Skip to main content

Anthozoan Neurotoxins

  • Chapter
Handbook of Neurotoxicology
  • 448 Accesses

Abstract

Naturally occurring toxins can be exquisitely useful chemical tools in neurobiological research. For instance, using an Indian arrow poison extract (curare), the French physiologist Claude Bernard obtained the initial evidence that cells communicate with each other in the nervous system by chemical signals. Also, two potent and highly selective toxins, α-bungarotoxin and tetrodotoxin, served as important chemical tools in first isolating two ion channel membrane proteins, the muscle nicotinic receptor and sodium channel, respectively. A toxin that selectively blocks a particular ion channel can be used to study the physiological and behavioral processes regulated by the channel. Radioisotopically-labeled or fluorescent toxin derivatives can be used to map the distribution of the ion channel, even in different regions within a single cell. In the past decade, these labeled toxins have been extremely valuable probes for identifying new drug leads during high throughput screening of chemical libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guy, H. R. and Conti, F. (1990) Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 13, 201–206.

    Article  PubMed  CAS  Google Scholar 

  2. Catterall, W. A. (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann. Rev. Pharmacol. Toxicol. 20, 15–43.

    CAS  Google Scholar 

  3. Goldin, S. (1999) Diversity of mammalian voltage-gated sodium channels. Ann. NYAcad. 868, 38–50.

    Article  CAS  Google Scholar 

  4. George, J. D. and George, J. J. (1979) Marine Life: An Illustrated Encyclopedia of Invertebrates in the Sea. John Wiley and Sons, NY, pp. 288.

    Google Scholar 

  5. Tardent, P. (1995) The cnidarian cnidocyte, a high-tech cellular weaponry. BioEssays 17, 351–362.

    Article  Google Scholar 

  6. Watson, G. M. and Hessinger, D. A. (1988) Localization of a purported chemoreceptor involved in triggering cnida discharge in sea anemones, in The Biology of Nematocysts ( Hessinger, D. A. and Lenhoff, H. M., eds.), Academic Press, NY, pp. 255–272.

    Google Scholar 

  7. Cutress, C. E. (1955) An interpretation of the structure and distribution of cnidae in Anthozoa. Syst. Zool. 4, 120–137.

    Article  Google Scholar 

  8. Fautin, D. G. (1988) Importance of nematocysts to Actiniian taxonomy, in Biology of Nematocysts ( Hessinger, D. A. and Lenhoff, H. M., eds.), Academic Press, NY, pp. 487–500.

    Google Scholar 

  9. Kern, W. R. (1988b) Sea anemone toxins: structure and action, in The Biology of Nematocysts ( Hessinger, D. A. and Lenhofff, H. M., eds), Academic Press, NY, pp. 375–405.

    Google Scholar 

  10. Kern, W. R. (1988a) Peptide chain toxins of marine animals, in Biomedical Importance of Marine Organisms, vol. 13 ( Fautin, D., ed.), Calif Acad. Sci., San Francisco, CA pp. 69–83.

    Google Scholar 

  11. Hessinger, D. A., Lenhoff, H. M., and Kahan, L. B. (1973) Haemolytic, phospholipase A and nerve-affecting activities of sea anemone nematocyst venom. Nat. New Biol. 241, 125–127.

    PubMed  CAS  Google Scholar 

  12. Grotendorst, G. R. and Hessinger, D. A. (1999) Purification and partial characterization of the phospholipase A2 and co-lytic factor from sea anemone (Aiptasia pallida) nematocyst venom. Toxicon 37, 1779–1796.

    Article  PubMed  CAS  Google Scholar 

  13. Beress, L., Bruhn, T., Sanchez-Rodriquez, Wachter, E., and Schweitz, H. (2000) Sea anemone toxins acting on Na+-channels and K+-channels: isolation and investigation, in Animal Toxins: Facts and Protocols ( Rochat, H. and Martin-Euclaire, M.-F., eds.), Birkhauser, Basel, pp. 31–56.

    Google Scholar 

  14. Kem, W. R., Parten, B., Pennington, M. W., Dunn, B. M., and Price, D. (1989) Isolation, characterization, and amino acid sequence of a polypeptide neurotoxin occurring in the sea anemone Stichodactyla helianthus. Biochemistry 28, 3483–3489.

    CAS  Google Scholar 

  15. Malpezzi, E. L. A., Freitas, J. C., Muramoto, K., and Kamiya, H. (1993) Characterization of peptides in sea anemone venom collected by a novel procedure. Toxicon 31, 853–864.

    Article  PubMed  CAS  Google Scholar 

  16. McKay, M. C. and Anderson, P. A. V. (1988) On the preparation and properties of isolated cnidocytes and cnidae, in The Biology of Nematocysts (Hessinger, D. A. and Lenhoff, H. M., eds.), Academic Press, NY, pp. 273–294

    Google Scholar 

  17. Aneiros, A., Garcia, I., Martinez, J. R., Harvey, A. L., Anderson, A. J., Marshall, D. L., et al. (1993) A potassium channel toxin from the secretion of the sea anemone Bundosoma granulifera. Biochim. Biophys. Acta 1157, 86–92.

    Article  CAS  Google Scholar 

  18. Castaneda, O., Sotolongo, V., Amor, A. M., Stocklin, R., Anderson, A. J., Harvey, A. L., et al. (1995) Characterization of a potassium channel toxin from the Caribbean sea anemone Stichodactyla helianthus. Toxicon 33, 603–613.

    Article  CAS  Google Scholar 

  19. Spagnuolo, A., Zanetti, L., Cariello, L., and Piccoli, R. (1994) Isolation and characterization of two genes encoding calitoxins, neurotoxic peptides from Calliactis parasitica (Cnidaria). Gene 138, 187–191.

    Article  PubMed  CAS  Google Scholar 

  20. Gendeh, G. S., Chung, M. C. M., and Jeyaseelan, K. (1997a) Genomic structure of a potassium channel toxin from Heteractis magnifica. FEBS Lett. 418, 183–188.

    Article  CAS  Google Scholar 

  21. Pennington, M. W., Byrnes, M. E., Zaydenberg, I., Khaytin, I., de Chastonay, J., Krafte, D., et al. (1995) Chemical synthesis and characterization of ShK toxin: a potent potassium channel inhibitor from a sea anemone. Int. J. Pept. Prot. Res. 46, 354–358.

    Article  CAS  Google Scholar 

  22. Cotton, J., Crest, M., Bouet, F., Alessandri, N., Gola, M., Forest, E., et al. (1997) A potassium-channel toxin from the sea anemone Bunodosoma granulifera, an inhibitor for Kvl channels. Revision of the amino acid sequence, disulfide-bridge assignment, chemical synthesis, and biological activity. Eur. J. Biochem. 244, 192–202.

    Article  PubMed  CAS  Google Scholar 

  23. Gendeh, G. S., Young, L. C., de Medeiros, C. L. C., Jeyaseelan, K., Harvey, A. L., and Chung, M. C. M. (1997) A new potassium channel toxin from the sea anemone Heteractis magnifica: isolation, cDNA cloning, and functional expression. Biochemistry 36, 11, 461–11, 471.

    Google Scholar 

  24. Kelso, G. J. and Blumenthal, K. M. (1998) Identification and characterization of novel sodium channel toxins from the sea anemone Anthopleura xanthogrammica. Toxicon 36, 41–51.

    Article  CAS  Google Scholar 

  25. Wunderer, G. (1978): Die Disulfidbrucken von Toxin II aus Anemonia sulcata. HoppeSeyler’s Z. Physiol Chem. 359, 1193–1201.

    Article  CAS  Google Scholar 

  26. Beress, L. (1988) Sea anemone toxins as tools for physiological, pharmacological and biophysical research, in Poisonous and Venomous Marine Animals of the World, 2nd ed. ( Halstead, B. W., eds.), Darwin Press, Princeton, pp. 150–161.

    Google Scholar 

  27. Cariello, L., de Santis, A., Fiore, F., Piccoli, R., Spagnuolo, A., Zanetti, L., and Parente, A. (1989) Calitoxin, a neurotoxic peptide from the sea anemone Calliactis paralitica: amino acid sequence and electrophysiological properties. Biochemistry 28, 2484–2489.

    Article  PubMed  CAS  Google Scholar 

  28. Ishida, M., Yokoyama, A., Shimakura, K., Nagashima, Y., and Shiomi, K. (1997) Halcurin, a polypeptide from the sea anemone Halicurias sp., with a structural resemblance to type 1 and type 2 toxins. Toxicon 35, 537–544.

    Article  PubMed  CAS  Google Scholar 

  29. Shiomi, K., Lin, X.-Y., Nagashima, Y., and Ishida, M. (1995) Isolation and amino acid sequence of polypeptide toxins in the sea anemone Condylactis passiflora. Fish. Sci. 61, 1016–1021.

    CAS  Google Scholar 

  30. Hellberg, S. and Kem, W. R. (1990) Quantitative structure-activity relationships for sea anemone polypeptide toxins. Int. J. Peptide Prot. Res. 36, 440–444.

    Article  CAS  Google Scholar 

  31. Lin, X.-Y., Ishida, M., Nagashima, Y., and Shiomi, K. (1996) A polypeptide toxin in the sea anemone Actinia equina homologous with other sea anemone sodium channel toxins: isolation and amino acid sequence. Toxicon 34, 57–65.

    Article  PubMed  Google Scholar 

  32. Shiomi, K., Qian, W.-H., Lin, X.-Y., Shimakura, Nagashima, Y., and Ishida, M. (1997) Novel polypeptide toxins with crab lethality from the sea anemone Anemonia erythraea. Biochim. Biophys. Acta.

    Google Scholar 

  33. Loret, E. P., de Valle, R. M., Mansuelle, P., Sampieri, F., and Rochat, H. (1994) Positively charged amino acid residues located similarly in sea anemone and scorpion toxins. J. Biol. Chem. 269, 16,785–16, 788.

    Google Scholar 

  34. Nishida, S., Fujita, S., Warashina, A., Satake, M., and Tamiya, N. (1985) Amino acid sequence of a sea anemone toxin from Parasicyonis actinostoloides. Eur. J. Biochem. 150, 171–173.

    Article  CAS  Google Scholar 

  35. Odinokov, S. E., Nabiullin, A. A., Kozlovskaya, E. P., and Elyakov, G. B. (1989) Structure-function relationship of polypeptide toxins: modifying gating mechanism of sodium channel. Pure Appl. Chem. 61, 497–500.

    Article  CAS  Google Scholar 

  36. Pallaghy, P. K., Scanlon, M. J., Monks, S. A., and Norton, R. S. (1995) Three-dimensional structure in solution of the polypeptide cardiac stimulant anthopleurin-A. Biochemistry 34, 3782–3794.

    Article  PubMed  CAS  Google Scholar 

  37. Norton, R. S. (1991) Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. Toxicon 29, 1051–1084.

    Article  PubMed  CAS  Google Scholar 

  38. Monks, S. A., Pallaghy, P. K., Scanlon, M. J., and Norton, R. S. (1995) Solution structure of the cardiostimulant polypeptide anthopleurin-B and comparison with anthpleurin-A. Structure 3, 791–803.

    Article  PubMed  CAS  Google Scholar 

  39. Hinds, M. G. and Norton, R. S. (1993) Sequential H-NMR assingments of neurotoxin HI from the sea anemone Heteractis macrodactylus and structural comparison with related toxins. J Protein Chem. 12, 371–378.

    Article  PubMed  CAS  Google Scholar 

  40. Fogh, E., Kern, W. R., and Norton, R. S. (1990) Solution structure of neurotoxin I from the sea anemone Stichodactylus helianthus. A nuclear magnetic resonance, distance geometry, and restrained molecular dynamics study. J Biol. Chem. 265, 13,016–13, 028.

    Google Scholar 

  41. Wilcox, G. R., Fogh, R. H., and Norton, R. S. (1993) Refined structure in solution of the sea anemone neurotoxin ShI. J. Biol. Chem. 268, 24,707–24, 719.

    Google Scholar 

  42. Scanlon, M. J. and Norton, R. S. (1994) Multiple conformations of the sea anemone polypeptide anthopleurin-A in solution. Prot. Sci. 3, 1121–1124.

    Article  CAS  Google Scholar 

  43. Norton, R. S., Cross, K., Braach-Maksvytis, V., and Wachter, E. (1993) 41-n.m.r. study of the solution properties and secondary structure of neurotoxin III from the sea anemone Anemonia sulcata. Biochem. J. 293, 545–551.

    Google Scholar 

  44. Bahraoui, E. M., El Ayab, M., Granier, C., Beress, L., and Rochat, H. (1989) Specificity of antibodies to sea anemone toxin III and immunogenicity of the pharmacological site of anemone and scorpion toxins. Eur. J. Biochem. 180, 55–60.

    Article  PubMed  CAS  Google Scholar 

  45. Pauron, D., Barhanin, J., and Lazdunski, M. (1985) The voltage-dependent Na+ channel of insect nervous system identified by receptor sites for tetrodotoxin, and scorpion and sea anemone toxins. Biochem. Biophys. Res. Comm. 131, 1226–1233.

    Article  PubMed  CAS  Google Scholar 

  46. Schweitz, H., Bidard, J. N., Frelin, C., Pauron, D., Vijverberg, H. P. M., Mahasneh, D. M., and Lazdunski, M. (1985) Purification, sequence, and pharmacological properties of sea anemone toxins from Radianthus paumotensis. A new class of sea anemone toxins acting on the sodium channel. Biochemistry 24, 3554–3561.

    Article  PubMed  CAS  Google Scholar 

  47. Murayama, K. N., Abbott, N. J., Narahashi, T., and Shapiro, B. (1972) Effect of allethrin and Condylactis toxin on the kinetics of sodium conductance of crayfish axon membranes. Comp. Gen. Pharmacol. 3, 391–400.

    Article  PubMed  CAS  Google Scholar 

  48. Bergman, C., DuBois, J. M., Rojas, E., and Rathmayer, W. (1976) Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim. Biophys. Acta 455, 173–184.

    Article  PubMed  CAS  Google Scholar 

  49. Salgado, V. L. and Kem, W. R. (1992) Actions of three structurally distinct sea anemone toxins on crustacean and insect sodium channels. Toxicon 30, 1365–1381.

    Article  PubMed  CAS  Google Scholar 

  50. El-Sherif, N., Fozzard, H. A., and Hanck, D. A. (1992) Dose-dependent modulation of the cardiac sodium channel by sea anemone toxin ATX II. Circ. Res. 70, 285–301.

    Article  PubMed  CAS  Google Scholar 

  51. Hanck, D. A. and Sheets, M. F. (1995) Modification of inactivation in cardiac sodium channels: ionic current studies with anthopleurin-A toxin. J. Gen. Physiol. 106, 601–616.

    Article  PubMed  CAS  Google Scholar 

  52. Wasserstrom, J. A., Kelly, J. E., and Liberty, K. N. (1993) Modification of cardiac Na+ channels by anthopleurin-A: effects on gating and kinetics. Pflügers Arch. 424, 15–24.

    Article  PubMed  CAS  Google Scholar 

  53. Cannon, S. C. (1996) Sodium channel defects in myotonia and periodic paralysis. Ann. Rev. Neurosci. 19, 141–164.

    Article  PubMed  CAS  Google Scholar 

  54. Cannon, S. C. and Corey, D. P. (1993) Loss of Na+ channel inactivation by anemone toxin (ATX II) mimics the myotonic state in hyperkalaemic periodic paralysis. J. Physiol. 466, 501–520.

    PubMed  CAS  Google Scholar 

  55. Rogers, J. C., Qu, Y., Tanada, T. N., Scheuer, T. and Catterall, W. A. (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel a subunit. J. Biol. Chem. 271, 15,950–15, 962.

    Google Scholar 

  56. Chen, L.-Q., Santarelli, V., Horn, R., and Kallen, R. G. (1996) A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108, 549–556.

    Article  PubMed  CAS  Google Scholar 

  57. Sheets, M. F. and Hanck, D. A. (1995) Voltage-dependent open-state inactivation of cardiac sodium channels: gating current studies with anthopleurin-A toxin. J. Gen. Physiol. 106, 617–640.

    Article  PubMed  CAS  Google Scholar 

  58. Lawrence, J. C. and Catterall, W. A. (1981) Tetrodotoxin-insensitive sodium channels. Binding of polypeptide neurotoxins in primary cultures of rat muscle cells. J. Biol Chem. 256, 6223–6229.

    PubMed  CAS  Google Scholar 

  59. Scriabine, A., Van Arman, G., Morgan, G., Morris, A. A., Bennett, C. D., and Bohidar, N. R. (1979) Cardiotonic effects of anthopleurin-A, a polypeptide from a sea anemone. J. Cardiovasc. Pharmacol. 1, 571–583.

    Article  PubMed  CAS  Google Scholar 

  60. Catterall, W. A. and Beress, L. (1978) Sea anemone toxin and scorpion toxin share a coinmon receptor site associated with the action potential sodium iontophore. J. Biol. Chem. 253, 7393–7396.

    PubMed  CAS  Google Scholar 

  61. Couraud, F., Rochat, H., and Lissitzky, S. (1978) Binding of scorpion and sea anemone neurotoxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells. Biochem. Biophys. Res. Commun. 83, 1525–1530.

    Article  PubMed  CAS  Google Scholar 

  62. Kem, W. R., Pennington, M. W., Krafte, D. S., and Hill, R. J. (1996a) Sea anemone toxins affecting sodium channels: are the similarities greater than the differences? in Biochemical Aspects of Marine Pharmacology ( Lazarovici, P., Spira, M., and Zlotkin, E., eds.), Alaken Press, Ft. Collins, pp. 98–120.

    Google Scholar 

  63. Benzinger, G. R., Kyle, J. W., Blumenthal, K. M., and Hanck, D. A. (1998) A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J. Biol. Chem. 273, 80–84.

    Article  PubMed  CAS  Google Scholar 

  64. Kern, W. R., Pennington, M. W., and Dunn, B. M. (1990) Sea anemone polytpeptide toxins affecting sodium channels. Initial structure-activity investigations, in Marine Toxins: Origin, Structure, and Molecular Pharmacology, vol. 418 ( Hall, S., and Strichartz, F., eds.) American Chemical Soc., Washington, DC, pp. 279–289.

    Google Scholar 

  65. Pennington, M. W., Kern, W. R., Norton, R. S., and Dunn, B. M. (1990a) Chemical synthesis of a neurotoxic polypeptide from the sea anemone Stichodactyla helianthus. Intern. J. Pept. Protein Res. 36, 335–343.

    Article  CAS  Google Scholar 

  66. Pennington, M. W., Kern, W. R., and Dunn, B. M. (1990) Synthesis and biological activity of six monosubstituted analogs of a sea anemone (Stichodactyla helianthus) type 2 polypeptide toxin. Peptide Res. 3, 1–5.

    Google Scholar 

  67. Mahnir, V. M., Kozlovskaya, E. P., and Elyakov, G. B. (1990) Modification of carboxyl groups in sea anemone toxin RTX-III from Radianthus macrodactylus. Toxicon 28, 1255–1263.

    Article  CAS  Google Scholar 

  68. Khera, P. K. and Blumenthal, K. M. (1996) Importance of highly conserved anionic residues and electrostatic interactions in the activity and structure of the cardiotonic polypeptide anthopleurin B. Biochemistry 35, 3503–3507.

    Article  PubMed  CAS  Google Scholar 

  69. Pennington, M. W., Zadenberg, I., Byrnes, M. E., Norton, R. S., and Kern, W. R. (1994) Synthesis of the cardiac inotropic polypeptide anthopleurin-A. J. Pept. Prot. Res. 43, 463–470.

    Article  CAS  Google Scholar 

  70. Gallagher, M. J. and Blumenthal, K. M. (1992) Cloning and expression of wild-type and mutant forms of the cardiotonic polypeptide anthopleurin B. J. B.ol. Chem. 267, 13,95813, 963.

    Google Scholar 

  71. Gallagher, M. J. and Blumenthal, K. M. (1994) Importance of the unique cationic residues arginine 12 and lysine 49 in the activity of the cardiotonic polypeptide anthopleurin B. J. Biol. Chem. 269, 254–259.

    PubMed  CAS  Google Scholar 

  72. Khera, P. K. and Blumenthal, K. M. (1994) Role of the cationic residues arginine 14 and lysine 48 in the function of the cardiotonic polypeptide anthopleurin B. J. Biol. Chem. 269, 921–925.

    PubMed  CAS  Google Scholar 

  73. Khera, P. K., Benzinger, F. R., Lipkind, G., Drum, C. L., Hanck, D. A., and Blumenthal, K. M. (1995) Multiple cationic residues of anthopleurin B that determine high affinity and channel isoform discrimination. Biochemistry 34, 8533–8541.

    Article  PubMed  CAS  Google Scholar 

  74. Kelso, G. J., Drum, C. L., Hanck, D. A., and Blumenthal, K. M. (1996) Role for Pro-13 in directing high-affinity binding of anthopleurin B to the voltage-sensitive sodium channel. Biochemistry 35, 14, 157–14, 164.

    Google Scholar 

  75. Dias-Kadambi, B. L., Drum, C. L., Hanck, D. A., and Blumenthal, K. M. (1996) Leucine 18, a hydrophobic residue essential for high affinity binding of anthopleurin B to the voltage-sensitive sodium channel. J. Biol. Chem. 271, 9422–9428.

    Article  PubMed  CAS  Google Scholar 

  76. Fetrow, J. S. (1995) Omega loops: nonregular secondary structures significant in protein function and stability. FASEB J. 9, 708–717.

    PubMed  CAS  Google Scholar 

  77. Benzinger, G. R, Drum, C. L., Chen, L.-Q., Kallen, R. G., and Hanck, D. A. (1997) Differences in the binding sites of two site-3 sodium channel toxins. Pflügers Arch. Eur. J. Physiol. 434, 742–749.

    Article  CAS  Google Scholar 

  78. Gould, A. R., Mabbutt, B. C., Llewellyn, L. E., Goss, N. H., and Norton, R. S. (1992) Linear and cyclic peptide analogues of the polypeptide cardiac stimulant, anthopleurin-A. 1HNMR and biological activity studies. Eur. J. Biochem. 206, 641–651.

    Article  PubMed  CAS  Google Scholar 

  79. Renaud, J. F., Fosset, M., Schweitz, H., and Lazdunski, M. (1986) The interaction of polypeptide neurotoxins with tetrodotoxin-resistant Na+ channels in mammalian cardiac cells. Correlation with inotropic and arrhythmic effects. Eur. J. Pharmacol. 120, 161–170.

    Article  PubMed  CAS  Google Scholar 

  80. Blair, R. W., Peterson, D. F., and Bishop, V. S. (1978) The effect of anthopleurin-A on cardiac dynamics in conscious dogs. J. Pharm. Exp. Ther. 207, 271–276.

    CAS  Google Scholar 

  81. Norton, R. S. (1997) Polypeptide modulators of sodium channel function as a basis for the development of novel cardiac stimulants, in Structure Based Drug Design ( Veerapandian, P., ed.), Marcel Dekker, NY, pp. 295–319.

    Google Scholar 

  82. Hashimoto, Y. and Ashida, K. (1987) Screening of toxic corals and isolation of a toxic polypeptide from Goniopora spp. Publ. Seto. Mar. Biol. Lab. 20, 703–711.

    Google Scholar 

  83. Ashida, K., Toda, H., Fujiwara, M., and Sakiyama, F. (1987) Amino acid sequence of Goniopora toxin. Jpn. J. Pharmacol. 43(Suppl.)33, (abstract P-33).

    Google Scholar 

  84. Fujiwara, M., Muramatsu, I., Hidaka, H., Ikushima, S., and Ashida, K. (1979) Effects of Goniopora toxin, a polypeptide isolated from coral, on electromechanical properties of rabbit myocardium. J. Pharm. Exp. Ther. 210, 153–157.

    CAS  Google Scholar 

  85. Noda, M., Muramatsu, I., and Fujiwara, M. (1984) Effects of Goniopora toxin on the membrane currents of fullfrog atrial muscle. N. S. Arch. Pharmacol. 327, 75–80.

    Article  CAS  Google Scholar 

  86. Ikushima, S., Muramatsu, I., Fujiwara, M., and Ashida, K. (1981) Relationship between the effects of Goniopora toxin on action potential and on contractile force in guinea-pig papillary muscle. Jpn. J. Pharmacol. 31, 1051–1060.

    Article  PubMed  CAS  Google Scholar 

  87. Muramatsu, I., Fujiwara, M., Miura, A., and Narahashi, T. (1985) Effects of Goniopora toxin on crayfish giant axons. J. Pharm. Exp. Ther. 234, 307–315.

    CAS  Google Scholar 

  88. Gonoi, T., Ashida, K., Feller, D., Schmidt, J., Fujiwara, M., and Catterall, W. A. (1986) Mechanism of action of a polypeptide neurotoxin from the coral Goniopora on sodium channels in mouse neuroblastoma cells. Mol. Pharmacol. 29, 347–354.

    PubMed  CAS  Google Scholar 

  89. Qar, J., Schweitz, H., Schmid, A., and Lazdunski, M. (1986) A polypeptide toxin from the coral Goniopora. Purification and action on Cat+ channels. FEBS Lett. 202, 331–336.

    Article  PubMed  CAS  Google Scholar 

  90. Minagawa, S., Isida, I., Nagashima, Y., and Shiomi, K. (1998) Primary structure of a potassium channel toxin from the sea anemone Actinia equina. FEBS Lett. 427, 149–151.

    Article  CAS  Google Scholar 

  91. Harvey, A. L., Rowan, E. G., Vatanpour, H., Young, L. C., Castaneda, O., Mebs, D., et al. (1996) Potassium channel neurotoxins from sea anemones, in Biochemical aspects of Marine Pharmacology ( Lazarovici, P., Spira, M., and Zlotkin, E., eds.), Alaken Press, Ft. Collins, pp. 121–131.

    Google Scholar 

  92. Pohl, J., Hubalek, F., Byrnes, M. E., Nielsen, K. R., Woods, A., and Pennington, M. W. (1995) Assignment of the three disulfide bonds in ShK toxin: a potent potassium channel inhibitor from the sea anemone Stichodactyla helianthus. Lett. Peptide Sci. 1, 291–297.

    Article  CAS  Google Scholar 

  93. Kem, W. R., Sanyal, G., Williams, R. W., and Pennington, M. W. (1996b) Secondary structure of ShK toxin, a potassium channel-blocking peptide. Lett. Peptide Sci. 3, 69–72.

    Article  CAS  Google Scholar 

  94. Tudor, J. E., Pallaghy, P. K., Pennington, M. W., and Norton, R. S. (1996) Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nature Str. Biol. 3, 317–320.

    Article  CAS  Google Scholar 

  95. Lanigan, M. D., Tudor, J. E., Pennington, M. W., and Norton, R. S. (2001) A helical cap- ping motif in ShK toxin and its role in helix stabilization. Biopolymers 58, 422–436.

    Article  PubMed  CAS  Google Scholar 

  96. Dauplais, M., Lecoq, A., Song, J., Cotton, J., Jamin, N., Gilquin, B., et al. (1997) On the convergent evolution of animal toxins. conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J. Biol. Chem. 272, 4302–4309.

    Article  PubMed  CAS  Google Scholar 

  97. Tudor, J. E., Pennington, M. W., and Norton, R. S. (1998) Ionization behaviour and solution properties of the potassium-channel blocker ShK toxin. Eur. J. Biochem. 251, 133–141.

    Article  PubMed  CAS  Google Scholar 

  98. Schweitz, H., Bruhn, T., Guillemare, M. D, Lancelin, J.-M., Beress, L., and Lazdunshi, M. (1995) Kalicludines and Kaliseptine: Two different classes of sea anemone toxins for voltage-sensitive K+ channels. J. Biol. Chem. 270, 25,121–25, 126.

    Google Scholar 

  99. Diochot, S., Schweitz, H., Beress, L., and Lazdunski, M. (1998) Sea anemone peptides with a specific blocking activity against fast inactivating potassium channel Kv3.4. J. Biol. Chem. 73, 6744–6749.

    Article  Google Scholar 

  100. Llewellyn, L. E. and Norton, R. S. (1991) Binding of the sea anemone polypeptide BdS II to the voltage-gated sodium channel. Biochem. Intern. 24, 937–946.

    CAS  Google Scholar 

  101. Pennington, M. W., Mahnir, V. M., Krafte, D. S., Zadenberg, I., Byrnes, M. E., Khaytin, I., et al. (1996) Identification of three separate binding sites on ShK toxin, a potent inhibitor of voltage-dependent potassium channels in human T-lymphocytes and rat brain. Biochem. Biophys. Res. Commun. 219, 696–701.

    Article  PubMed  CAS  Google Scholar 

  102. Kalman, K., Pennington, M., Nguyen, A., Mahnir, V. M., Kem, W R., Grissmer, S., et al. (1998) ShK-K22DAP: A potent Kv1.3-specific immunosuppressive peptide. J. Biol. Chem. 273, 32,697–32, 707.

    Google Scholar 

  103. Brugnara, C., Armsby, C. C., De Franceschi, L., Crest, M., Martin Euclaire, M. F., and Alper, S. L. (1995) Ca2tactivated K+ channels of human and rabbit erythrocytes display distinctive patterns of inhibition by venom peptide toxins. J. Memhr. Biol. 147, 71–82.

    CAS  Google Scholar 

  104. Rauer, H., Pennington, M. W., Cahalan, M. D., and Chandy, K. G. (1999) Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J. Biol. Chem. 274, 21,885–21, 892.

    Google Scholar 

  105. Aiyar, J. (1999) Potassium channels in leukocytes and toxins that block them: structure, function and therapeutic implications. Perspect Drug Disc. Design 15/16, 257–280.

    Google Scholar 

  106. Araque, A., Urbano, F. J., Cervenansky, C., Gandia, L., and Buno, W. (1995) Selective block of Ca’-dependent K+ current in crayfish neuromuscular system and chromaffin cells by sea anemone Bunodosoma cangicum venom. J. Neurosci. Res. 42, 539–546.

    Article  PubMed  CAS  Google Scholar 

  107. Pennington, M. W., Mahnir, V. M., Khaytin, I., Zaydenberg, I, Byrnes, M. E., and Kem, W. R. (1996): An essential binding surface for ShK toxin interaction with rat brain potassium channels. Biochemistry 35, 16, 407–16, 411.

    Google Scholar 

  108. Alessandri-Haber, N., Lecoq, A., Gasparin, S., Grangier-Macmath, G., Jacquet, G., Harvey, A. L., et al. (1999) Mapping the functional anatomy of BgK on Kv1.1, Kvl.2, and Kv1.3. Clues to design analogs with enhanced selectivity. J. Biol. Chem. 274, 35,653–35, 661.

    Google Scholar 

  109. Kem, W. R., Pennington, M. W., and Norton, R. S. (1999) Sea anemone toxins as templates for the design of immunosuppressant drugs. Perspec. Drug Disc. Design 15/16, 111–129.

    Google Scholar 

  110. Pennington, M. W., Mahnir, V. M., Baur, P., McVaugh, C. T., Behm, D., and Kem, W. R. (1997b) The effect of truncation on ShK toxin: elimination of the amino-carboxyl terminal (3–35) disulfide linkage stabilizing the amino and carboxyl terminal segments. Prot. Peptide Lett. 4, 23 7–242.

    Google Scholar 

  111. Pennington, M. W., Lanigan, M. D., Kalman, K., Mahnir, V. M., Rauer, H., McVaugh, C. T., et al. (1999) Role of disulfide bonds in the structure and potassium channel blocking activity of ShK toxin. Biochemistry 38, 14, 549–14, 558.

    Google Scholar 

  112. Tytgat, J., Debont, T., Carmeliet, E., and Daenens, P. (1995) The alpha-dendrotoxin footprint on a mammalian potassium channel. J. Biol. Chem. 270, 24,776–24, 781.

    Google Scholar 

  113. Janin, J. and Chothia, C. (1990) The structure of protein-protein recognition sites. J. Biol. Chem. 265, 16,027–16, 030.

    Google Scholar 

  114. Novotny, J. and Haber, E. (1986) Static accessibility model of protein antigenicity: the case of scorpion neurotoxin. Biochemistry 25, 6748–6754.

    Article  PubMed  CAS  Google Scholar 

  115. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., et al. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77.

    Article  PubMed  CAS  Google Scholar 

  116. MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A., and Chait, B. T. (1998) Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280, 106–109.

    Article  PubMed  CAS  Google Scholar 

  117. Mariscal, R. N. (1970), The nature of the symbiosis between Indo-Pacific anemone fishes and sea anemones. Mar. Biol. 6, 58–65.

    Article  Google Scholar 

  118. Fautin, D. G. (1991), The anemone-fish symbiosis: what is known and what is not. Symbiosis 10, 23–46.

    Google Scholar 

  119. de Couet, H. G. (1982), Coelenterate nematocysts bind immunoglobulins. Experientia 38, 353–354.

    Article  PubMed  Google Scholar 

  120. Maier, L. and Rathmayer, W. (1982), Lokalisierung von Anemonentoxin in den Tentakeln der Wachsrose Anemonia sulcata (Coelenterata) mit Hilfe spezifischer Antikorper. Verh. Dtsch. Zool. Ges. 281 (Abstr.).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kem, W.R. (2002). Anthozoan Neurotoxins. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_25

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics