Skip to main content
  • 452 Accesses

Abstract

In 1936 a Belgian pharmacologist reported the serendipitous discovery of at least two different toxins in nemertines, a relatively small phylum of marine worms. Bacq demonstrated that an aqueous homogenate of the hoplonemertine Amphiporus lactifloreus potently contracted isolated frog skeletal muscle and stimulated the cat cervical autonomic ganglion in a manner similar to the neurotransmitter acetylcholine (ACh). However, since the this activity was stable in highly alkaline solution, it could not be due to ACh (1,2). In other nemertine extracts Bacq also found a neurotoxic activity lacking nicotinic-receptor effects, which he referred to as “nemertine.” Both “amphiporine” and “nemertine” extracts caused convulsions, paralysis, and death when injected into crabs. In contrast with “amphiporine” activity, “nemertine” activity only slowly traversed a dialysis membrane. Harold King, an organic chemist who had previously determined the structures of a variety of plant natural products, including the arrow poison d-tubocurarine, attempted crystallization of the active constituent from an extract of 1000 worms. Although this was unsuccessful, the solubility of “amphiporine” activity in chloroform under basic but not acidic conditions indicated that it was a weakly basic compound (3). This was also consistent with Bacq’s inference that “amphiporine” was an alkaloid similar to nicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacq, Z. M. (1936) Les poisons des Nemertiens. Bull. Acad. R. Belg. Cl. Sci. (Ser. 5) 22: 1072–1079.

    Google Scholar 

  2. Bacq, Z. M. (1937) L“amphiporine” et la “nemertine,” poisons des vers nemertiens. Arch. Mt. Physiol. 44, 190–204.

    Article  CAS  Google Scholar 

  3. King, H. (1939) Amphiporine, an active base from the marine worm Amphiporus lactifloreus. J. Chem. Soc. 13, 65.

    Article  Google Scholar 

  4. Kern, W. R. (1969) A chemical investigation of nemertine toxins. Ph.D. dissertation, University of Illinois, Urbana.

    Google Scholar 

  5. Kern, W. R., Abbott, B. C., and Coates, R. M. (1971) Isolation and structure of a hoplonemertine toxin. Toxicon 9, 15–22.

    Article  Google Scholar 

  6. Kern, W. R., Scott, K. N., and Duncan, J. H. (1976) Hoplonemertine worms: a new source of pyridine neurotoxins. Experientia 32, 684–686.

    Article  Google Scholar 

  7. Kern, W. R. (1988) Pyridine alkaloid distribution in the hoplonemertinea. Hydrobiologia 156, 145–153.

    Article  Google Scholar 

  8. Kern, W. R. (1971) A study of the occurrence of anabaseine in Paranemertes and other nemertines. Toxicon 9, 23–32.

    Article  Google Scholar 

  9. Kern, W. R. (1988) Worm toxins, in Handbook of Natural Toxins, vol. 4, Marine Toxins and Venoms (Tu, ed.), Marcel Dekker, New York, pp. 253–378.

    Google Scholar 

  10. Gibson, R. (1972) Nemerteans. Hutchinson University Library, London, pp. 224.

    Google Scholar 

  11. Wheeler, J. W., Olubajo, O., Storm, C. B., and Duffield, R. M. (1981) Anabaseine: venom alkaloid of Aphaenogaster ants. Science 211, 1051–1052.

    Article  PubMed  CAS  Google Scholar 

  12. Spath, E. and Mamoli, L. (1936) Eine Neue Synthese Des D,L-Anabasins. Chem. Ber. 69, 1082–1085.

    Google Scholar 

  13. Kern, W. R. (1973) Biochemistry of nemertine toxins, in Marine Pharmacognosy: Marine Biotoxins as Probes of Cellular Function ( Martin, D. F. and Padilla, G. M., eds.), Monographs on Cell Biology Series, Academic Press, NY, pp. 37–84.

    Google Scholar 

  14. Bloom, L. B. (1990) Influence of solvent on the ring-chain hydrolysis equilibrium of anabaseine and synthesis of anabaseine and nicotine analogues. Ph.D. dissertation, University of Florida, Department of Chemistry.

    Google Scholar 

  15. Zoltewicz, J. A. and Cruskie, M. P., Jr. (1995a) A superior synthesis of cholinergic anabaseine. OPPI Briefs 27, 510–513.

    CAS  Google Scholar 

  16. Zoltewicz, J. A., Bloom, L. B., and Kern, W. R. (1989) Quantitative determination of the ring-chain hydrolysis equilibrium constant for anabaseine and related tobacco Error! Hyperlink reference not valid.. Chem. 54, 4462–4468.

    CAS  Google Scholar 

  17. Kern, W. R., Mahnir, V. M., Bloom, L. B., and Gabrielson, B. J. (1994) The active form of the nicotinic receptor agonist anabaseine is the cyclic iminium cation. 11th World Congress on Animal, Plant, and Microbial Toxins, Tel Aviv.

    Google Scholar 

  18. Kern, W. R., Mahnir, V. M., Papke, R., and Lingle, C. (1997) Anabaseine is a potent agonist upon muscle and neuronal alpha-bungarotoxin sensitive nicotinic receptors. J. Pharmacol. Exper. Therap. 283, 979–992.

    Google Scholar 

  19. Gibson, R. (1972) Nemerteans. Hutchinson University Library, London, pp. 224.

    Google Scholar 

  20. Barlow, R. B. and Hamilton, J. T. (1962) The effects of pH on the activity of nicotine and nicotine methiodide on the rat diaphragm preparation. Br. J. Pharmacol. 18, 543–549.

    CAS  Google Scholar 

  21. Meyer, E. M., deFiebre, C. M., Hunter, B. E., Simpkins, C. E., and deFiebre N. E. (1994) Effects of anabaseine related analogs on rat brain nicotinic receptor binding and on avoidance behavior. Drug Dev. Res. 31, 135–141.

    Article  Google Scholar 

  22. Summers, K., Kem, W. R., and Giacobini, E. (1997) Nicotinic agonist modulation of neurotransmitter levels in the rat frontoparietal cortex. Jpn. J. Pharmacol. 74, 139–146.

    Article  PubMed  CAS  Google Scholar 

  23. Kern, W. R. and Soti, F. (2001) Amphiporus alkaloid multiplicity implies functional diversity: Initial studies on crustacean pyridyl receptors. Hydrobiolog. In press.

    Google Scholar 

  24. Kern, W. R. (1997b) Nemertine body wall and proboscis longitudinal muscles possess unique nicotinic receptors. Fifth Intern. Conf. Invertebrate Neurochem. Neurophysiol. Mtg, Eilat, Israel (Abstr.).

    Google Scholar 

  25. Kehoe, J. S. and Kern, W. R. (2001) Anabaseine and GTS-21 act differentially on two alpha-bungarotoxin-sensitive Aplysia nicotinic receptors. Toxicon,in press.

    Google Scholar 

  26. Hatt, H. and Schmiedel-Jacob, I. (1984) Electrophysiological studies of pyridine-sensitive units on the crayfish walking leg. I. Characteristics of stimulatory molecules. J. Comp. Physiol. 56, 855–863.

    Article  Google Scholar 

  27. Kern, W. R. (1998) Alzheimer’s drug design based upon an invertebrate toxin (anabaseine) which is a potent nicotinic receptor antagonist. Invertebr. Neurosci. 3, 251–259.

    Google Scholar 

  28. De Fiebre, C. M., Meyer, E. M., Henry, J. C., Muraskin, S. I., Kern, W. R., and Papke, R. L. (1995) Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-Dimethylaminocinnamylidine derivative (DMAC) is a selective agonist at neuronal nicotinic alpha 7/[125K] alpha-bungarotoxin receptor subtypes. Mol. Pharmacol. 47, 164–171.

    PubMed  Google Scholar 

  29. Kern, W. R. (2000) The brain alpha7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21). Behay. Brain Res. 113, 169–183.

    Article  Google Scholar 

  30. Kitagawa, H., Moriyama, A. A., Takenouchi, T., Wesnes, K., Kramer, W., and Clody, D. R. (1998) Phase I studies of GTS-21 to assess the safety, tolerability, PK and effects on measures of cognitive function in normal volunteers. Neurobiol. Aging 19, S182 (Abstr.).

    Google Scholar 

  31. Zoltewicz, J. A., Prokai-Tatrai, K., Bloom, L. B., and Kern, W. R. (1993) Long range transmission of polar effects of cholinergic 3-arylideneanabaseines. Conformations calculated by molecular modelling. Heterocycles 35, 171–179.

    Article  CAS  Google Scholar 

  32. Whitehouse, R. J., Price, D. L., Clark, A. W., Coyle, J. T., and DeLong, M. R. (1986) Nicotinic acetylcholine binding in Alzheimer’s disease. Brain Res. 371, 146–151.

    Article  PubMed  CAS  Google Scholar 

  33. Arendash, G. W., Sengstock, G. J., Sanberg, R., and Kern, W. R. (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS21. Brain Res. 674, 252–259.

    Article  PubMed  CAS  Google Scholar 

  34. Woodruff-Pak, D. S., Li, Y.-T., and Kern, W. R. (1994) A nicotinic receptor agonist (GTS21), eyeblink classical conditioning, and nicotinic receptor binding in rabbit brain. Brain Res. 645, 309–317.

    Article  PubMed  CAS  Google Scholar 

  35. Bjugstad, K. B., Mahnir, V. M., Kern, W. R., and Arendash, G. W. (1996) Long-term treatment with GTS-21 or nicotine enhances water maze performance in aged rats without affecting the density of nicotinic receptor subtypes in neocortex. Drug Dev. Res. 39, 19–28.

    Article  CAS  Google Scholar 

  36. Briggs, C. A., Anderson, D. J., Brioni, J. D., Buccafusco, J. J., Buckley, M. J., Campbell, J. E., et al. (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol. Biochem. Behay. 57, 231–241.

    Article  CAS  Google Scholar 

  37. Stevens, K. E., Kern, W. R., Mahnir, V. M., and Freedman, R. (1998) Selective alpha7nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology 136, 320–327.

    Article  PubMed  CAS  Google Scholar 

  38. Machu, T. K., Strahlendorf, J., and Kern, W. R. (1996) Nicotinic receptor ligands antagonize 5-HT3 receptors expressed in Xenopus oocytes. J. Neurosci. 22, 1780.

    Google Scholar 

  39. Martin, E. J., Panickar, K. S., King, M. A., Deyrup, M., Hunter, B. E., Wang, G., and Meyer, E. M. (1994) Cytoprotective actions of 2,4-dimethoxybenzylidene anabaseine in differentiated PC12 cells and septal cholinergic neurons. Drug Dey. Res. 31, 135–141.

    Article  CAS  Google Scholar 

  40. Akaike, A., Tamura, Y., Yokota, T., Shimohama, S., and Kimura, J. (1994) Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate recetpor-mediated glutamate cytotoxicity. Brain Res. 644, 181–187.

    Article  PubMed  CAS  Google Scholar 

  41. Shimohama, S., Greenwald, D. L., Shafron, D. H., Akaika, A., Maeda, T., Kaneko, S., et al. (1998) Nicotinic alpha7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage. Brain Res. 779, 359–363.

    Article  PubMed  CAS  Google Scholar 

  42. Kihara, T., Shmohama, S., Sawada, H., Kimura, J., Kume, T., Kochiyama, H., et al. (1997) Nicotinic receptor stimulation protects neurons against B-amyloid toxicity. Ann. Neurol. 42, 159–163.

    Article  PubMed  CAS  Google Scholar 

  43. Nanri, M., Yamamoto, J., Miyake, H., and Watanabe, H. (1998) Protective effect of GTS21, a novel nicotinic receptor agonist, on delayed neuronal death induced by ischemia in gerbils. Jpn. J. Pharmacol. 76, 23–29.

    Article  PubMed  CAS  Google Scholar 

  44. Meyer, E. M., King, M. A., and Meyers, C. (1998) Neuroprotective effects of 2,4dimethoxybenzylidene anabaseine (DMXB) and tetrahydroaminoacridine (THA) in nerocortices of nucleus basalis lesioned rats. Brain Res. 786, 252–254.

    Article  PubMed  CAS  Google Scholar 

  45. Yamamoto, I., Kamimura, H., Yamamoto, R., Skai, S., and Goda, M. (1962) Studies on nicotinoids as insecticides. I. Relation of structure to toxicity. Agr. Biol. Chem. (Tokyo) 26, 709–716.

    CAS  Google Scholar 

  46. Zoltewicz, J. A. and Cruskie, M. P., Jr. (1995b) Strategies for the synthesis of unsymmetrical quaterpyridines using palladium-catalyzed cross-coupling reactions. Tetrahedron 51, 11,393–11,400.

    Article  CAS  Google Scholar 

  47. Kem, W. R. (1976) Purification and characterization of a new family of polypeptide neurotoxins from the heteronemertine Cerebratulus lacteus (Leidy). J. Biol. Chem. 251, 4184–4192.

    PubMed  CAS  Google Scholar 

  48. Blumenthal, K. M. and Kern, W. R. (1976) Primary structure of Cerebratulus lacteus toxin B-IV. J. Biol. Chem. 251, 6025–6029.

    PubMed  CAS  Google Scholar 

  49. Blumenthal, K. M., Keim, P. S., Heinrikson, R. L., and Kern, W. R. (1981) Structure and action of heteronemertine polypeptide toxins. Amino acid sequence of Cerehratulus lacteus toxin B-II and revised structure of toxin B-IV. J. Biol. Chem. 256, 9063–9067.

    PubMed  CAS  Google Scholar 

  50. Kern, W. R., Tu, C.-K., Williams, R. W., Toumadje, A., and Johnson, W. C., Jr. (1990) Circular dichroism and laser Raman spectroscopic analysis of the secondary structure of Cerehratulus lacteus toxin B-IV. J. Prot. Chem. 9, 433–443.

    Article  Google Scholar 

  51. Hansen, P. E., Kem, W. R., Bieber, A. L., and Norton, R. S. (1992) ‘H-NMR study of neurotoxin B-1V from the marine worm Cerehratulus lacteus. Solution properties, sequence-specific resonance assignments, secondary structure and global fold. Eur. J. Biochem. 210, 231–240.

    Google Scholar 

  52. Barnham, K. J., Dyke, T. R., Kern, W. R., and Norton, R. S. (1997) Structure of neurotoxin B-IV from the marine worm Cerehratulus lacteus: a helical hairpin cross-linked by disulphide bonding. J. Mol. Biol. 268, 886–902.

    Article  PubMed  CAS  Google Scholar 

  53. Lieberman, D. L. and Blumenthal, K. M. (1986) Structure and action of heteronemertine polypeptide toxins. Specific cross-linking of Cerebratulus lacteus toxin B-IV to lobster axon memebrane vesicles. Biochim. Biophys. Acta 855, 1–48.

    Article  Google Scholar 

  54. Blumenthal, K. M. and Kem, W. R. (1980) Inactivation of Cerebratulus lacteus toxin B-IV by tyrosine nitration. Arch. Biochem. Biophys. 203, 816–821.

    Article  PubMed  CAS  Google Scholar 

  55. Blumenthal, K. M. (1980) Inactivation of Cerebratulus lacteus toxin B-IV concomitant with tryptophan alkylation. Arch. Biochem. Biophys. 203, 822–826.

    Article  PubMed  CAS  Google Scholar 

  56. Howell, M. L. and Blumenthal, K. M. (1989) Cloning and expression of a synthetic gene for Cerebratulus lacteus neurotoxin B-IV. J. Biol. Chem. 264, 15,268–15, 273.

    Google Scholar 

  57. Howell, M. L. and Blumenthal, K. M. (1991) Mutagenesis of Cerebratulus lacteus neuro-toxin B-IV identifies NH2-terminal sequences important for biological activity. J. Biol. Chem. 266, 12,884–12, 888.

    Google Scholar 

  58. Wen, P. H. and Blumenthal, K. M. (1996) Role of electrostatic interactions in defining the potency of neurotoxin B-IV from Cerebratulus lacteus. J. Biol. Chem. 271, 29,752–29, 758.

    Google Scholar 

  59. Kern, W. R. (1994) Structure and membrane actions of a marine worm cytolysin, Cerebratulus toxin A-III. Toxicol 87, 189–203.

    Article  Google Scholar 

  60. Kem, W. R. (1985) Structure and action of nemertine toxins. Am. Zool. 2, 99–111.

    Google Scholar 

  61. Kem, W. R. and Blumenthal, K. M. (1978) Purification and characterization of the cytolytic Cerebratulus A toxins. J. Biol. Chem. 253, 5752–5757.

    PubMed  CAS  Google Scholar 

  62. Blumenthal, K. M. and Kern, W. R. (1980) Primary structure of Cerebratulus lacteus toxin A-III. J. Biol. Chem. 255, 8266–8272.

    PubMed  CAS  Google Scholar 

  63. Kuo, J. F., Raynor, R. L., Mazzei, G. J., Schatzman, R. C., Turner, R. S., and Kern, W. R. (1983) Cobra polypeptide cytotoxin I and marine worm polypeptide cytotoxin A-IV are potent and selective inhibitors of phospholipid sensitive Ca2+-dependent protein kinase. FEBS Lett. 153, 183–186.

    Article  PubMed  CAS  Google Scholar 

  64. Kern, W. R. (2000), Nemertine neurotoxins, in Neurotoxicology Handbook: Natural Toxins of Animal Origin ( Harvey, A., ed.), Humana Press, Totowa, NJ.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kem, W.R. (2002). Nemertine Toxins. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_26

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics