Skip to main content

Elucidation of the Zinc-Finger Motif as a Target for Heavy-Metal Perturbations

  • Chapter
Handbook of Neurotoxicology

Abstract

Essential and nonessential metals are redistributed naturally in the environment by both geological and biological cycles, however, industrial activities have greatly increased the health risks associated with exposure to heavy metals. Once absorbed into the body, metals can target multiple organs and interfere with a number of cellular processes. To regulate such actions, the body has developed elaborate macromolecules to store, channel, transport, chelate, and complex such metals and has tailored protein-metal interactions to fit the exact physiochemical properties and dimensions of essential metal cations. Therefore when biomolecules encounter toxic metals with no biological function and that depart from these exact specifications, the interaction is likely to produce an undesirable outcome. Thus, traditional research has been focused on the effects of heavy metals on neurotransmitters and ion-channel function, enzyme catalysis, and metal-mediated generation of free radicals (1–3). Little information exists on the effects of heavy metals on proteins that contain structural repeats that are stabilized and coordinated by metal cations such as Zn. While the majority of such proteins are involved in some type of protein-nucleic acid interactions such as regulation of gene expression and DNA repair (4,5), a number of cellular enzymes and metal-binding proteins contain cysteine-rich motifs that interact with Zn ions as part of their function (6). Studies have shown that factors containing such motifs could be potential targets for perturbation by heavy metals (5,7–10). Furthermore, work from our laboratory has found that exposure to metals such as Pb, Cd, and Hg interfere with the DNA-binding properties of Sp1 and the expression of its target genes (11,12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holtzman, D., DeVries, C., Nguyen, H., Olson, J., and Bensch, K. (1984) Maturation of resistance to Pb encephalopathy: cellular and subcellular mechanism. Neurotoxicology 5, 97–124.

    PubMed  CAS  Google Scholar 

  2. Shao, Z. and Suszkiw, J. B. (1991) Ca2+-surrogate action of Pb2+ on acetylcholine release from rat brain synaptosomes. J. Neurochem. 56, 568–574.

    Article  PubMed  CAS  Google Scholar 

  3. Verity, M. A. (1995) Metal Toxicology (Klaassen, C. D. and Goyer, R. A., eds.), Academic Press, New York, pp. 199–223.

    Google Scholar 

  4. Pabo, C. O. and Sauer, R. T. (1992) Transcription factors: structural families and principals of DNA recognition. Ann. Rev. Biochem. 61, 1053–1095.

    Article  PubMed  CAS  Google Scholar 

  5. O’Conner, T. R., Graves, R. J., de Murcia, G., Castaing, B., and Laval, J. (1993) Fpg protein of Escherichia coli is a zinc-finger protein whose cysteine residues have a structural and/or functional role. J. Biol. Chem. 682, 9063–9070.

    Google Scholar 

  6. Goyer, R. A. (1996) Toxic effects of metals in Casarett & Doull’s Toxicology: The Basic Science of Poison, 5th ed. (Klaassen, C. D., Doull, J., and Amdur, M. O., eds.), McGraw Hill, NY, 691–693.

    Google Scholar 

  7. Sunderman, F. W. Jr. and Barber, A. M. (1988) Finger-loops, oncogenes, and metals. Ann. Clin. Lab. Sci. 18, 267–288.

    PubMed  CAS  Google Scholar 

  8. Berg, J. M. and Merkle, D. L. (1989) On the metal ion specificity of `zinc-finger’ proteins. J. Am. Chem. Soc. 111, 3759–3761.

    Article  CAS  Google Scholar 

  9. Berg, J. M. (1989) Searching for metal-binding domains. J. Am. Chem. Soc., 6, 90–95.

    Google Scholar 

  10. Thiesen, H. J. and Bach, C. (1991) Transition metals modulate DNA-protein interactions of Spl zinc-finger domains with its cognate target site. Biochem. Biophys. Res. Commun. 176, 551–557.

    Article  PubMed  CAS  Google Scholar 

  11. Zawia, N. H., Sharan, R., Brydie, M., Oyama, T., and Crumpton, T.L. (1998) Spl as a target site for metal-induced perturbations of transcriptional regulation of developmental brain gene expression. Dey. Brain Res. 107, 291–298.

    Article  CAS  Google Scholar 

  12. Zawia, N. H., Crumpton, T., Hilliard, A., Sharan, R., and RazmiAfshari, M. (1999) Manifestations of developmental exposure to lead and their implications to the neurodegenerative processes of the aging nervous system, in Chemicals & Neurodegenerative Disease (Bondy, S. C.,ed. ), Prominent Press, NY, pp 73–99.

    Google Scholar 

  13. Kadonaga, J. and Tjian R. (1986) Affinity purification of sequence-specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 83, 5889–5893.

    Article  PubMed  CAS  Google Scholar 

  14. Finelli, V. N., Klauder, D. S., Karaffa, M. A., and Petering, H. G. (1975) Interaction of zinc and lead on deltaaminolevulinate dehydratase. Biochem. Biophys. Res. Commun. 65, 303–311.

    Article  PubMed  CAS  Google Scholar 

  15. Suzuki, M., Gerstein, M. and Yagi, N. (1994) Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Res. 22, 3397–3405.

    Article  PubMed  CAS  Google Scholar 

  16. Goyer, R. A. (1995) Nutrition and metal toxicity. Am. J. Clin. Nutr. 61, 646S - 650S.

    PubMed  CAS  Google Scholar 

  17. Petit, T. and LeBoutillier, J. (1979) Effects of lead exposure during development on neo-cortical dendritic and synaptic structure. Exp. Neurol. 64, 482–492.

    Article  PubMed  CAS  Google Scholar 

  18. Petit, T., Alfano, D., and LeBoutillier, J. (1983) Early lead exposure and the hippocampus: a review and recent advances. Neurotox. 4, 79–94.

    Google Scholar 

  19. Shelenberger, K. (1984) Effects of early lead exposure on neurotransmitter systems in the brain. A review with commentary. Neurotoxicol. 5, 177–212.

    Google Scholar 

  20. Clarkson, T. W. (1993) Mercury: major issues in environmental health. Environ. Health Perspect. 100, 31–38.

    Article  PubMed  CAS  Google Scholar 

  21. Atchison, W. D. and Hare, M. F. (1994) Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 8, 208–214.

    Google Scholar 

  22. Rodier, P. (1990) Critical periods for morphologic assessment. Cong. Anom. 32, 55–64.

    Google Scholar 

  23. Silbergeld, E. K. (1992) Mechanisms of Pb neurotoxicity, or looking beyond the lamppost. FASEB J 6, 3201–3206.

    PubMed  CAS  Google Scholar 

  24. McCauley, P., Bull, R., Tonti, P., Lutkenhoff, S., Meister, M., and Doerger Stober, J. (1982) The effect of prenatal and postnatal lead exposure on neonatal synaptogenesis in the rat cerebral cortex. J. Toxicol. Environ. Health 10, 639–651.

    Article  PubMed  CAS  Google Scholar 

  25. Bull, R., McCauley, P., Taylor, D., and Croften, K. (1983) The effects of lead on the developing central nervous system of the rat. Neurotoxicol. 4, 1–18.

    CAS  Google Scholar 

  26. Nichols, D. M. (1990) McLachlan, D. R. C. Issues of Pb toxicity, in Ad. In vivo Body Composition Studies ( Yasumura, S., ed.), Plenum Press, New York, pp. 237–246.

    Chapter  Google Scholar 

  27. Choi, B. H., Lapham, L. W., Amin-Zaki, L., and Saleem, T. (1978) Abnormal neuronal migration, deranged cerebral cortical organization and diffuse white matter astrocytosis of human fetal brain. A major effect of methylmercury poisoning in utero. J. Neuropathol. Exp. Neurol. 37, 719–733.

    Article  PubMed  CAS  Google Scholar 

  28. Sager, P. R. and Syversen, T. L. M. (1984) Differential responses to methylmercury exposure and recovery in neuroblastoma and glioma cells and fibroblasts. Exp. Neurol. 85, 371–383.

    Article  PubMed  CAS  Google Scholar 

  29. Markovac, J. and Goldstein, G. W. (1988) Lead activates protein kinase C in immature rat brain microvessels. Toxicol. Appl. Pharmacol. 96, 14–23.

    Article  PubMed  CAS  Google Scholar 

  30. Guilarte, T. R., Miceli, R. C., and Jett, D. A. (1995) Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: effects of neuronal development. Neurotoxicology 16, 63–67.

    PubMed  CAS  Google Scholar 

  31. Komulainen, H. and Bondy, S. C. (1987) Increased free intrasynaptosomal Cat+ by neurotovic organmetalls: Distinctive mechanisms. Toxicol. Appl. Pharmacol. 88, 77–86.

    Article  PubMed  CAS  Google Scholar 

  32. Miller, J., McLachlan, A. D., and Klug, A. (1985) EMBO J 4, 1609.

    PubMed  CAS  Google Scholar 

  33. Rhodes, D. and Klug, A. (1993) Zinc-finger structure. Sci. Am. 268, 32–39.

    Article  Google Scholar 

  34. Lee, M. S., Gippert, G. P., Soman, K. V., Case, D. A., and Wright, P. E. (1989) Three-dimensional solution structure of a single zinc-finger DNA-binding domain Science 245, 635–637.

    Article  PubMed  CAS  Google Scholar 

  35. Dolle, P., Lufkin, T., Krumlauf, R., Mark, M. (1993) Local alteration of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1.6) mutant embryos. Proc. Natl. Acad. Sci. USA 90, 7666–7670.

    Article  PubMed  CAS  Google Scholar 

  36. Schneider-Maunoury, S., Topilko, P., Seitandou, T., and Levi, G. (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 1199–1214.

    Article  PubMed  CAS  Google Scholar 

  37. Thiel, G., Lietz, M., and Leichter, M. (1999) Regulation of neuronal gene expression. Naturwissenschaften 86, 1–7.

    Article  PubMed  CAS  Google Scholar 

  38. Kadonaga, J. T., Carter, F., Masiarz, R., and Tjian, R. (1987) Isolation of cDNA encoding transcription factor Sp 1 and functional analysis of the DNA binding domain. Cell 51, 1079–1090.

    Article  PubMed  CAS  Google Scholar 

  39. Chung, J., Nartey, N. O., and Cherian, M. G. (1986) Mettlaothionein levels in the liver and kidney of Canadians: a potential indicator of environmental exposure to cadmium. Arch. Environ. Health 41, 319–323.

    Article  PubMed  CAS  Google Scholar 

  40. Ono, Y., Fujii, T., Igarashi, K., Kuno, T., Tanaka, C., Kikkawa, U., and Nishizuka, Y. (1989) Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc. Natl. Acad. Sci. USA 86, 4868–4871.

    Article  PubMed  CAS  Google Scholar 

  41. Predki, P. F. and Sarkar, B. (1992) Effect of replacement of “zinc-finger” zinc on estrogen receptor DNA interactions. J. Biol. Chem. 267, 5842–5846.

    PubMed  CAS  Google Scholar 

  42. Lee, M. S., Mortishire-Smith, R. J., and Wright, P. E. The zinc-finger motif: conservation of chemical shifts and correlation with structure. FEBS Lett. 309, 29–32.

    Google Scholar 

  43. Desjarlais, J. R. and Berg, J. M. (1993) Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA-binding proteins. Proc. Natl. Acad. Sci. USA 90, 2256–2260.

    Article  PubMed  CAS  Google Scholar 

  44. Krizek, B. A., Amann, B. T., Kilfoil, V. J., Merkle, D. L., and Berg, J. M. (1991) A consensus zinc-finger peptide: design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant. J. Am. Chem. Soc. 113, 4518–4523, 1991.

    Article  CAS  Google Scholar 

  45. Schmiedeskamp, M., Rajagopal, P., and Klevit, P. E. (1997) NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1. Protein Sci. 6, 1835–1848.

    Article  PubMed  CAS  Google Scholar 

  46. Shi, Y. and Berg, J. M. (1996) DNA unwinding induced by zinc-finger protein binding. Biochemistry. 35. 3845–3848.

    Article  PubMed  CAS  Google Scholar 

  47. Bertini, I. and Luchinat, C. (1984) High spin cobalt(II) as a probe for the investigation of metalloproteins. Adv. Inorg. Chem. 6, 71–111.

    Google Scholar 

  48. Klemba, M. and Regan, L. (1995) Characterization of metal binding by a designed protein: single ligand substitution at a tetrahedral Cys2His2 site. Biochemistry 34, 10,094–10,100.

    Article  CAS  Google Scholar 

  49. Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crysta. A32, 751–767.

    Article  Google Scholar 

  50. Orgel, L. (1960) An introduction to transition metal chemistry, John Wiley and Sons, New York.

    Google Scholar 

  51. Lee, M. S., Gottesfeld, J. M., and Wright, P. E. (1991) Zinc is required for folding and binding of a single zinc finger to DNA. FEBS Lett. 279, 289–294.

    Article  PubMed  CAS  Google Scholar 

  52. Jorgensen, C. K. (1966) Structure and Bonding, Springer-Verlag, London, pp. 234–242.

    Book  Google Scholar 

  53. Pavletich, N. P. and Pabo, C. O. (1991) Zinc-finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252, 809–816.

    Article  PubMed  CAS  Google Scholar 

  54. Nekludova, L. and Pabo, C. O. (1994) Distinctive DNA conformation with enlarged major groove is found in Zn-finger-DNA and other protein-DNA complexes. Proc. Natl. Acad. Sci. USA 91, 6948–6952.

    Article  PubMed  CAS  Google Scholar 

  55. Elrod-Erickson, M., Benson, T. E., and Pabo, C. O. (1998) High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc-finger-DNA recognition. Structure 6, 451–464.

    Article  PubMed  CAS  Google Scholar 

  56. Kim, J. S. and Pabo, C. O. (1998) Getting a handhold on DNA: design of poly-zinc-finger proteins with femtomolar dissociation constants. Proc. Natl. Acad. Sci. USA 95, 2812–2817.

    Article  PubMed  CAS  Google Scholar 

  57. Louie, A. Y. and Meade, T.J. (1998) A cobalt complex that selectively disrupts the structure and function of zinc fingers. Proc. Natl. Acad. Sci. USA 95, 6663–6668.

    Article  PubMed  CAS  Google Scholar 

  58. Dynan, W. and Tjian, R. (1983) The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 promoter. Cell 35, 70–87.

    Article  Google Scholar 

  59. Gidoni, D., Kadonaga, J. T., Barrera-Saldana, H., Takahashi, K., Chambon, P., and Tjian, R. (1985) Bi-directional SV40 transcription mediated by tandem Spl binding interactions. Science 230, 511–517.

    Article  PubMed  CAS  Google Scholar 

  60. Kriwacki, R. W., Schultz, S. C., Steitz, T. A., and Caradonna, J.P. (1992) Proc. Natl. Acad. Sci. USA 89, 9759–9763.

    Article  PubMed  CAS  Google Scholar 

  61. Kuwahara, J. and Coleman, J. E. (1990) Role of the zinc(II) ions in the structure of the three-finger DNA binding domain of the Spl transcription factor. Biochemistry 29, 8627–8631.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zawia, N.H., Razmiafshari, M. (2002). Elucidation of the Zinc-Finger Motif as a Target for Heavy-Metal Perturbations. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics