Hanigan MH, Pitot HC. Models of hepatocarcinogenesis in the rat – contrasts and comparisons. CRC Crit Rev Toxicol 1986; 17:61–89.

    Article  CAS  Google Scholar 

  53. Pitot HC. Stages in neoplastic development, in Cancer Epidemiology and Prevention 2nd ed. (Schottenfeld D, Fraumeni JP, eds). Oxford University Press, NY, 1996, pp 65–79.

    Google Scholar 

  54. Slaga TJ, Fischer SM, Weeks CE, Klein-Szanto AJP, and Reiners J. Studies on the mechanisms involved in multistage carcinogenesis in mouse skin. J Cell Biochem 1982; 18:99–119.

    Article  PubMed  CAS  Google Scholar 

  55. Farber E, Sarma DSR. Biology of disease. Hepatocarcinogenesis: a dynamic cellular perspective. Lab Invest 1987; 56:4–22.

    PubMed  CAS  Google Scholar 

  56. Kakunaga T. The role of cell division in the malignant transformation of mouse cells treated with 3-methylcholanthrene. Cancer Res 1975; 35:1637–1642.

    PubMed  CAS  Google Scholar 

  57. Columbano A, Rajalakshmi S, Sarma DSR. Requirement of cell proliferation for the initiation of liver carcinogenesis as assayed by three different procedures. Cancer Res 1981; 41:2079–2083.

    PubMed  CAS  Google Scholar 

  58. Pitot HC, Goldsworthy TL, Moran S, et al. Amethod to quantitate the relative initiating and promoting potencies of hepatocarcinogenic agents in their dose-response relationship to altered hepatic foci. Carcinogenesis 1987; 8:1491–1499.

    Article  PubMed  CAS  Google Scholar 

  59. Dragan YP, Hully JR, Nakamura J, et al. Biochemical events during initiation of rat hepatocarcinogenesis. Carcinogenesis 1994; 15:1451–1458.

    Article  PubMed  CAS  Google Scholar 

  60. Talalay P, De Long MJ, Prochaska HJ. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci USA 1988; 85:8261–8265.

    Article  PubMed  CAS  Google Scholar 

  61. Topal MD. DNA repair, oncogenes and carcinogenesis. Carcinogenesis 1988; 9:691–696.

    Article  PubMed  CAS  Google Scholar 

  62. Liao D, Porsch-Hällström I, Gustafsson J-A, Blanck A. Sex differences at the initiation stage of rat liver carcinogenesis–influence of growth hormone. Carcinogenesis 1993; 14:2045–2049.

    Article  PubMed  CAS  Google Scholar 

  63. Grasl-Kraupp B, Bursch W, Ruttkay-Nedecky B, Wagner A, Lauer B, Schulte-Hermann R. Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carcinogenesis in rat liver. Proc Natl Acad Sci USA 1994; 91:9995–9999.

    Article  PubMed  CAS  Google Scholar 

  64. Maekawa A, Mitsumori K. Spontaneous occurrence and chemical induction of neurogenic tumors in rats–influence of host factors and specificity of chemical structure. Crit Rev Toxicol 1990; 20:287–310.

    Article  PubMed  CAS  Google Scholar 

  65. Pretlow TP. Alterations associated with early neoplasia in the colon, in Biochemical and Molecular Aspects of Selected Cancers vol. 2 (Pretlow TG, Pretlow TP, eds). Academic Press, San Diego, 1994, pp 93–141.

    Google Scholar 

  66. Dunham LJ. Cancer in man at site of prior benign lesion of skin or mucous membrane: a review. Cancer Res 1972; 32:1359–1374.

    PubMed  CAS  Google Scholar 

  67. Pretlow TP, O’Riordan MA, Spancake KM, Pretlow TG. Two types of putative preneoplastic lesions identified by hexosaminidase activity in whole-mounts of colons from F344 rats treated with carcinogen. Am J Pathol 1993; 142:1695–1700.

    PubMed  CAS  Google Scholar 

  68. Cohen SM, Arai M, Jacobs JB, Friedell GH. Promoting effect of saccharin and DL-tryptophan in urinary bladder carcinogenesis. Cancer Res 1979; 39:1207–1217.

    PubMed  CAS  Google Scholar 

  69. Dragan YP, Xu X-H, Goldsworthy TL, Campbell HA, Maronpot RR, Pitot HC. Characterization of the promotion of altered hepatic foci by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the female rat. Carcinogenesis 1992; 13:1389–1395.

    Article  PubMed  CAS  Google Scholar 

  70. Beebe LE, Anver MR, Riggs CW, Fornwald LW, Anderson LM. Promotion of N-nitrosodimethylamine- initiated mouse lung tumors following single or multiple low dose exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Carcinogenesis 1995; 16:1345–1349.

    Article  PubMed  CAS  Google Scholar 

  71. Poland A, Palen D, Glover E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature 1982; 30:271–273.

    Article  Google Scholar 

  72. Taper HS. The effect of estradiol-17-phenylpropionate and estradiol benzoate on N-nitrosomorpholine- induced liver carcinogenesis in ovariectomized female rats. Cancer 1978; 42:462–467.

    Article  PubMed  CAS  Google Scholar 

  73. Sumi C, Yokoro K, Kajitani T, Ito A. Synergism of diethylstilbestrol and other carcinogens in concurrent development of hepatic, mammary, and pituitary tumors in castrated male rats. JNCI 1980; 65:169–175.

    PubMed  CAS  Google Scholar 

  74. Kemp CJ, Leary CN, Drinkwater NR. Promotion of murine hepatocarcinogenesis by testosterone is androgen receptor-dependent but not cell autonomous. Proc Natl Acad Sci USA 1989; 86:7505–7509.

    Article  PubMed  CAS  Google Scholar 

  75. Magnuson BA, Carr I, Bird RP. Ability of aberrant crypt foci characteristics to predict colonic tumor incidence in rats fed cholic acid. Cancer Res 1993; 53:4499–4504.

    PubMed  CAS  Google Scholar 

  76. Reddy JK, Lalwani ND. Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemmic drugs and industrial plasticizers to humans. CRC Crit Rev Toxicol 1983; 12:1–58.

    Article  CAS  Google Scholar 

  77. Pitot HC. Endogenous carcinogenesis: the role of tumor promotion. Proc Soc Exp Biol Med 1991; 198:661–666.

    PubMed  CAS  Google Scholar 

  78. Hikita H, Vaughan J, Pitot HC. The effect of two periods of short-term fasting during the promotion stage of hepatocarcinogenesis in rats: the role of apoptosis and cell proliferation. Carcinogenesis 1997; 18:159–166.

    Article  PubMed  CAS  Google Scholar 

  79. Andrews EJ. Evidence of the nonimmune regression of chemically induced papillomas in mouse skin. JNCI 1971; 47:653–665.

    PubMed  CAS  Google Scholar 

  80. Schulte-Hermann R, Bursch W, Kraupp-Grasl B, et al. Cell proliferation and apoptosis in normal liver and preneoplastic foci. Environ Health Perspect 1993; 101:87–90.

    Article  PubMed  Google Scholar 

  81. Wright SC, Zhong J, Larrick JW. Inhibition of apoptosis as a mechanism of tumor promotion. FASEB J 1994; 8:654–660.

    PubMed  CAS  Google Scholar 

  82. Tatematsu M, Nagamine Y, Farber E. Redifferentiation as a basis for remodeling of carcinogen- induced hepatocyte nodules to normal appearing liver. Cancer Res 1983; 43:5049–5058.

    PubMed  CAS  Google Scholar 

  83. Hanigan MH, Pitot HC. Growth of carcinogen-altered rat hepatocytes in the liver of syngeneic recipients promoted with phenobarbital. Cancer Res 1985; 45:6063–6070.

    PubMed  CAS  Google Scholar 

  84. Furth J. A meeting of ways in cancer research: thoughts on the evolution and nature of neoplasms. Cancer Res 1959; 19:241–256.

    PubMed  CAS  Google Scholar 

  85. Van Duuren BL, Sivak A, Katz C, et al. The effect of aging and interval between primary and secondary treatment in two-stage carcinogenesis on mouse skin. Cancer Res 1975; 35:502–505.

    PubMed  Google Scholar 

  86. Sivak A. Cocarcinogenesis. Biochim Biophys Acta 1979; 560:67–69.

    PubMed  CAS  Google Scholar 

  87. Glauert HP, Schwarz M, Pitot HC. The phenotypic stability of altered hepatic foci: effect of the short-term withdrawal of phenobarbital and of the long-term feeding of purified diets after the withdrawal of phenobarbital. Carcinogenesis 1986; 7:117–121.

    Article  PubMed  CAS  Google Scholar 

  88. Cohen LA, Kendall ME. et al. Modulation of N-nitrosomethylurea-induced mammary tumor promotion by dietary fiber and fat. JNCI 1991; 83:496–501.

    Article  PubMed  CAS  Google Scholar 

  89. Carter JH, Carter HW, Meade J. Adrenal regulation of mammary tumorigenesis in female Sprague-Dawley rats: incidence, latency, and yield of mammary tumors. Cancer Res 1988; 48:3801–3807.

    PubMed  CAS  Google Scholar 

  90. Taper HS. The effect of estradiol-17-phenylpropionate and estradiol benzoate on N-nitrosomorpholine- induced liver carcinogenesis in ovariectomized female rats. Cancer 1978; 42:462–467.

    Article  PubMed  CAS  Google Scholar 

  91. Sumi C, Yokoro K, Kajitani T, Ito A. Synergism of diethylstilbestrol and other carcinogens in concurrent development of hepatic, mammary, and pituitary tumors in castrated male rats. JNCI 1980; 65:169–175.

    PubMed  CAS  Google Scholar 

  92. Kemp CJ, Leary CN, Drinkwater NR. Promotion of murine hepatocarcinogenesis by testosterone is androgen receptor-dependent but not cell autonomous. Proc Natl Acad Sci USA 1989; 86:7505–7509.

    Article  PubMed  CAS  Google Scholar 

  93. Ashendel CL. The phorbol ester receptor: a phospholipid-regulated protein kinase. Biochim Biophys Acta 1985; 822:219–242.

    PubMed  CAS  Google Scholar 

  94. Verma AK, Boutwell RK. Effects of dose and duration of treatment with the tumor-promoting agent, 12-O-tetradecanoylphorbol-13-acetate on mouse skin carcinogenesis. Carcinogenesis 1980; 1:271–276.

    Article  CAS  Google Scholar 

  95. Pitot HC. The role of receptors in multistage carcinogenesis. Mutat Res 1995; 333:3–14.

    PubMed  CAS  Google Scholar 

  96. Dragan YP, Pitot HC. Multistage hepatocarcinogenesis in the rat: insights into risk estimation, in Relevance of Animal Studies to the Evolution of Human Cancer Risk (D’Amato R, Slaga T, Farland W, Henry C, eds). Wiley Liss, Inc., New York, 1992, pp 261–279.

    Google Scholar 

  97. Foulds L. Multiple etiologic factors in neoplastic development. Cancer Res 1965; 25:1339–1347.

    PubMed  CAS  Google Scholar 

  98. Pitot HC. Progression: the terminal stage in carcinogenesis. Jpn J Cancer Res 1989; 80:599–607.

    PubMed  CAS  Google Scholar 

  99. Welch DR, Tomasovic SP. Implications of tumor progression on clinical oncology. Clin Exp Metastasis 1985; 3:151–188.

    Article  PubMed  CAS  Google Scholar 

  100. Fornace AJ, Jr, Nagasawa H, Little JB. Relationship of DNA repair to chromosome aberrations, sister-chromatid exchanges and survival during liquid-holding recovery in X-irradiated mammalian cells. Mutat Res 1980; 70:323–336.

    PubMed  CAS  Google Scholar 

  101. Cortés F, Piñero J, Ortiz T. Importance of replication fork progression for the induction of chromosome damage and SCE by inhibitors of DNA topoisomerases. Mutat Res 1993; 303:71–76.

    Article  PubMed  Google Scholar 

  102. Ottaggio L, Bonatti S, Cavalieri Z, Abbondandolo A. Chromosomes bearing amplified genes are a preferential target of chemicals inducing chromosome breakage and aneuploidy. Mutat Res 1993; 301:149–155.

    Article  PubMed  CAS  Google Scholar 

  103. Ledbetter DH. Minireview: cryptic translocations and telomere integrity. Am J Hum Genet 1992; 51:451–456.

    PubMed  CAS  Google Scholar 

  104. Ames BN, Shigenaga MK, Gold LS. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect 1993; 93:35–44.

    Article  Google Scholar 

  105. Kitagawa T, Sugano H. Timetable for hepatocarcinogenesis in rat, in Analytical and Experimental Epidemiology of Cancer. Proceedings of 3rd International Symposium of Princess Takamatsu Cancer Research Fund, 1973, pp 91–104.

    Google Scholar 

  106. Peraino C, Fry R, Staffeldt E. Enhancement of spontaneous hepatic tumorigenesis in C3H mice by dietary phenobarbital. J Natl Cancer Inst 1973; 51:1349–1350.

    PubMed  CAS  Google Scholar 

  107. Hennings H, Spangler EF, Shores R, Mitchell P, Devor D, Shamsuddin AKM, et al. Malignant conversion and metastasis of mouse skin tumors: a comparison of SENCAR and CD-1 mice. Environ Health Persp 1986; 68:69–74.

    Article  CAS  Google Scholar 

  108. Scherer E. Neoplastic progression in experimental hepatocarcinogenesis. Biochim Biophys Acta 1984; 738:219–236.

    PubMed  CAS  Google Scholar 

  109. Dragan YP, Sargent L, Xu Y-D, Xu Y-H, Pitot HC. The initiation-promotion-progression model of rat hepatocarcinogenesis. PSEBM 1993; 202:16–24.

    CAS  Google Scholar 

  110. Pitot HC, Dragan YP. The instability of tumor promotion in relation to human cancer risk, in Growth Factors and Tumor Promotion, Implications for Risk Assessment (McClain RM, Slaga TJ, Leboeuf R, Pitot H, eds). Wiley-Liss, New York, 1995, pp 21–38.

    Google Scholar 

  111. Knudson AG. Genetics and the etiology of childhood cancer. Pediatr Res 1976; 10:513–517.

    Article  PubMed  Google Scholar 

  112. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 1954; 8:1–12.

    PubMed  CAS  Google Scholar 

  113. Day NE, Brown CC. Multistage models and primary prevention of cancer. J Natl Cancer Inst 1980; 64:977–989.

    PubMed  CAS  Google Scholar 

  114. Boice JD Jr, Day NE, Andersen A, et al. Second cancers following radiation treatment for cervical cancer. An international collaboration among cancer registries. J Natl Cancer Inst 1985; 74:955–975.

    Google Scholar 

  115. Kinlen LJ. Immunosuppressive therapy and cancer. Cancer Surv 1982; 1:565–583.

    Google Scholar 

  116. Berry CL. Temporal variations in carcinogenic effects. Hum Toxicol 1984; 3:3–6.

    Article  PubMed  CAS  Google Scholar 

  117. Henson DE, Albores-Saavedra J. (1986) The Pathology of Incipient Neoplasia WB, Saunders Company, Philadelphia, PA.

    Google Scholar 

  118. Anisimov VN. Carcinogenesis and aging. Adv Cancer Res 1983; 40:365–424.

    Article  PubMed  CAS  Google Scholar 

  119. Doll R, Peto R. (1981) The Causes of Cancer. Oxford University Press, Oxford, UK.

    Google Scholar 

  120. Murphree AL, Benedict WF. Retinoblastoma: clues to human oncogenesis. Science 1984; 223:1028–1033.

    Article  PubMed  CAS  Google Scholar 

  121. Kitamura K, Kuwano H, Yasuda M, Sonoda K, Sumiyoshi K, Tsutsui S-I, et al. What is the earliest malignant lesion in the esophagus? Cancer Suppl 1996; 77:1615–1619.

    Google Scholar 

  122. Hecker E, Lutz D, Weber J, Goerttler K, Morton JF. Multistage Tumor Development in the Human Esophagus. 13th International Cancer Congress, Part B, Biology of Cancer (1), Alan R. Liss, New York, 1983, pp 219–238.

    Google Scholar 

  123. Hu J, Nyrén O, Wolk A, Bergström R, Yuen J, Adami H-O, et al. Risk factors for oesophageal cancer in Northeast China. Int J Cancer 1994; 57:38–46.

    Article  PubMed  CAS  Google Scholar 

  124. Cheng KK, Duffy SW, Day NE, Lam TH, Chung SF, Badrinath P. Stopping drinking and risk of oesophageal cancer. B Med J 1995; 310:1094–1097.

    CAS  Google Scholar 

  125. Antonioli DA. Precursors of gastric carcinoma: a critical review with a brief description of early (curable) gastric cancer. Hum Pathol 1994; 25:994–1005.

    Article  PubMed  CAS  Google Scholar 

  126. Correa P, Haenszel W, Cuello C, Zavala D, Fontham E, Zarama G, et al. Gastric precancerous process in a high risk population: cross-sectional studies. Cancer Res 1990; 50:4731–4736.

    PubMed  CAS  Google Scholar 

  127. Rugge M, Farinati F, Di Mario F, Baffa R, Valiante F, Cardin F. Gastric Epithelial Dysplasia: a prospective multicenter follow-up study from the interdisciplinary group on gastric epithelial dysplasia. Hum Pathol 1991; 22:1002–1008.

    Article  PubMed  CAS  Google Scholar 

  128. Inoue M, Tajima K, Hirose K, Kurioshi T, Gao C-M, Kitoh T. Life-style and subsite of gastric cancer–joint effect of smoking and drinking habits. Int J Cancer 1994; 56:494–499.

    Article  PubMed  CAS  Google Scholar 

  129. Potter JD. Reconciling the epidemiology, physiology, and molecular biology of colon cancer. JAMA 1992; 268:1573–1577.

    Article  PubMed  CAS  Google Scholar 

  130. Siu I-M, Pretlow TG, Amini SB, Pretlow TP. Identification of dysplasia in human colonic aberrant crypt foci. Am J Pathol 1997; 150:1805–1813.

    PubMed  CAS  Google Scholar 

  131. Page DL, Dupont WD, Rogers LW. Ductal involvement by cells of atypical lobular hyperplasia in the breast: a long-term follow-up study of cancer risk. Hum Pathol 1988; 19:201–207.

    Article  PubMed  CAS  Google Scholar 

  132. Barrett-Connor E, Friedlander NJ. Dietary fat, calories, and the risk of breast cancer in postmenopausal women: a prospective population-based study. J Am Coll Nutr 1993; 12:390–399.

    PubMed  CAS  Google Scholar 

  133. Hunter DJ, Willett WC. Diet, body build, and breast cancer. Annu Rev Nutr 1994; 14:393–418.

    Article  PubMed  CAS  Google Scholar 

  134. Longnecker MP, Newcomb PA, Mittendorf R, Greenberg ER, Clapp RW, Bogdan GF, et al. Risk of breast cancer in relation to lifetime alcohol consumption. J Natl Cancer Inst 1995; 87:923–929.

    Article  PubMed  CAS  Google Scholar 

  135. Nagamoto N, Saito Y, Sato M, Sagawa M, Kanma K, Takahashi S, et al. Lesions preceding squamous cell carcinoma of the bronchus and multicentricity of canceration–serial slicing of minute lung cancers smaller than 1 mm. Tohoku J Exp Med 1993; 170:11–23.

    Article  PubMed  CAS  Google Scholar 

  136. Zatonski W, Becher H, Lissowska J. Smoking cessation: intermediate nonsmoking periods and reduction of laryngeal cancer risk. J Natl Cancer Inst 1990; 82:1427–1428.

    Article  PubMed  CAS  Google Scholar 

  137. Samut JM. Health benefits of smoking cessation. Clin Chest Med 1991; 12:669–678.

    Google Scholar 

  138. Reif AE. Effect of cigarette smoking on susceptibility to lung cancer. Oncology 1981; 38:76–85.

    Article  PubMed  CAS  Google Scholar 

  139. Sakamoto M, Hirohashi S, Shimosato Y. Early stages of multistep hepatocarcinogenesis: adenomatous hyperplasia and early hepatocellular carcinoma. Hum Pathol 1991; 22:172–178.

    Article  PubMed  CAS  Google Scholar 

  140. Borzio M, Bruno S, Roncalli M, Mels GC, Ramella G, Borzio F, et al. Liver cell dysplasia is a major risk factor for hepatocellular carcinoma in cirrhosis: a prospective study. Gastroenterology 1995; 108:812–817.

    Article  PubMed  CAS  Google Scholar 

  141. Longnecker MP, Enger SM. Clin Chim Acta 1996; 246:121–141.

    Article  PubMed  CAS  Google Scholar 

  142. Edmondson HA, Reynolds TB, Henderson B, Benton B. Regression of liver cell adenomas associated with oral contraceptives. Ann Intern Med 1977; 86:180–182.

    PubMed  CAS  Google Scholar 

  143. Amin MB, Young RH. Intraepithelial lesions of the urinary bladder with a discussion of the histogenesis of urothelial neoplasia. Sem Diag Pathol 1997; 14:84–97.

    CAS  Google Scholar 

  144. Silverman DT, Hartge P, Morrison AS, Devesa SS. Epidemiology of bladder cancer. Bladder Cancer 1992; 6:1–30.

    CAS  Google Scholar 

  145. Gambrell RD Jr. Pathophysiology and epidemiology of endometrial cancer, in Treatment of the Postmenopausal Woman: Basic and Clinical Aspects (Lobo RA, ed). Raven Press, NY, 1994, pp 355–362.

    Google Scholar 

  146. Ebeling K, Nischan P, Schindler C. Use of oral contraceptives and risk of invasive cervical cancer in previously screened women. Int J Cancer 1987; 39:427–430.

    Article  PubMed  CAS  Google Scholar 

  147. Gitsch G, Kainz C, Studnicka M, Reinthaller A, Tatra G, Breitenecker G. Oral contraceptives and human papillomavirus infection in cervical intraepithelial neoplasia. Arch Gynecol Obstet 1992; 252:25–30.

    Article  PubMed  CAS  Google Scholar 

  148. Pontén J, Adami H-O, Bergström R, Dillner J, Friberg L-G, Gustafsson L, et al. Strategies for global control of cervical cancer. Intl J Cancer 1995; 60:1–26.

    Article  Google Scholar 

  149. Murthy NS, Sehgal A, Satyanarayana L, Das DK, Singh V, Das BC, et al. Risk factors related to biological behaviour of precancerous lesions of the uterine cervix. Br J Cancer 61:732–736.

    Google Scholar 

  150. Jones EC, Young RH. The differential diagnosis of prostatic carcinoma, its distinction from premalignant and pseudocarcinomatous lesions of the prostate gland. Am J Clin Pathol 1994; 101:48–64.

    PubMed  CAS  Google Scholar 

  151. Nomura AMY, Kolonel LN. Prostate cancer: a current perspective. Am J Epidemiol 1991; 13:200–227.

    CAS  Google Scholar 

  152. Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ. Prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst 1996; 88:1118–1126.

    Article  PubMed  CAS  Google Scholar 

  153. Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with the illustrative cases. Lancet 1896; 2:104–107.

    Article  Google Scholar 

  154. Allen E, Doisy E. An ovarian hormone: preliminary report on its localization, extraction, and partial purification and action in test animals. J Am Med Assoc 1923; 81:819–821.

    CAS  Google Scholar 

  155. Jensen E, Jacobson H. Basic guides to the mechanism of estrogen action. Recent Prog Horm Res 1962; 18:387–414.

    CAS  Google Scholar 

  156. Jensen E, Block G, Smith S, et al. Estrogen receptors and breast cancer response to adrenalectomy. Monogr Natl Cancer Inst 1971; 34:55–70.

    CAS  Google Scholar 

  157. Furr B, Jordan VC. The pharmacology and clinical uses of tamoxifen. Pharmacol Ther 1984; 25:127–205.

    Article  PubMed  CAS  Google Scholar 

  158. Cook JW, Dodds EC, Hewett CL. A synthetic oestrus-exciting compound. Nature (London) 1933; 131:56.

    Article  CAS  Google Scholar 

  159. Dodds EC, Lawson W. Synthetic oestrogenic agents without the phenanthrene nucleus. Nature (London) 1936; 139:627.

    Article  Google Scholar 

  160. Dodds EC, Golberg L, Lawson W, Robinson R. Oestrogenic activity of certain synthetic compounds. Nature (London) 1938a; 141:247–248.

    Article  CAS  Google Scholar 

  161. Robson JM, Schonberg A. Oestrous reactions including mating produced by triphenylethylene. Nature (London) 1937; 140:196.

    Article  CAS  Google Scholar 

  162. Robson JM, Schonberg A, Fahim HA. Duration of action of natural and synthetic estrogens. Nature (London) 1938; 142:292–293.

    Article  CAS  Google Scholar 

  163. Lerner LJ, Holthaus JF, Thompson CR. A non-steroidal estrogen antagonist 1-(p-2-diethylaminoethoxyphenyl)- 1-phenyl-2-p-methoxyphenylethanol. Endocrinology 1958; 63:295–318.

    Article  PubMed  CAS  Google Scholar 

  164. Chang M. Degeneration of the ova in the rat and rabbit following oral administration of 1-(p-2-diethylaminoethoxyphenyl)-1-phenyl-2-p-anisyl-ethanol. Endocrinology 1959; 65:339–342.

    Article  PubMed  CAS  Google Scholar 

  165. Kistner R, Smith O. Observations on the use of a nonsteroidal estrogen antagonist, MER 25. Fertil Steril 1961; 12:121–141.

    PubMed  CAS  Google Scholar 

  166. Lerner LJ, Jordan VC. Development of antiestrogens and their use in breast cancer: Eighth Cain Memorial Award Lecture. Cancer Res 1990; 50:4177–4189.

    PubMed  CAS  Google Scholar 

  167. Jordan VC, Collins MM, Rowsby L, Prestwich G. A monohydroxylated metabolite of tamoxifen with potent antiestrogenic activity. J Endocrinol 1977; 75:305–316.

    Article  PubMed  CAS  Google Scholar 

  168. Allen KE, Clark ER, Jordan VC. Evidence for the metabolic activation of non-steroidal antiestrogens: a study of structure-activity relationships. Brit J Pharmacol 1980; 71:83–91.

    CAS  Google Scholar 

  169. Lieberman ME, Jordan VC, Fritsch M, Santos MA, Gorski J. Direct and reversible inhibition of estradiol-stimulated prolactin synthesis by antiestrogens in vitro. J Biol Chem 1983b; 258:4734–4740.

    PubMed  CAS  Google Scholar 

  170. Harper M, Walpole A. Contrasting endocrine activities of cis and trans isomers in a series of substituted triphenylethylenes. Nature 1966; 212:87.

    Article  PubMed  CAS  Google Scholar 

  171. Harper M, Walpole A. A new derivative of triphenylethylene: effect on implantation and mode of action in rats. J Reprod Fertil 1967; 13:101–119.

    PubMed  CAS  Google Scholar 

  172. Jordan VC. Biochemical pharmacology of antiestrogen action. Pharmacol Rev 1984; 36:245–276.

    PubMed  CAS  Google Scholar 

  173. Black LJ, Jones CD, Falcone JF. Antagonism of estrogen action with a new benzothiophene- derived antiestrogen. Life Sci 1983; 32:1031–1036.

    Article  PubMed  CAS  Google Scholar 

  174. Tonetti DA, Jordan VC. Targeted antiestrogens. Prog Clin Biol Res 1997; 396:245–255.

    PubMed  CAS  Google Scholar 

  175. Fahey S, Jordan VC, Fritz N, Robinson S, Waters D, Tormey D. Clinical pharmacology and endocrinology of long-term tamoxifen therapy. In: Long term treatment for breast cancer, (Jordan VC, ed.), The University of Wisconsin Press, Madison, WI, 1994, pp 27–56.

    Google Scholar 

  176. Mani C, Gelboin HV, Park SS, et al. Metabolism of the antimammary cancer antiestrogen agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Drug Metab Dispos 21:645–656.

    Google Scholar 

  177. Lim CK, Yuan Z-X, Lamb JH, et al. A comparative study of tamoxifen metabolism in female rat, mouse and human liver microsomes. Carcinogenesis 1994; 15:589–593.

    Article  PubMed  CAS  Google Scholar 

  178. Poon GK, Walter B, Lonning PE, et al. Identification of tamoxifen metabolites in human HEP G2 cell line, human liver homogenate, and patients on long-term therapy for breast cancer. Drug Metab Dispos 1995; 23:377–382.

    PubMed  CAS  Google Scholar 

  179. Tannenbaum S. Comparative metabolism of tamoxifen and DNA adduct formation and in vitro studies on genotoxicity. Seminars Oncol 1997; 24:s81–s86.

    Google Scholar 

  180. Ruenitz PC, Toledo MM. Inhibition of rabbit liver microsomal oxidative metabolism and substrate binding by tamoxifen and the geometric isomers of clomiphene: Biochem Pharmacol 1980; 29:1583–1587.

    Article  PubMed  CAS  Google Scholar 

  181. Meltzer NM, Stang P, Sternson LA, Wade A. Influence of tamoxifen and its N-desmethyl and 4-hydroxy metabolites on rat liver microsomal enzymes. Biochem Pharmacol 1984; 33:115–123.

    Article  PubMed  CAS  Google Scholar 

  182. Ruenitz PC, Bagley JR, Pape CW. Some chemical and biochemical aspects of liver microsomal metabolism of tamoxifen. Drug Metab Dispos 1984; 12:478–483.

    PubMed  CAS  Google Scholar 

  183. Ruenitz PC, Bagley JR. Comparative fates of clomiphene and tamoxifen in the immature female rat. Drug Metab Dispos 1985; 13:582–586.

    PubMed  CAS  Google Scholar 

  184. Jacolot F, Simon I, Dreano Y, Beaune P, Riche C, Berthou F. Identification of the cytochrome p450 IIIa family as the enzymes involved in the N-demethylation of tamoxifen in human liver microsomes. Biochem Pharmacol 1991; 41:1911–1919.

    Article  PubMed  CAS  Google Scholar 

  185. Mani C, Pearce R, Parkinson A, Kupfer D. Involvement of cytochrome P4503A in catalysis of tamoxifen activation and covalent binding to rat and human liver microsomes. Carcinogenesis 1994; 15:2715–2720.

    Article  PubMed  CAS  Google Scholar 

  186. Mani C, Hodgson E, Kupfer D. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. II. Flavin-containing monooxygenase-mediated N-oxidation. Drug Metab Dispos 1993; 21:657–661.

    PubMed  CAS  Google Scholar 

  187. Pathak D, Pangracz K, Bodell W. Activation of 4-hydroxy tamoxifen and the tamoxifen derivative Metabolite E by uterine peroxidases to form DNA adducts: comparison with DNA adducts formed in the uterus of Sprague-Dawley rats treated with tamoxifen. Carcinogenesis 1996; 17:1785–1790.

    Article  PubMed  CAS  Google Scholar 

  188. Adam HK, Douglas EJ, Kemp JV. The metabolism of tamoxifen in humans. Biochem Pharmacol 1979; 27:145–147.

    Article  Google Scholar 

  189. Fromson JM, Pearson S, Bramah S. The metabolism of tamoxifen (ICI 46,474) Part I in laboratory animals. Xenobiotica 1973; 3:693–709.

    Article  PubMed  CAS  Google Scholar 

  190. Foster AB, Griggs LJ, Jarman M, van Maanen JMS, Schulten H-R. Metabolism of tamoxifen by rat liver microsomes: formation of the N-oxide, a new metabolite. Biochem Pharmacol 1980; 29:1977–1979.

    Article  PubMed  CAS  Google Scholar 

  191. Bates DJ, Foster AB, Griggs LJ, Jarman M, Leclercq G, Devleeschouwer N. Metabolism of tamoxifen by isolated rat hepatocytes: antiestrogenic activity of tamoxifen N-oxide. Biochem Pharmacol 1982; 31:2823–2827.

    Article  PubMed  CAS  Google Scholar 

  192. Bain RR, Jordan VC. Identification of a new metabolite of tamoxifen in patient serum during breast cancer therapy. Biochem Pharmacol 1983; 32:373–375.

    Article  PubMed  CAS  Google Scholar 

  193. Jordan VC, Bain RR, Brown RR, Gosden B, Santos MA. Determination and pharmacology of a new hydroxylated metabolite of tamoxifen observed in patient sera during therapy for advanced breast cancer. Cancer Res 1983; 43:1446–1450.

    PubMed  CAS  Google Scholar 

  194. Kemp JV, Adam HK, Wakeling AE, Slater R. Identification and biological activity of tamoxifen metabolites in human serum. Biochem Pharmacol 1983; 32:2045–2052.

    Article  PubMed  CAS  Google Scholar 

  195. Lien EA, Solheim E, Ueland PM. Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res 1991; 51:4837–4844.

    PubMed  CAS  Google Scholar 

  196. Parr IB, McCague R, Leclercq G, Stoessel S. Metabolism of tamoxifen by isolated rat hepatocytes. Biochem Pharmacol 1987; 36:1513–1519.

    Article  PubMed  CAS  Google Scholar 

  197. Poon GK, Chui YC, McCague R. Analysis of phase I and phase II metabolites of tamoxifen in breast cancer patients. Drug Metab Dispos 1993; 21:1119–1124.

    PubMed  CAS  Google Scholar 

  198. Poon G, Walter B, Lonning P, et al. Identification of tamoxifen metabolites in human HEPG2 cell line, human liver homogenates, and patients on long-term therapy for breast cancer. Drug Metab Dispos 1995; 23:377–382.

    PubMed  CAS  Google Scholar 

  199. Wiseman H, Lewis DFV. The metabolism of tamoxifen by human cytochromes P450 is rationalized by molecular modelling of the enzyme-substrate interactions: potential importance to its proposed anti-carcinogenic/carcinogenic actions. Carcinogenesis 1996; 17:1357–1360.

    Article  PubMed  CAS  Google Scholar 

  200. Mani C, Kupfer D. Cytochrome P450 mediated activation and irreversible binding of the antiestrogen tamoxifen to proteins in rat and human liver; possible involvement of flavincontaining monooxygenases in tamoxifen activation. Cancer Res 1991; 51:6052–6058.

    PubMed  CAS  Google Scholar 

  201. Dehal SS, Kupfer D. Evidence that the catechol 3,4-dihydroxy-tamoxifen is a proximate intermediate to the reactive species binding covalently to proteins. Cancer Res 1995; 56:1283–1290.

    Google Scholar 

  202. White INH, de Matteis F, Gibbs AH, Lim CK, Wolf CR, Henderson C, Smith LL. Species differences in the covalent binding of [14C]tamoxifen to liver microsomes and the forms of cytochrome P450 involved. Biochem Pharmacol 1995; 49:1035–1042.

    Article  PubMed  CAS  Google Scholar 

  203. Han X, Liehr JG. Induction of covalent DNA adducts in rodents by tamoxifen. Cancer Res 1992; 52:1360–1363.

    PubMed  CAS  Google Scholar 

  204. Hard G, Iatropoulos M, Jordan K, Radi L, Kaltenberg O, Imondi A, Williams G. Major differences in the hepatocarcinogenicity and DNA adduct forming ability between toremifene and tamoxifen in female CrL:CD(BR) rats. Cancer Res 1993; 53:4334–4341.

    Google Scholar 

  205. White INH, de Matteis F, Davies A, Smith LL, Crofton-Sleigh C, Venitt S, et al. Genotoxic potential of tamoxifen and analogues in female Fischer F244/n rats, DBA/2 and C57BL/6 mice and human MCL-5 cells. Carcinogenesis 1992; 13:2197–2203.

    Article  PubMed  CAS  Google Scholar 

  206. Pathak DN, Bodell WJ. DNA adduct formation by tamoxifen with rat and human liver microsomal activation systems. Carcinogenesis 1994; 15:529–532.

    Article  PubMed  CAS  Google Scholar 

  207. Randerath K, Moorthy B, Mabon N, Sriram P. Tamoxifen: evidence by 32P-postlabeling and use of metabolic inhibitors for two distinct pathways leading to mouse hepatic DNA adduct formation and identification of 4-hydroxytamoxifen as a proximate metabolite. Carcinogenesis 1994; 15:2087–2094.

    Article  PubMed  CAS  Google Scholar 

  208. Hemminki K, Widlak P, Hou S-M. DNA adducts caused by tamoxifen and toremifene in human microsomal system and lymphocytes in vitro. Carcinogenesis 1995; 16:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  209. Li D, Dragan Y, Jordan VC, Wang M, Pitot HC. Effects of chronic administration of tamoxifen and toremifene on DNA adducts in rat liver, kidney, and uterus. Cancer Res 1997; 57:1438–1441.

    PubMed  CAS  Google Scholar 

  210. Blankson EA, Ellis SW, Lennard MS, Tucker GT, Rogers K. The metabolism of tamoxifen by human liver microsomes is not mediated by cytochrome P450IID6. Biochem. Pharmacol 1991; 42:S209–S212.

    Article  PubMed  CAS  Google Scholar 

  211. Potter GA, McCague R, Jarman M. A mechanistic hypothesis for DNA adduct formation by tamoxifen following hepatic oxidative metabolism. Carcinogenesis 1994; 15:439–442.

    Article  PubMed  CAS  Google Scholar 

  212. Phillips DH, Potter GA, Horton MN, et al. Reduced genotoxicity of [D5-ethyl]-tamoxifen implicates α-hydroxylation of the ethyl group as a major pathway of tamoxifen activation to a liver carcinogen. Carcinogenesis 1994; 15:1487–1492.

    Article  PubMed  CAS  Google Scholar 

  213. Phillips D, Carmichael P, Hewer A, Cole K, Poon G. α-Hydroxytamoxifen, a metabolite of tamoxifen with exceptionally high DNA-binding activity in rat hepatocytes. Cancer Res 1995; 54:5518–5522.

    Google Scholar 

  214. Moorthy B, Sriram P, Pathak DN, Bodell WJ, Randerath K. Tamoxifen metabolic activation: comparison of DNA adducts formed by microsomal and chemical activation of tamoxifen and 4-hydroxytamoxifen with DNA adducts formed in vivo. Cancer Res 1996; 56:53–57.

    PubMed  CAS  Google Scholar 

  215. Marques MM, Beland FA. Identification of tamoxifen-DNA adducts formed by 4-hydroxytamoxifen quinone methide. Carcinogenesis 1997; 18:1949–1954.

    Article  PubMed  CAS  Google Scholar 

  216. Cunningham A, Klopman G, Rosenkranz H. A study of the structural basis of the carcinogenicity of tamoxifen, toremifene, and their metabolites. Mutat Res 1996; 349:85–94.

    PubMed  Google Scholar 

  217. Anttila M, Valavaara R, Kivinen S, Mäenpä J. Pharmacokinetics of toremifene. J Steroid Biochem 1990; 36:249–252.

    Article  PubMed  CAS  Google Scholar 

  218. Sipilä H, Kangas L, Vuorilehto L, Kalapudas A, Eloranta M, Södervall M, et al. Metabolism of toremifene in the rat. J Steroid Biochem 1990; 36:211–215.

    Article  PubMed  Google Scholar 

  219. Kangas L. Introduction to toremifene. Breast Cancer Res Treat 1990; 16:S-3–S-7.

    Article  PubMed  Google Scholar 

  220. Kangas L. Biochemical and pharmacological effects of toremifene metabolites. Cancer Chemother Pharm 1990; 27:8–12.

    Article  CAS  Google Scholar 

  221. Kohler PC, Hamm JT, Wiebe VJ, DeGregorio MW, Shemano I, Tormey DC. Phase I study of the tolerance and pharmacokinetics of toremifene in patients with cancer. Breast Cancer Res Treat 1990; 16:S-19–S-26.

    Article  Google Scholar 

  222. Valavaara R, Pyrhönen S, Heikkinen M, Rissanen P, Blanco G, Thölix E, et al. Toremifene, a new antiestrogenic compound, for treatment of advanced breast cancer. Phase II study. Eur J Cancer Clin Oncol 1988; 24:785–790.

    Article  PubMed  CAS  Google Scholar 

  223. Wiebe VJ, Benz CC, Shemano I, Cadman TB, DeGregorio MW. Pharmacokinetics of toremifene and its metabolites in patients with advanced breast cancer. Cancer Chemother Pharmacol 1990; 25:247–251.

    Article  PubMed  CAS  Google Scholar 

  224. Watanabe N, Irie T, Koyama M. Liquid chromatographic-atmospheric pressure ionization mass spectrometric analysis of toremifene metabolites in human urine. J Chromatogr 1989; 497:169–180.

    Article  PubMed  CAS  Google Scholar 

  225. Robinson SP, Parker CJ, Jordan VC. Preclinical studies with toremifene as an antitumor agent. Breast Cancer Res Treat 1990; 16:S-9–S-17.

    Article  CAS  Google Scholar 

  226. Eppenberger U, Wosikowski K, Küng W. Pharmacologic and biologic properties of droloxifene, a new antiestrogen. Am J Clin Oncol 1991; 14:S5–S14.

    Article  PubMed  Google Scholar 

  227. Löser R, Seibel K, Liehn HD, Staab H-J. Pharmacology and toxicology of the antiestrogen droloxifene. Contr Oncol 1986; 23:64–72.

    Google Scholar 

  228. Hasmann M, Rattel B, Löser R. Preclinical data for droloxifene. Cancer Lett 1994; 84:101–116.

    Article  PubMed  CAS  Google Scholar 

  229. Coombes RC, Haynes BP, Dowsett M, Quigley M, English J, Judson IR, et al. Idoxifene: report of a phase I study in patients with metastatic breast cancer. Cancer Res 1995; 55:1070–1074.

    PubMed  CAS  Google Scholar 

  230. Haynes BP, Parr IB, Griggs LJ, Jarman M. Metabolism and pharmacokinetics of pyrrolidino- 4-iodotamoxifen in the rat. Breast Cancer Res Treat 1991; 19:174.

    Google Scholar 

  231. Busch H. Adducts and tamoxifen. Sem Oncol 1997; 24:s98–s104.

    CAS  Google Scholar 

  232. Robinson SP, Langan-Fahey SM, Johnson DA, Jordan VC. Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos 1991; 19:36–43.

    PubMed  CAS  Google Scholar 

  233. Phillips D, Carmichael P, Hewer A, et al. Activation of tamoxifen and its metabolite α- hydroxytamoxifen to DNA binding products: comparisons between human, rat, and mouse hepatocytes. Carcinogenesis 1996; 17:89–94.

    Article  PubMed  CAS  Google Scholar 

  234. Osborne M, Hewer A, Hardcastle I, Carmichael P, Philips D. Identification of the major tamoxifen-deoxyguanosine adduct formed in the liver DNA of rats treated with tamoxifen. Cancer Res 1996; 56:66–71.

    PubMed  CAS  Google Scholar 

  235. Carthew P, Martin E, White I, de Matteis F, Edwards R, Dorman B, et al. Tamoxifen induces short-term cumulative DNA damage and liver tumors in rats: promotion by phenobarbital. Cancer Res 1995; 55:544–547.

    PubMed  CAS  Google Scholar 

  236. Martin E, Rich K, White I, Woods K, Powles T, Smith LL. 32P-postlabeled DNA adducts in liver obtained from women treated with tamoxifen. Carcinogenesis 1995; 16:1651–1654.

    Article  PubMed  CAS  Google Scholar 

  237. Davies A, Martin E, Jones R, Lim C, Smith L, White I. Peroxidase activation of tamoxifen and toremifene resulting in DNA damage and covalently bound protein adducts. Carcinogenesis 1995; 16:539–545.

    Article  PubMed  CAS  Google Scholar 

  238. White I, Martin E, Mauthe R, Vogel J, Turtletaub K, Smith LL. Comparisons of the binding of [14C]radiolabeled tamoxifen or toremifene to rat DNA using accelerator mass spectrometry. Chemico-Biol Interact 1997; 106:149–160.

    Article  CAS  Google Scholar 

  239. Hemminki K, Rajaniemi H, Lindahl B, Moberger B. Tamoxifen induced DNA adducts in endometrial samples from breast cancer patients. Cancer Res 1996; 56:4374–4377.

    PubMed  CAS  Google Scholar 

  240. Vancutsem P, Lazarus P, Williams G. Frequent and specific mutations of the rat p53 gene in hepatocarcinomas induced by tamoxifen. Cancer Res 1994; 54:3864–3867.

    PubMed  CAS  Google Scholar 

  241. Barakat R, O’Connor B, Banerjee D, Bertino J. Mutation of c-Ki-ras in tamoxifen associated endometrial carcinoma. Proc. Am. Assoc. Cancer Res 1995; 36:186(1106A).

    Google Scholar 

  242. Davies R, Oreffo V, Martin E, Festing M, White I, Smith LL, Styles JA. Tamoxifen causes gene mutations in the livers of lambda/lacI transgenic rats. Cancer Res 1997; 57:1288–1293.

    PubMed  CAS  Google Scholar 

  243. Davies R, Oreffo V, Bayliss S, Dinh P, Lilley K, White I, et al. Mutational spectra of tamoxifen- induced mutations in the livers of lacI transgenic rats. Environ Mol Mutag 1996; 28:430–433.

    Article  CAS  Google Scholar 

  244. Randerath K, Bi J, Mabon N, Sriram P, Moorthy B. Strong intensification of mouse hepatic tamoxifen adduct formation by pretreatment with sulfotransferase inhibitor and ubiquitous environmental pollutant pentachlorophenol. Carcinogenesis 1994; 15:797–800.

    Article  PubMed  CAS  Google Scholar 

  245. Dasaradhi L, Shibutani S. Identification of tamoxifen-DNA adducts formed by α-sulfate tamoxifen and α-acetoxytamoxifen. Chem Res Toxicol 1997; 10:189–196.

    Article  PubMed  CAS  Google Scholar 

  246. McCague R, Parr IB, Leclercq G, Leung O-T, and Jarman M. Metabolism of tamoxifen by isolated rat hepatocytes. Identification of the glucuronide of 4-hydroxytamoxifen. Biochem Pharmacol 1990; 39:1459–1465.

    Article  PubMed  CAS  Google Scholar 

  247. Hellriegel ET, Matwyshyn GA, Fei P, Dragnev KH, Nims RW, Lubet RA, Kong A-NT. Regulation of gene expression of various phase I and phase II drug-metabolizing enzymes by tamoxifen in rat liver. Biochem Pharmacol 1996; 52:1561–1568.

    Article  PubMed  CAS  Google Scholar 

  248. Nuwaysir EF, Daggett DA, Jordan VC, Pitot HC. Phase II enzyme expression in rat liver in response to the antiestrogen tamoxifen. Cancer Res 1996; 56:3704–3710.

    PubMed  CAS  Google Scholar 

  249. Jarman M, Poon G, Rowlands M, Grimshaw R, Horton M, Potter G, McCague R. The deuterium isotope effect for the α-hydroxylation of tamoxifen by rat liver microsomes accounts for the reduced genotoxicity of [D5-ethyl]-tamoxifen. Carcinogenesis 1995; 15:683–688.

    Article  Google Scholar 

  250. Phillips D, Potter G, Horton M, Hewer A, Crofton-Sleigh C, Jarman M, Venitt S. Reduced genotoxicity of [D5-ethyl]-tamoxifen implicates α-hydroxylation of the ethyl group as a major pathway of tamoxifen activation to a liver carcinogen. Carcinogenesis 1994; 15:1487–1492.

    Article  PubMed  CAS  Google Scholar 

  251. McCague R, Seago A. Aspects of tamoxifen metabolism by rat liver microsomes. Biochem Pharmac 1986; 35:827–834.

    Article  CAS  Google Scholar 

  252. Styles J, Davies A, Lim C, DeMatteis F, Stanley L, White I, Yuan Z-X, Smith LL. Genotoxicity of tamoxifen, tamoxifen epoxide, and toremifene in human lymphoblastoid cells containing human cytochrome P450s. Carcinogenesis 1994; 15:5–9.

    Article  PubMed  CAS  Google Scholar 

  253. Pongracz K, Pathak D, Nakamura T, Burlingame A, Bodell W. Activation of tamoxifen derivative metabolite E to form DNA adducts: comparison with the adducts formed by microsomal activation of tamoxifen. Cancer Res 1995; 55:3012–3015.

    PubMed  CAS  Google Scholar 

  254. Lim CK, Yuan Z, Jones R, White I, Smith LL. Identification and mechanism of formation of potentially genotoxic metabolites of tamoxifen: study by LC-MS/MS. J Pharm Biomed Anal 1997; 15:1335–1342.

    Article  PubMed  CAS  Google Scholar 

  255. Shibutani S, Dasaradhi L. Miscoding potential of tamoxifen-derived DNA adducts: α-(N 2- deoxyguanosinyl)tamoxifen. Biochemistry 1997; 36:13010–13017.

    Article  PubMed  CAS  Google Scholar 

  256. International Agency for Research on Cancer (IARC): Tamoxifen. IARC Monographs 1996; 66:274–365.

    Google Scholar 

  257. Tucker M, Adam H, Patterson J. Tamoxifen, in Safety Testing of New Drugs (Lawrence D, McLean A, Weatherall M, eds). Academic Press, Orlando, FL, 1984, pp 125–161.

    Google Scholar 

  258. Montandon F, Williams G. Comparison of DNA reactivity of the polyphenylethylene hormonal agents diethylstilbesterol, tamoxifen, and toremifene in rat and hamster liver. Arch Toxicol 1994; 68:272–275.

    Article  PubMed  CAS  Google Scholar 

  259. Hemminki K, Widlak P, Hou S-M. DNA adducts caused by tamoxifen and toremifene in human microsomal system and lymphocytes in vitro. Carcinogenesis 1995; 16:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  260. Tsutsi T, Maizumi H, McLachlan J, Barrett JC. Aneuploidy induction and cell transformation by diethylstilbestrol: a possible chromosomal mechanism in carcinogenesis. Cancer Res 1983; 43:3814–3821.

    Google Scholar 

  261. Tsutsui T, Degen G, Schiffmann D, Wong A, Maizumi H, McLachlan J, Barrett JC. Dependence on exogenous metabolic activation for induction of unscheduled DNA synthesis in Syrian hamster embryo cells by diethylstilbesterol and related compounds. Cancer Res 1984; 44:184–189.

    PubMed  CAS  Google Scholar 

  262. Tsutsui T, Suzuki N, Maizumi H, McLachlan J, Barrett JC. Alteration in diethylstilbesterolinduced mutagenicity and cell transformation by exogenous metabolic activation. Carcinogenesis 1986; 7:1415–1418.

    Article  PubMed  CAS  Google Scholar 

  263. Dragan Y, Xu YD, Pitot HC. Tumor promotion as a target for estrogen/antiestrogen effects in rat hepatocarcinogenesis. Prev Med 1991; 20:15–26.

    Article  PubMed  CAS  Google Scholar 

  264. Yager J, Roebuck B, Paluszcyk T, Memoli V. Effects of ethinyl estradiol and tamoxifen on liver DNA turnover and new synthesis and appearance of gamma glutamyl transpeptidase positive foci in female rats. Carcinogenesis 1986; 7:2007–2014.

    Article  PubMed  CAS  Google Scholar 

  265. Ghia M, Mereto E. Induction and promotion of γ-glutamyltranspeptidase-positive foci in the livers of female rats treated with ethinyl estradiol, clomiphene, tamoxifen and their associations. Cancer Lett 1989; 46:195–202.

    Article  PubMed  CAS  Google Scholar 

  266. Solt D, Farber E. New principle for the analysis of chemical carcinogenesis. Nature 1976; 263:701–703.

    Article  CAS  Google Scholar 

  267. Williams G, Iatropoulos M, Karlsson S. Initiating activity of the anti-estrogen tamoxifen, but not toremifene in rat liver. Carcinogenesis 1997; 18:2247–2253.

    Article  PubMed  CAS  Google Scholar 

  268. Newberne J, Kuhn W. Elsea J. Toxicologic studies on clomiphene. Toxic Appl Pharm 1966; 9:44–56.

    Article  CAS  Google Scholar 

  269. Gibson J, Newberne J, Kuhn W, Elsea J. Comparative chronic toxicity of three oral estrogens in rats. Toxic Appl Pharm 1967; 11:489–510.

    Article  CAS  Google Scholar 

  270. Juedes MJ, Bulger WH, Kupfer D. Mono-oxygenase mediated activation of chlorotrianisene (TACE) in covalent binding to rat hepatic microsomal proteins. Drug Metab Dispos 1987; 15:786–793.

    PubMed  CAS  Google Scholar 

  271. Hasmann M, Rattel B, Loser R. Preclinical data for droloxifene. Cancer Lett 1994; 84:101–116.

    Article  PubMed  CAS  Google Scholar 

  272. Loser R, Seibel K, Liehn H, Staub H-J. Pharmacology and toxicology of the antiestrogen droloxifene. Contr Oncol 1986; 23:64–72.

    Google Scholar 

  273. Dahme E, Rattel B. Droloxifene induces, in contrast to tamoxifen, no liver tumors in the rat. Onkologie 1994; 17(Suppl. 1):6–16.

    Article  Google Scholar 

  274. Hirsimaki P, Hirsimaki Y, Nieminen L. The effects of tamoxifen citrate and toremifene citrate on the ultrastructure of the rat liver. Inst Phys Conf Ser 93: 1988; 3:235–236.

    Google Scholar 

  275. Hirsimaki P, Hirsimaki Y, Nieminen L, Payne BJ. Tamoxifen induces hepatocellular carcinoma in rat liver: a one year study with two antiestrogens. Arch Toxicol 1993; 67:49–54.

    Article  PubMed  CAS  Google Scholar 

  276. Ahotupa M, Hirsimaki P, Parssinen R, Mantyla E. Alterations of drug metabolizing and antioxidant enzyme activities during tamoxifen-induced hepatocarcinogenesis in the rat. Carcinogenesis 1994; 15:863–868.

    Article  PubMed  CAS  Google Scholar 

  277. Dragan Y, Vaughan J, Jordan VC, Pitot HC. Comparison of the effects of tamoxifen and toremifene on liver and kidney tumor promotion in female rats. Carcinogenesis 1995; 16:2733–2741.

    Article  PubMed  CAS  Google Scholar 

  278. Karlsson S, Hirsimaki Y, Mantyla E, Nieminen L, Kangas L, Hirsimaki P, et al. A two year dietary carcinogenicity study of the antiestrogen toremifene in Sprague-Dawley rats. Drug Chem Toxicol 1996; 19:245–266.

    Article  PubMed  CAS  Google Scholar 

  279. Watanabe M, Tanaka H, Koizumi H, Tanimoto Y, Torii R, Yanagita T. General toxicity studies of tamoxifen in mice and rats. Jitchuken Zenrinsko Kenkyuko 1980; 6:1–36.

    CAS  Google Scholar 

  280. Mishkin SY, Farber E, Ho RK, Mulay S, Mishkin S. Evidence for the hormone dependency of hepatic hyperplastic nodules: inhibition dependency of malignant transformation after endogenous β estradiol and tamoxifen. Hepatology 1983; 3:308–316.

    PubMed  CAS  Google Scholar 

  281. Kohigashi K, Fukuda Y, Imura H. Inhibitory effect of tamoxifen on DES-promoted hepatic tumorigenesis in male rats and its possible mechanism of action. Gann 1988; 79:1335–1339.

    PubMed  CAS  Google Scholar 

  282. Francavilla A, Polimeno L, DiLeo A, Barone M, Ove P, Coetzee M, et al. The effect of estrogen and tamoxifen on hepatocyte proliferation in vivo and in vitro. Hepatology 1989; 9:614–620.

    Article  PubMed  CAS  Google Scholar 

  283. Carthew P, Rich KJ, Martin EA, De Matteis F, Lim C-K, Manson MM, et al. DNA damage as assessed by 32P-postlabeling in three rat strains exposed to dietary tamoxifen: the relationship between cell proliferation and liver tumor formation. Carcinogenesis 1995; 16:1299–1304.

    Article  PubMed  CAS  Google Scholar 

  284. Kim D, Han S, Ahn B, Lee K, Kang J, Tsuda H. Promotion potential of tamoxifen on hepatocarcinogenesis in female SD or F344 rats initiated with diethylnitrosamine. Cancer Lett 1996; 104:13–19.

    Article  PubMed  CAS  Google Scholar 

  285. Greaves P, Goonetilleke R, Nunn G, Topham J, Orton T. Two year carcinogenicity study of tamoxifen in Alderley Park Wistar-derived rats. Cancer Res 1993; 53:3919–3924.

    PubMed  CAS  Google Scholar 

  286. Dragan YP, Fahey S, Street K, Vaughan J, Jordan VC, Pitot HC. Studies of tamoxifen as a promoter of hepatocarcinogenesis in female Fischer F344 rats. Breast Cancer Res Treat 1994; 31:11–25.

    Article  PubMed  CAS  Google Scholar 

  287. Dragan Y, Fahey S, Nuwaysir E, Sattler C, Babcock K, Vaughan J, et al. The effect of tamoxifen and two of its non-isomerizable fixed ring analogs on multistage rat hepatocarcinogenesis. Carcinogenesis 1996; 17:585–594.

    Article  PubMed  CAS  Google Scholar 

  288. Williams GM, Iatropoulos MJ, Djordjevic MV, Kaltenberg OP. The triphenylethylene drug tamoxifen is a strong liver carcinogen in the rat. Carcinogenesis 1993; 14:315–317.

    Article  PubMed  CAS  Google Scholar 

  289. Martin E, Carthew P, White I, Smith LL. A lifetime feeding study of tamoxifen in three strains of mice. The Toxicologist, Fund Appl Toxiol 1996; 30:A1026, pg. 201.

    Google Scholar 

  290. McLachlan J, Wong A, Degen G, Barrett J. Morphologic and neoplastic transformation of Syrian hamster embryo fibroblasts by diethylstilbesterol and its analogs. Cancer Res 1982; 42:3040–3045.

    PubMed  CAS  Google Scholar 

  291. Metzler M, Schiffmann D. Structural requirements for the in vitro transformation of Syrian hamster embryo cells by stilbene estrogens and triphenylethylene-type antiestrogens. Am J Clin Oncol 1991; 14(Suppl 2):30–35.

    Article  Google Scholar 

  292. Styles J, Davies A, Davies R, White I, Smith LL. Clastogenic and aneugenic effects of tamoxifen and some of its analogs in hepatocytes from dosed rats and in human lymphoblastoid cells transfected with human P450 cDNAs (MCL-5 cells). Carcinogenesis 1997; 18:303–313.

    Article  PubMed  CAS  Google Scholar 

  293. Oshimura M, Barrett JC. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer. Environ Mutag 1986; 8:129–159.

    Article  CAS  Google Scholar 

  294. Hayashi N, Hasegawa K, Komine A, Tanaka Y, McLachlan JA, Barrett JC, Tsutsui T. Estrogen- induced cell transformation and DNA adduct formation in cultured Syrian hamster embryo cells. Mol Carcinog 1996; 16:149–156.

    Article  PubMed  CAS  Google Scholar 

  295. Sargent L, Dragan Y, Bahnub N, Sattler C, Sattler G, Jordan VC, Pitot HC. Tamoxifen induces hepatic aneuploidy and mitotic spindle disruptions after a single in vivo administration to female Sprague-Dawley rats. Cancer Res 1994; 54:3357–3360.

    PubMed  CAS  Google Scholar 

  296. Sargent L, Dragan Y, Bahnub N, Sattler G, Martin P, Cisneros A, et al. Induction of hepatic aneuploidy in vivo by tamoxifen, toremifene, and idoxifene in female Sprague-Dawley rats. Carcinogenesis 1996; 17:1051–1056.

    Article  PubMed  CAS  Google Scholar 

  297. Aldaz C, Conti C, Klein-Szanto A, Slaga T. Progressive dysplasia and aneuploidy are hallmarks of mouse skin papillomas: relevance to malignancy. Proc Natl Acad Sci USA 1987; 84:2029–2032.

    Article  PubMed  CAS  Google Scholar 

  298. Liang J, Brinkley B. Chemical probes and possible targets for the induction of aneuploidy. Basic Life Sci 1985; 36:491–505.

    PubMed  CAS  Google Scholar 

  299. Osborne C, Boldt D Estrada P. Human breast cancer cell cycle synchronization by estrogens and antiestrogens in culture. Cancer Res 1984; 44:1433–1439.

    PubMed  CAS  Google Scholar 

  300. Bouhoute A, LeClercq G. Antagonistic effect of triphenylethylenic antiestrogens on the association of estrogen receptor to calmodulin. Biochem Biophys Res Comm 1992; 184:1432–1440.

    Article  PubMed  CAS  Google Scholar 

  301. Edwards K, Laughton C, Neidle S. A molecular modeling study of the interactions between the antiestrogen drug tamoxifen and several derivatives, and the calcium-binding protein calmodulin. J Med Chem 1992; 35:2753–2761.

    Article  PubMed  CAS  Google Scholar 

  302. Rowland M, Parr I, McCague R, Jarman M, Goddard P. Variation of the inhibition of calmodulin dependent cyclic AMP phosphodiesterase among analogs of tamoxifen: correlation with cytotoxicity. Biochem Pharmacol 1990; 40:283–289.

    Article  Google Scholar 

  303. Hardcastle I, Rowlands M, Houghton J, Parr I, Potter G, Jarman M. Rationally designed analogues of tamoxifen with improved calmodulin antagonism. J Med Chem 1995; 38:241–248.

    Article  PubMed  CAS  Google Scholar 

  304. Musgrove E, Wakeling A, Sutherland R. Points of action of estrogen antagonists and a calmodulin antagonist within the MCF-7 human breast cancer cell cycle. Cancer Res 1989; 49:2398–2404.

    PubMed  CAS  Google Scholar 

  305. Lam H. Tamoxifen is a calmodulin antagonist in the activation of cAMP-phosphodiesterase. Biochem Biophys Res Commun 1984; 118:27–32.

    Article  PubMed  CAS  Google Scholar 

  306. Castoria G, Migliaccio A, Nola E, Aurichio F. In vitro interaction of estradiol receptor with Ca+2-calmodulin. Mol Endocrinol 1988; 2:167–174.

    Article  PubMed  CAS  Google Scholar 

  307. Auricchio F, Migliaccio A, DiDomenico M, Nola E. Estradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell free system. EMBO J 1987; 6:2923–2929.

    PubMed  CAS  Google Scholar 

  308. Watts C, Sweeney K, Warlters A, Musgrove E, Sutherland R. Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res Treat 1994; 31:95–105.

    Article  PubMed  CAS  Google Scholar 

  309. Watts C, Brady A, Sarcevic B, deFaxio A, Musgrove E, Sutherland R. Antiestrogen inhibition of cell cycle progression in breast cancer cells is associated with inhibition of cyclindependent kinase activity and decreased retinoblastoma protein phosphorylation. Mol Endocrinol 1995; 9:1804–1813.

    Article  PubMed  CAS  Google Scholar 

  310. Musgrove E, Hamilton J, Lee C, Sweeney K, Watts C, Sutherland R. Growth factor, steroid, steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 1993; 13:3577–3587.

    PubMed  CAS  Google Scholar 

  311. Pitot HC, Campbell HA. An approach to the determination of the relative potencies of chemical agents during the stages of initiation and promotion in multistage hepatocarcinogenesis in the rat. Environ Health Persp 1987; 76:49–56.

    Article  CAS  Google Scholar 

  312. Pitot HC. Principles of carcinogenesis: chemical, in Cancer—Principles and Practice of Oncology, vol. 1, 3rd ed. (DeVita VT, Hellman S, Rosenberg S, eds). J.B. Lippincott Co., Philadelphia, 1989, pp 116–135.

    Google Scholar 

  313. Jordan VC. Tamoxifen: toxicities and drug resistance during the treatment and prevention of breast cancer. Annu Rev Pharmacol Toxicol 1995; 35:195–211.

    Article  PubMed  CAS  Google Scholar 

  314. Tanaka Y, Seiguchi M, Sawamoto T, Hata T, Esumi Y, Sugai S, Ninomiya S. Pharmacokinetics of droloxifene in mice, rats, monkeys, premenopausal and postmenopausal patients. Eur J Drug Metab Pharmacokinet 1994; 19:47–58.

    Article  PubMed  CAS  Google Scholar 

  315. Pyrhonen S. Phase 3 studies of toremifene in metastatic breast cancer. Breast Cancer Res Treat 1990; 16(Suppl):s31–s35.

    Google Scholar 

  316. Kallio S, Kangas L, Blanco G, Johansson R, Karalainen A, Perila M, et al. A New triphenylethylene compound Fc-1157a. I. Hormonal effects. Cancer Chemother Pharmacol 1986; 17:103–108.

    Article  PubMed  CAS  Google Scholar 

  317. McCague R, LeClerq G, Legros N, Goodman J, Blackburn G, Jarman M Foster A. Derivatives of tamoxifen: dependence of antiestrogenicity on the 4-substituent. J Med Chem 1989; 32:2527–2533.

    Article  PubMed  CAS  Google Scholar 

  318. McCague R, Parr I, Haynes B. Metabolism of the 4-iodo derivative of tamoxifen by isolated rat hepatocytes. Biochem Pharmacol 1990; 40:2277–2283.

    Article  PubMed  CAS  Google Scholar 

  319. Coombes RC, Haynes B, Dowsxett M, Quigley M, English J, Judson I, et al. Idoxifene: report of a phase I study in patients with metastatic breast cancer. Cancer Res 1995; 55:1070–1074.

    PubMed  CAS  Google Scholar 

  320. Black L, Jones C, Falcone J. Antagonism of estrogen action with a new benzothiophenederived antiestrogen. Life Sci 1983; 32:1031–1036.

    Article  PubMed  CAS  Google Scholar 

  321. Black L, Sato M, Rowley E, Magee D, Bekele A, Williams D, et al. Raloxifene (LY 139481 HCl) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 1994; 93:63–69.

    Article  PubMed  CAS  Google Scholar 

  322. Jordan VC, Allen KE, Dix CJ. Pharmacology of tamoxifen in laboratory animals. Cancer Treat Rep 1980; 64:745–759.

    PubMed  CAS  Google Scholar 

  323. Furr BJA, Jordan VC. The pharmacology and clinical uses of tamoxifen. Ther Pharm 1984; 25:127–205.

    Article  CAS  Google Scholar 

  324. Jordan VC. Long-term adjuvant tamoxifen therapy for breast cancer. Breast Cancer Res Treat 1990; 15:125–136.

    Article  PubMed  CAS  Google Scholar 

  325. Love R, Weibe D, Newcombe P, Cameron L, Leventhal H, Jordan V, et al. Effects of tamoxifen on cardiovascular risk factors in postmenopausal women with breast cancer. New Engl J Med 1992; 326:852–856.

    Article  PubMed  CAS  Google Scholar 

  326. Love R, Mazess R, Barden H, Epstein S, Newcomb P, Jordan VC, et al. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 1992; 326:852–856.

    Article  PubMed  CAS  Google Scholar 

  327. Ward RL, Morgan G, Dalley D, Kelley PJ. Tamoxifen reduces bone turnover and prevents lumbar spine and proximal femoral bone loss in early postmenopausal women. Bone Mineral 1993; 22:87–94.

    Article  CAS  Google Scholar 

  328. Gottardis M, Robinson S, Satyaswaroop P, Jordan VC. Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic nude mouse. Cancer Res 1988; 48:812–815.

    PubMed  CAS  Google Scholar 

  329. Jordan VC, Gottardis M, Satyaswaroop P. Tamoxifen-stimulated growth of human endometrial carcinoma. Ann NY Acad Sci 1991; 622:439–446.

    Article  PubMed  CAS  Google Scholar 

  330. Gottardis M, Ricchio M, Satyaswaroop P. Effect of steroidal and non-steroidal antiestrogens on the growth of a tamoxifen-stimulated human endometrial carcinoma (EnCa101) in athymic mice. Cancer Res 1990; 50:3189–3192.

    PubMed  CAS  Google Scholar 

  331. Kuiper GG, Gustafsson JA. The novel estrogen receptor-beta subtype: potential role in the cell- and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett 1997; 410:87–90.

    Article  PubMed  CAS  Google Scholar 

  332. Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, Giguere V. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol 1997; 11:353–365.

    Article  PubMed  CAS  Google Scholar 

  333. Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392:49–53.

    Article  PubMed  CAS  Google Scholar 

  334. Carthew P, Edwards RE, Nolan BM. Depletion of hepatocyte nuclear estrogen receptor expression is associated with promotion of tamoxifen induced GST-P foci to tumours in rat liver. Carcinogenesis 1997; 18:1109–1112.

    Article  PubMed  CAS  Google Scholar 

  335. Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS. Differential ligand activation of estrogen receptors ERα and ERβ at API sites. Science 1997; 277:1508–1510.

    Article  PubMed  CAS  Google Scholar 

  336. Aaronson SA, Miki T, Meyers K, Chan A. Growth factors and malignant transformation. Adv Exp Med Biol 1993; 348:7–22.

    PubMed  CAS  Google Scholar 

  337. Ignar-Trowbridge D, Nelson K, Bidwell M, Curtis S, Washburn T, McLachlan J, Korach K. Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA 1992; 89:4658–4662.

    Article  PubMed  CAS  Google Scholar 

  338. Ignar-Trowbridge D, Teng C, Ross K, Parker M, Korach K, McLachlan J. Peptide growth factors elicit estrogen receptor dependent transcriptional activation of an estrogen-responsive element. Mol Endocrinol 1993; 7:992–998.

    Article  PubMed  CAS  Google Scholar 

  339. Ignar-Trowbridge D, Pimentel M, Parker M, McLachlan J, Korach K. Peptide growth factor cross-talk with the estrogen receptor requires the A/B domain and occurs independently of protein kinase C or estradiol. Endocrinology 1996; 137:1735–1744.

    Article  PubMed  CAS  Google Scholar 

  340. Newton C, Buric R, Trapp T, Brockmeier S, Pagotto V, Stella G. The unliganded estrogen receptor (ER) transduces growth factor signals. J Steroid Biochem 1994; 48:481–486.

    Article  CAS  Google Scholar 

  341. Phillips A, Chalbos D, Rochefort H. Estradiol increases and antiestrogens antagonize the growth factor induced activator protein 1 activity in MCF7 breast cancer cells without affecting c-fos and c-jun synthesis. J Biol Chem 1993; 268:14103–14108.

    Google Scholar 

  342. Sukovich DA, Mukherjee R, Benfield PA. A novel cell-specific mechanism for estrogen receptor mediated gene activation. In the absence of an estrogen-responsive element. Mol Cell Biol 1994; 14:7134–7143.

    PubMed  CAS  Google Scholar 

  343. Umayahara Y, Kawamori R, Watada H, Iwama E, Morishima T, Yamasaki Y, et al. Estrogen regulation of the insulin-like growth factor 1 gene transcription involves an AP-1 enhancer. J Biol Chem 1994; 269:16433–16442.

    PubMed  CAS  Google Scholar 

  344. Saeki T, Cristano A, Lynch M, Brattain M, Kim N, Normanno N, et al. Regulation by estrogen through the 52-flanking region of the transforming growth factor α gene. Mol Endocrinol 1991; 5:1955–1963.

    Article  PubMed  CAS  Google Scholar 

  345. Webb P, Lopez GN, Uht RM, Kusher PJ. Tamoxifen activation of the estrogen receptor/AP- 1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 1995; 9:443–456.

    Article  PubMed  CAS  Google Scholar 

  346. Gaub MP, Bellard M, Scheuer I, Chambon P, Sassone-Corsi P. Activation of the ovalbumin gen by the estrogen receptor involves the fos-jun complex. Cell 1990; 63:1267–1276.

    Article  PubMed  CAS  Google Scholar 

  347. Krishnan V, Wang X, Safe S. Estrogen receptor Sp1 complexes mediate estrogen-induced cathepsin D gene expression in MCF7 human breast cancer cells. J Biol Chem 1994; 269:15912–15917.

    PubMed  CAS  Google Scholar 

  348. Moulton B. Transforming growth factor-beta stimulates endometrial stromal apoptosis in vitro. Endocrinology 1994; 134:1055–1060.

    Article  PubMed  CAS  Google Scholar 

  349. Butta A, MacLennan K, Flanders K, Sacks N, Smith I, McKinna A, et al. Induction of transforming growth factor beta in human breast cancer in vivo following tamoxifen treatment. Cancer Res 1992; 52:4261–4262.

    PubMed  CAS  Google Scholar 

  350. Bentzen S, Skocylas J, Overgaard M, Overgaard J. Radiotherapy-related lung fibrosis enhanced by tamoxifen. J Natl Cancer Inst 1996; 88:918–922.

    Article  PubMed  CAS  Google Scholar 

  351. Colletta A, Wakefiels L, Howell F, Roozendaal K, Danielpour D, Ebbs S, et al. Anti-estrogens induce the secretion of active transforming growth factor beta from human fetal fibroblasts. Br J Cancer 1990; 62:405–409.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dragan, Y.P., Pitot, H.C. (2009). The Effects of Triphenylethylene Antiestrogens on Parameters of Multistage Hepatocarcinogenesis in the Rat. In: Jordan, V.C., Furr, B.J. (eds) Hormone Therapy in Breast and Prostate Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59259-152-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-152-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-471-5

  • Online ISBN: 978-1-59259-152-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics