Skip to main content

Snake Neurotoxins that Interact with Nicotinic Acetylcholine Receptors

  • Chapter
Handbook of Neurotoxicology
  • 456 Accesses

Abstract

Snakes produce a diversity of toxins, the α-neurotoxins or curaremimetic toxins, which act on nicotinic acetylcholine receptors (AChRs). As shown in Table 1, these toxins can be divided into four categories. First, there are the a-neurotoxins, which bind with high affinity to muscular AChRs only. These include a large family of short-chain, three-fingered toxins from Elapidae (elapids and hydrophiids), and the waglerins from Viperidae (Trimeresurus wagleri) (1–3). Second, there are the α/k neurotoxins, which bind with high affinities to both muscular and some neuronal receptors (α7, α8, and α9) (4–6). These toxins correspond to the family of long-chain, three-finger toxins found in venoms from Elapidae, which, until recently (7), were systematically associated with the family of short-chain three-fingered toxins (1). Third, there are the K-neurotoxins, which bind with high affinity to neuronal receptors only. So far, only four toxins of this category have been described and all of them are long-chain, three-fingered toxins from elapid snakes (8,9). Fourth, there are nonconventional neurotoxins with an additional disulfide bond in the first loop. These toxins, also called weak neurotoxins, interact with low affinities (their Kds are in the µM range) on muscular-type AChRs (9a, 9b, 9c, 9d).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endo, T. and Tamiya, N. (1991) Structure-function relationships of postsynaptic neurotoxins from snake venoms, in Snake Toxins ( Harvey, A. L., ed.), Pergamon Press, New York, pp. 165–222.

    Google Scholar 

  2. Schmidt, J. J. and Weinstein, S. A. (1995) Structure-function studies of waglerin-1, a lethal peptide from the venom of Wagler’s pit viper, Trimeresurus wagleri. Toxicon 33, 1043–1049.

    PubMed  CAS  Google Scholar 

  3. Schmidt, J. J., Weinstein, S. A., and Smith, L. A. (1992) Molecular properties and structure-function relationships of lethal peptides from venom of Wagler’s pit viper. Toxicon 30, 1027–1037.

    PubMed  CAS  Google Scholar 

  4. Couturier, S., Bertrand, D., Matter, J. M., Hernandez, M. C., Bertrand, S., Millar, N., et al. (1990) A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by a-Btx. Neuron 5, 847–856.

    PubMed  CAS  Google Scholar 

  5. Gerzanich, V., Anand, R., and Lindstrom, J. (1994) Homomers of a8 and a7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties. Mol. Pharmacol. 45, 212–220.

    PubMed  CAS  Google Scholar 

  6. Elgoyhen, A. B., Johnson, D. S., Boulter, J., Vetter, D. E., and Heinemann, S. (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705–715.

    PubMed  CAS  Google Scholar 

  7. Servent, D., Winckler-Dietrich, V., Hu, H. Y., Kessler, P., Drevet, P., Bertrand, D., and Ménez, A. (1997) Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha 7 nicotinic receptor. J. Biol. Chem. 272, 24,279–286.

    Google Scholar 

  8. Chiappinelli, V. A., Wolf, K. M., DeBin, J. A., and Holt, I. L. (1987) Kappa-flavitoxin: isolation of a new neuronal nicotinic receptor antagonist that is structurally related to kappa-bungarotoxin. Brain Res. 402, 21–29.

    PubMed  CAS  Google Scholar 

  9. Chiappinelli, V. A. (1991) x-neurotoxins and a-neurotoxins: effects on neuronal acetylcholine receptors, in Snake Toxin (Harvey, A. L., ed.), Pergamon Press, New York, pp. 223–258.

    Google Scholar 

  10. Chang, L. Lin, S., Wang, J., Hu, W-P., Wu, B., and Huang, H. (2000) Structure-function studies on Taiwan cobra long neurotoxin homolog. Biochim. Biophys. Acta 1480, 293–301.

    Google Scholar 

  11. Utkin, Y. N., Kukhtina, V. V., Maslennikov, I. V., Eletsky, A. V., Starkov, V. G., Weise, C., Franke, P., Hucho, P., and Tsetlin, V. I. (2001) First, tryptophan-containing weak neurotoxins from cobra venom. Toxicon 39, 921–927.

    PubMed  CAS  Google Scholar 

  12. Aird, S. D., Womble, G. C., Yates, J. R., and Griffin, P. R. (1999) Primary structure of ybungarotoxin, a new postsynaptic neurotoxin from venom of Bungarus multicinctus. Toxicon 37, 609–625.

    PubMed  CAS  Google Scholar 

  13. Nirthanan, S., Gopalakrishnakone, P., Gwee, M. C. E., Khoo, H. E., Cheah, L. S., and Kini, M. R. (2000) Candoxin, a three-finger toxin isolated from Bungarus candidus snake venom, is a reversible post-synaptic neuromuscular blocker of nicotinic acteylcholine receptors. Abstract L108 of the XIIIth world Congress on the International Society on Toxicology.

    Google Scholar 

  14. Kolbe, H. V. J., Huber, A., Cordier, P., Rasmussen, U. B., Bouchon, B., Jaquinot, M., et al. (1993) Xenoxins, a family of peptides from dorsal gland secretion of Xenopus laevis related to snake venom cytotoxins and neurotoxins. J. Biol. Chem. 268, 16,458–16, 464.

    Google Scholar 

  15. Drenth, J., Low, B., Richardson, J. S., and Wright, J. S. (1980) The toxin-agglutinin fold. A new group of small protein strucutres organized around a four disulfide core. J. Biol. Chem. 255, 2652–2655.

    Google Scholar 

  16. Kieffer, B., Driscoll, P. C., Campbell, I. D., Willis, A. C., Van der Merve, A. P., and Davis, S. J. (1994) Three-dimensional solution structure of the extracellular region of the complement regulatory protein CD59, a new cell-surface protein domain related to snake venom neurotoxins. Biochemistry 33, 4471–4482.

    PubMed  CAS  Google Scholar 

  17. Ploug, M. and Ellis, V. (1994) Stucture-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom a-neurotoxins. FEBS Lett. 349, 163–168.

    PubMed  CAS  Google Scholar 

  18. Ménez, A., Bontemps, F., Roumestand, C., Gilquin, B., and Toma, F. (1992) Structural basis for functional diversity of animal toxins. Proc. R. Soc. Edinburgh 99B, 83–103.

    Google Scholar 

  19. Tsetlin, V. (1999) Snake venom alpha-neurotoxins and other “three-finger” proteins. Eur. J. Biochem. 264, 281–286.

    CAS  Google Scholar 

  20. Chang, C. C. and Lee, C. Y. (1963) Isolation of neurotoxins from the venom of Bungarus multicinctus and on their modes of neuromuscular blocking action. Arch. Int. Pharmacodyn. Ther. 144, 241–257.

    CAS  Google Scholar 

  21. Eaker, D. and Porath, J. (1967) The amino acid sequence of neurotoxin from Naja nigricollis venom. Jpn. J. Microbiol. 11, 353–355.

    Google Scholar 

  22. Hider, R. C., Karlsson, E., and Namiranian, S. (1991) Separation and purification of toxins from snake venoms, in Snake Toxins ( Harvey, A. L., ed.), Pergamon Press, New York, pp. 1–34.

    Google Scholar 

  23. Chang, C. C., Huang, T. Y., Kuo, K. W., Chen, S. W., Huang, K. F., and Chiou, S. H. (1993) Sequence characterization of a novel alpha-neurotoxin from the king cobra (Ophiophagus hannah) venom. Biochem. Biophys. Res. Commun. 191, 214–223.

    CAS  Google Scholar 

  24. Lin, S. R., Leu, L. F., Chang, L. S.. and Chang, C. C. (1997) Amino acid sequence and chemical modification of a novel a-neurotoxin (Oh-5) from king cobra (Ophiophagus hannah) venom. J. Biochem. 121, 690–695.

    CAS  Google Scholar 

  25. Stöcklin, R., Mebs, D., Boulain, J. C., Panchaud, P.-A., Virelizier, H., and Gillard-Factor, C. (2000) Identification of snake species by toxin mass fingerprinting of their venoms, in Methods in Molecular Biology, vol. 146 ( Chapman, J. R., ed.), Humana Press Inc., Totowa, NJ, pp. 1–19.

    Google Scholar 

  26. Boulain, J. C., Ducancel, F., Mourier, G., Drevet, P., and Ménez, A. (1999) “Three-fingered” toxins from hydrophid and elapid snakes: artificial procedures to overproduce wild-type and mutated euraremimetic toxins in Animal Toxins, vol. 15 ( Rochat, H. and Martin-Eauclaire, M. F., eds.), Birkhäuser Verlag, Basel, pp. 229–245.

    Google Scholar 

  27. Ducancel, F., Boulain, J. C., Trémeau, O., and Ménez, A. (1989) Direct expression in E. coli of a functionally active protein A-snake toxin fusion protein. Prot. Eng. 3, 139–143.

    CAS  Google Scholar 

  28. Missiakas, D. and Raina, S. (1997) Protein folding in the bacterial periplasm. J. Bact. 12, 2465–2471.

    Google Scholar 

  29. Nilsson, B., Abrahmsen, L., and Uhlen, M. (1985) Immobilization and purification of enzymes with Staphylococcal protein A gene fusion vectors. EMBO J. 4, 1075–1080.

    CAS  Google Scholar 

  30. Nilsson, B., Moks, T., Jansson, B., Abrahmsen, L., Emblad, A., Henrichson, C., et al. (1987) A synthetic IgG-binding domain based on Staphylococcal protein A. Prot. Eng. 1, 107–113.

    CAS  Google Scholar 

  31. Trémeau, O., Lemaire, C., Drevet, P., Pinkasfeld, S., Ducancel, F., Boulain, J. C., and Ménez, A. (1995) Genetic engineering of snake toxins. The functional site of Erabutoxin a, as delineated by site-directed mutagenesis, includes variant residues. J. Biol. Chem. 270, 9362–9369.

    Google Scholar 

  32. Ackermann, E. J. and Taylor, P. (1997) Nonidentity of the alpha-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in alpha-neurotoxin and receptor structures. Biochemistry 36, 12,836–12, 844.

    Google Scholar 

  33. Fiordalisi, J. J., Al-Rabiee, R., Chiappinelli, V. A., and Grant, G. A. (1994) Affinity of native kappa-bungarotoxin and site-directed mutants for the muscle nicotinic acetylcholine receptor. Biochemistry 33, 12,962–12, 967.

    Google Scholar 

  34. Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89.

    PubMed  CAS  Google Scholar 

  35. Drevet, P., Lemaire, C., Gasparini, S., ZinnJustin, S., Lajeunesse, E., Ducancel, F., et al. (1997) High-level production and isotope labeling of snake neurotoxins, disulfide-rich proteins. Protein Express. Purif. 10, 293–300.

    CAS  Google Scholar 

  36. Anti], S., Servent, D., and Ménez, A. (1999) Variability among the sites by which curaremimetic toxins bind to Torpedo acetylcholine receptor, as revealed by identification of the functional residues of a-Cobratoxin. J Biol. Chem. 274, 34,851–34, 858.

    Google Scholar 

  37. Rosenthal, J. A., Hsu, S. H., Schneider, D., Gentile, L. N., Messier, N. J., Vaslet, C. A., and Hawrot, E. (1994) Functional expression and site-directed mutagenesis of a synthetic gene for a-bungarotoxin. J. Biol. Chem. 269, 11,178–11, 185.

    Google Scholar 

  38. Chang, L. S., Chen, K. C., Wu, B. N., Lin, S. K., Wu, P. F., Hong, Y. R., and Yang, C. C. (1999) Expression and mutagenesis studies of cobrotoxin from Taiwan cobra. Biochem. Biophys. Res. Commun. 263, 652–656.

    CAS  Google Scholar 

  39. Fiordalisi, J. J., James, P. L., Zhang, Y., and Grant, G. A. (1996) Facile production of native-like kappa-bungarotoxin in yeast: an enhanced system for the production of a neuronal nicotinic acetylcholine receptor probe. Toxicon 34, 213–224.

    PubMed  CAS  Google Scholar 

  40. Levandoski, M. M., Caffery, P. M., Rogowski, R. S., Lin, Y., Shi, Q. L., and Hawrot, E. (2000) Recombinant expression of alpha-bungarotoxin in Pichia pastoris facilitates identification of mutant toxins engineered to recognize neuronal nicotinic acetylcholine receptors. J. Neurochem. 74, 1279–1289.

    PubMed  CAS  Google Scholar 

  41. Mourier, G., Servent, D., Zinn-Justin, S., and Ménez, A. (2000) Chemical engineering of a three-fingered toxin with anti-a7 neuronal acetylcholine receptor activity. Prot. Eng. 13, 217–225.

    CAS  Google Scholar 

  42. Mourier, G., Zinn-Justin, S., Trémeau, O., and Ménez, A. (1996) Chemical synthesis and in vitro folding of the curarimetic toxin a from Naja nigricollis: a three finger fold protein. Proceedings of the 24th European Peptides Symposium, Edinburgh, 659–660.

    Google Scholar 

  43. Vita, C., Roumestand, C., Toma, F., and Ménez, A. (1995) Scorpion toxins as natural scaffolds for protein engineering. Proc. Natl. Acad. Sci. USA 92, 6404–6408.

    CAS  Google Scholar 

  44. Vita, C., Drakopoulou, E., Vizzavona, J., Rochette, S., Martin, L., Ménez, A., et al. (1999) Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 96, 13,091–13, 096.

    Google Scholar 

  45. Tamiya, T., Lamouroux, A., Julien, J. F., Grima, B., Mallet, J., and Ménez, A. (1985) Cloning and sequence analysis of the cDNA encoding a snake neurotoxin precursor. Biochimie 67, 185–189.

    PubMed  CAS  Google Scholar 

  46. Ducancel, F., Bouchier, C., Tamiya, T., Boulain, J. C., and Ménez, A. (1991) Cloning and expression of cDNAs encoding snake toxins, in Snake Toxins, vol. 10 ( Harvey, A. L., ed.), Pergamon Press, New York, pp. 385–414.

    Google Scholar 

  47. Ducancel, F., Guignery-Frelat, G., Boulain, J.-C., and Ménez, A. (1990) Nucleotide sequence and structure analysis of cDNAs encoding short-chain neurotoxins from venom glands of a sea snake ( Aipysurus laevis ). Toxicon 28, 119–123.

    CAS  Google Scholar 

  48. Tamiya, T., Ohno, S., Nishimura, E., Fujimi, T. J., and Tsuchiya, T. (1999) Complete nucleotide sequences of cDNAs encoding long chain alpha-neurotoxins from sea krait, Laticauda semifasciata. Toxicon 37, 181–185.

    CAS  Google Scholar 

  49. Danse, J. M. and Gamier, J. M. (1990) cDNA deduced amino-acid sequences of two novel Kappa-neurotoxins from Bungarus multicinctus. Nucleic Acids Res. 18, 4610–4616.

    Google Scholar 

  50. Chang, L., Lin, S., Huang, H., and Hsiao, M. (1999) Genetic organization of alphabungarotoxins from Bungarus multicinctus (Taiwan banded krait): evidence showing that the production of alpha-bungarotoxin isotoxins is not derived from edited mRNAs. Nucleic Acids Res. 27, 3970–3975.

    PubMed  CAS  Google Scholar 

  51. Lajeunesse, E., Ducancel, F., Gillet, D., Trémeau, O., Drevet, P., Boulain, J. C., et al. (1994) Molecular biology of sea-snake toxins: cloning, expression of cDNAss and analysis of gene organization, in Sea Snake Toxinology ( Gopalakrishnakone, P., ed.), Singapore University Press, Singapore, pp. 66–92.

    Google Scholar 

  52. Smith, L. A. (1990) Cloning, characterization, and expression of animal toxin genes for vaccine development. J. Toxicol. Toxin Rev. 9, 243–283.

    CAS  Google Scholar 

  53. Ohno, M., Ménez, R., Ogawa, T., Danse, J. M., Shimohigashi, Y., Fromen, C., et al. (1 998) Molecular evolution of snake toxins: Is the functional diversity of snake toxins associated with a mechanism of accelerated evolution. Prog. Nucleic Acid Res. Mol. Biol. 59, 307–364.

    Google Scholar 

  54. Contecillo, S. G., Pilpel, Y., Glusman, G., and Fainzilber, M. (2000) Position-specific codon conservation in hypervariable gene family. Trends Genet. 16, 57–59.

    Google Scholar 

  55. Fuse, N., Tsuchiya, T., Nonomura, Y., Ménez, A., and Tamiya, T. (1990) Structure of the snake short-chain neurotoxin, erabutoxin c, precursor gene. Eur. J. Biochem. 193, 629–633.

    CAS  Google Scholar 

  56. Afifiyan, F., Armugam, A., Tan, C. H., Gopalakrishnakone, P., and Jeyaseelan, K. (1999) Postsynaptic alpha-neurotoxin gene of the spitting cobra, Naja naja sputatrix: structure, organization, and phylogenetic analysis. Genome Res. 9, 259–266.

    PubMed  CAS  Google Scholar 

  57. Low, B. W., Preston, H. S., Sato, A., Rosen, L. S., Searl, J. E., Rudko, A. D., and Richardson, J. S. (1976) Three-dimensional structure of erabutoxin b neurotoxic protein: inhibitor of acetylcholine receptor. Proc. Natl. Acad. Sci. USA 78, 2991–2994.

    Google Scholar 

  58. Tsernoglou, D. and Petsko, G. A. (1976) The crystal structure of a post-synaptic neuro-toxin from sea snake at 2.2 A resolution. FEBS Lett. 68, 1–4.

    PubMed  CAS  Google Scholar 

  59. Kimball, M. R., Sato, A., Richardson, J. S., Rosen, L. S., and Low, B. W. (1979) Molecular conformation of erabutoxin b: atomic coordinates at 2.5 A resolution. Biochem. Biophys. Res. Comm. 88, 950–959.

    CAS  Google Scholar 

  60. Bourne, P. E., Sato, A., Corfield, P. W. R., Rosen, L. S., Birken, S., and Low, B. W. (1985) Erabutoxin b. Initial protein refinement and sequence analysis at 0.140-nm resolution. Eur. J. Biochem. 153, 521–527.

    CAS  Google Scholar 

  61. Low, B. W. and Corfield, P. W. R. (1986) Erabutoxin b: Structure/Function relationships following initial protein refinement at 0.140-nm resolution. Eur. J. Biochem. 161, 579–587.

    CAS  Google Scholar 

  62. Smith, J. L., Corfield, P. W., Hendrickson, W. A., and Low, B. W. (1988) Refinement at 1.4 A resolution of a model of erabutoxin b: treatment of ordered solvent and discrete disorder. Acta Cryst. A 44, 357–368.

    Google Scholar 

  63. Saludjian, P., Prangé, T., Navaza, J., Ménez, R., Guilloteau, J. P., Riès-Kautt, M., and Ducruix, A. (1992) Structure determination of a dimeric form of erabutoxin-b, crystallized from a thiocyanate sodium. Acta Cryst. B48, 520–531.

    Google Scholar 

  64. Nastopoulos, V., Kanellopoulos, P. N., and Tsernoglou, D. (1998) Structure of Dimeric and Monomeric erabutoxin a refined at 1.5 Angstrom resolution. Acta Crystallogr. D. Biol. Cryst. 54, 964–974.

    CAS  Google Scholar 

  65. Preston, H. S., Kay, J., Sato, A., Low, B. W., and Tamiya, N. (1975) Crystalline erabutoxin c. Toxicon 13, 273–275.

    PubMed  CAS  Google Scholar 

  66. Hatanaka, H., Oka, M., Kohda, D., Tate, S.-I., Suda, A., Tamiya, N., and Inagaki, F. (1994) Tertiary structure of erabutoxin b in aqueous solution as elucidated by two-dimensional nuclear magnetic resonance. J. Mol. Biol. 240, 155–166.

    CAS  Google Scholar 

  67. Tsernoglou, D. and Petsko, G. A. (1977) Three-dimensional structure of neurotoxin a from venom of the Philippines sea snake. Proc. Natl. Acad. Sci. USA 74, 971–974.

    CAS  Google Scholar 

  68. Corfield, P. W. R., Lee, T.-J., and Low, B. W. (1989) The crystal structure of erabutoxin a at 2.0-A resolution. J. Biol. Chem. 264, 9239–9242.

    CAS  Google Scholar 

  69. Arnoux, B., Ménez, R., Drevet, P., Boulain, J. C., Ducruix, A., and Ménez, A. (1994) Three-dimensional crystal structure of recombinant erabutoxin a at 2.0 A resolution. FEBS Lett. 342, 12–14.

    PubMed  CAS  Google Scholar 

  70. Gaucher, J. F., Ménez, R., Arnoux, B., Pusset, J., and Ducruix, A. (2000) High resolution X-ray analysis of two mutants of a curaremimetic snake toxin. Eur. J. Biochem. 267, 1323–1329.

    CAS  Google Scholar 

  71. Pillet, L., Trémeau, O., Ducancel, F., Drevet, P., Zinn Justin, S., Pinkasfeld, S., et al. (1993) Genetic engineering of snake toxins. Role of invariant residues in the structural and functional properties of a curaremimetic toxin, as probed by site-directed mutagenesis. J. Biol. Chem. 268, 909–916.

    CAS  Google Scholar 

  72. Ishikawa, Y., Ménez, A., Hori, H., Yoshida, Y., and Tamiya, N. (1977) Structure of snake toxins and their affinity to the acetylcholine receptor of fish electric organ. Toxicon 15, 477–488.

    PubMed  CAS  Google Scholar 

  73. Brown, L. R. and Wüthrich, K. (1992) Nuclear magnetic resonance solution structure of the a-neurotoxin from the black mamba (Dendroaspis polylepis polylepis). J. Mol. Biol. 227, 1118–1135.

    CAS  Google Scholar 

  74. Zinn Justin, S., Roumestand, C., Gilquin, B., Bontems, F., Ménez, A., and Toma, F. (1992) Three-dimensional solution structure of a curaremimetic toxin from Naja nigricollis venom: a proton NMR and molecular modeling study. Biochemistry 31, 1 1,335–1 1, 347.

    Google Scholar 

  75. Yu, C., Bhaskaran, R., Chuang, L. C., and Yang, C. C. (1993) Solution conformation of cobrotoxin: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry 32, 2131–2136.

    PubMed  CAS  Google Scholar 

  76. Golovanov, A. P., Lomize, A. L., Arseniev, A. S., Utkin, Y. N., and Tsetlin, V. I. (1993) Two-dimensional ‘H-NMR study of the spatial structure of neurotoxin II from Naja naja oxiana. Eur. J. Biochem. 213, 1213–1223.

    CAS  Google Scholar 

  77. Ducancel, F., Mérienne, K., Fromen-Romano, C., Trémeau, O., Pillet, L., Drevet, P., et al. (1996) Mimicry between receptors and antibodies. J. Biol. Chem. 271, 31,345–31, 353.

    Google Scholar 

  78. Chuang, L. C., Yu, H. M., Chen, C., Huang, T. H., Wu, S. H., and Wang, K. T. (1996) Determination of three-dimensional solution structure of waglerin-1, a toxin from Trimeresurus wagleri, using 2D-NMR and molecular dynamics simulation. Biochim. Biophys. Acta. 1292, 145–155.

    Google Scholar 

  79. Walkinshaw, M. D., Saenger, W., and Maelicke, A. (1980) Three-dimensional structure of the “long” neurotoxin from cobra venom. Proc. Natl. Acad. Sci. USA 77, 2400–2404.

    CAS  Google Scholar 

  80. Betzel, C., Lange, G., Pal, G. P., Wilson, K. S., Maelicke, A., and Saenger, W. (1991) The refined crystal structure of a-cobratoxin from Naja naja siamensis at 2.4 A resolution. J. Biol. Chem. 266, 21,530–21, 536.

    Google Scholar 

  81. Le Goas,R., Laplante, S. R., Mikou, A., Delsuc, M. A., Guittet, E., Robin, M., et al. (1992) a-cobratoxin: proton NMR assignments and solution structure. Biochemistry 31, 4867–4875.

    Google Scholar 

  82. Leroy, E., Mikou, A., Yang, Y., and Guittet, E. (1994) The three-dimensional NMR solution structure of a-cobratoxin at pH 7.5 and conformational differences with the NMR solution structure at pH 3.2. J. Biomol. Struct. Dynamics 12, 1–17.

    CAS  Google Scholar 

  83. Agard, D. A. and Stroud, R. M. (1982) a-bungarotoxin structure revealed by a rapid method for averaging electron density of non-crystallographically translationally related molecules. Acta Cryst. A38, 186–194.

    Google Scholar 

  84. Love, R. A. and Stroud, R. M. (1986) The crystal structure of a-bungarotoxin at 2.5 A resolution: relation to solution structure and binding to acetylcholine receptor. Prot. Eng. 1, 37–46.

    CAS  Google Scholar 

  85. Basus, V. J., Billeter, M., Love, R. A., Stroud, R. M., and Kuntz, I. D. (1988) Structural Studies of a-Bungarotoxin. 1. Sequence-Specific I H NMR Resonance Assignments. Biochemistry 27, 2763–2771.

    CAS  Google Scholar 

  86. Basus, V. J., Song, G., and Hawrot, E. (1993) NMR solution structure of an alpha- bungarotoxin/nicotinic receptor peptide complex. Biochemistry 32, 12,290–12, 298.

    Google Scholar 

  87. Scherf, T., Balass, M., Fuchs, S., KatchalskiKatzir, E., and Anglister, J. (1997) Three-dimensional solution structure of the complex of alpha-bungarotoxin with a library-derived peptide. Proc. Natl. Acad. Sci. USA 94, 6059–6064.

    CAS  Google Scholar 

  88. Zeng, H., Moise, L., Grant M. A. and Hawrot, E. (2001) The solution structure of the complex formed between alpha-bungarotoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica. J. Biol. Chem. 276 22930–22940.

    CAS  Google Scholar 

  89. Samson, A. O., Chill, J. H., Rodriguez, E., Scherf, T., and Anglister, J. (2001) NMR mapping and secondary structure determination of the major acetylcholine receptor alpha-subunit determinant interacting with alpha-bungarotoxin. Biochemistry 40, 5464–5473.

    PubMed  CAS  Google Scholar 

  90. Connolly, P. J., Stern, A. S., and Hoch, J. C. (1996) Solution structure of LSIl1, a long neurotoxin from the venom of Laticauda semifasciata. Biochemistry 35, 418–426.

    PubMed  CAS  Google Scholar 

  91. Nickitenko, A. V., Michailov, A. M., Betzel, C., and Wilson, K. S. (1993) Three-dimensional structure of neurotoxin-1 from Naja naja oxiana venom at 1.9 A resolution. FEBS Lett. 320, 111–117.

    PubMed  CAS  Google Scholar 

  92. Peng, S. S., Kumar, T. K. S., Jayaraman, G., Chang, C. C., and Yu, C. (1997) Solution structure of toxin b, a long neurotoxin from the venom of the king cobra (Ophiophagus hannah). J. Biol. Chem. 272, 7817–7823.

    CAS  Google Scholar 

  93. Oswald, R. E., Sutcliffe, M. J., Bamberger, M., Loring, R., Braswell, E., and Dobson, C. M. (1991) Solution structure of neuronal bungarotoxin determined by two-dimensional NMR spectroscopy: sequence-specific asignments, secondary structure and dimer formation. Biochemistry 30, 4901–4909.

    PubMed  CAS  Google Scholar 

  94. Sutcliffe, M. J., Dobson, C. M., and Oswald, R. E. (1992) Solution structure of neuronal bungarotoxin determined by two-dimensional NMR spectroscopy: calculation of tertiary structure using systematic homologous model building, dynamical simulated annealing and restrained molecular dynamics. Biochemistry 31, 2962–2970.

    PubMed  CAS  Google Scholar 

  95. Dewan, J. C., Grant, G. A., and Sacchettini, J. C. (1994) Crystal structure of xbungarotoxin at 2.3 A resolution. Biochemistry 33, 13,147–13, 154.

    Google Scholar 

  96. Grant, G. A., Al-Rabiee, R., Xu, X. L., and Zhang, Y. P. (1997) Critical interactions at the dimer interface of kappa-bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist. Biochemistry 36, 3353–3358.

    PubMed  CAS  Google Scholar 

  97. Kuhn, P., Deacon, A. M., Comoso, S., Rajaseger, G., Kini, R. M., Uson, I., and Kolatkar, P. R. (2000) The atomic resolution structure of bucandin, a novel toxin isolated from the Malayan krait, determined by direct methods. Acta Cryst. D56, 1401–1407.

    CAS  Google Scholar 

  98. Antil-Delbeke, C., Gaillard, T., Tamiya, P. J., Carninger, J. P., Changeux, D., Servent, and Ménez, A. (2000) Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal a7 nicotinic acetylcholine receptor. J. Biol. Chem. 275, 29, 594–29, 601.

    Google Scholar 

  99. Ricciardi, A., Le Du, M. H., Khayati, M., Dajas, F., Boulain, J. C., Ménez, A., and Ducancel, F. (2000) Do structural deviations between toxins adopting the same fold reflect functional differences J. Biol. Chem. 275, 18,302–18, 310.

    Google Scholar 

  100. Le Du, M. H., Ricciardi, A., Khayati, M., Ménez, R., Boulain, J. C., Ménez, A., and Ducancel, F. (2000) Stability of a structural scaffold upon activity transfer. X-Ray structure of a three fingers chimeric protein. J. Mol. Biol. 296, 1017–1026.

    Google Scholar 

  101. Le Du, M. H. (1992) 1.9 A resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom. J. Biol. Chem. 267, 22, 122–22, 130.

    Google Scholar 

  102. Ménez, A., Bouet, F., Guschlbauer, W., and Fromageot, P. (1980) Refolding of reduced short neurotoxins: circular dichroism analysis. Biochemistry 19, 4166–4172.

    PubMed  Google Scholar 

  103. Ruoppolo, M., Moutiez, M., Mazzeo, M. F., Pucci, P., Ménez, A., Marino, G., and Quémeneur, E. (1998) The length of a single turn controls the overall folding rate of “three-fingered” snake toxins. Biochemistry 37, 16,060–16, 068.

    Google Scholar 

  104. Lentz, T. L. and Wilson, P. T. (1988) Neurotoxin binding site on the acetylcholine receptor. Int. Rev. Neurobiol. 29, 117–159.

    CAS  Google Scholar 

  105. Conti-Fine, B. M., Maelicke, A., Reinhardt-Maelicke, S., Chiapinelli, V., and McLane, K. E. (1995) Binding sites for neurotoxins and cholinergic ligands in peripheral and neuronal receptors. Ann. NYAcad. Sci. 757, 133–152.

    CAS  Google Scholar 

  106. McLane, K. E., Dunn, S. J. M., Manfredi, A. A., Conti-Tronconi, B. M., and Raftery, M. A. (1996) The nicotinic acetylcholine receptor as a model for a superfamily of ligand-gated ion channel proteins. Prot. Eng. Design 10, 289–352.

    Google Scholar 

  107. Boulain, J. C., Ménez, A., Couderc, J., Faure, G., Liacopoulos, P., and Fromageot, P. (1982) Neutralizing monoclonal antibody specific for Naja nigricollis toxin a: preparation, characterization and localization of the antigenic binding site. Biochemistry 21, 2910–2915.

    PubMed  CAS  Google Scholar 

  108. Trémeau, O., Boulain, J. C., Couderc, J., Fromageot, P., and Ménez, A. (1986) A monoclonal antibody which recognized the functional site of snake neurotoxins and which neutralizes all short-chain variants. FEBS Lett. 208, 236–240.

    PubMed  Google Scholar 

  109. Zinn Justin, S., Roumestand, C., Drevet, P., Ménez, A., and Toma, F. (1993) Mapping of two “neutralizing” epitopes of a snake curaremimetic toxin by proton nuclear magnetic resonance spectroscopy. Biochemistry 32, 6884–6891.

    Google Scholar 

  110. Lo Conte, L., Chotia, C., and Janin, J. (1999) The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198.

    Google Scholar 

  111. Fromen-Romano, C., Maillère, B., Drevet, P., Lajeunesse, E., Ducancel, F., Boulain, J. C., and Ménez, A. (1997) Transformation of a non-enzymatic toxin into a toxoid by genetic engineering. Prot. Eng. 10, 1213–1220.

    CAS  Google Scholar 

  112. Mérienne, K., Germain, N., Zinn-Justin, S., Boulain, J. C., Ducancel, F., and Ménez, A. (1997) The functional architecture of an acetylcholine receptor-mimicking antibody. J. Biol. Chem. 272, 23,775–23, 783.

    Google Scholar 

  113. Tenette, C., Ducancel, F., and Smith, J. (1996) Structural model of the anti-snake toxin antibody Ma2–3. Prot. Struct. Funct. Genet. 26, 9–31.

    CAS  Google Scholar 

  114. Tenette-Souaille, C. and Smith, J. (1998) Structural modeling of the complex between an acetylcholine receptor-mimicking antibody and its snake toxin antigen. Prot. Struct. Funct. Genet. 30, 249–263.

    CAS  Google Scholar 

  115. Germain, N., Mérienne, K., Zinn-Justin, S., Boulain, J. C., Ducancel, F., and Ménez, A. (2000) Molecular and structural basis of the specificity of a neutralizing acetylcholine receptor-mimicking antibody, using combined mutational and molecular modelling analyses. J. Biol. Chem. 275, 21,578–21, 586.

    Google Scholar 

  116. Amzel, L. M. and Poljak, R. J. (1979) Three-dimensional structure of immunoglobulins. Annu. Rev. Biochem. 48, 961–997.

    Google Scholar 

  117. Pruett, P. S. and Air, G. M. (1998) Critical interactions in binding antibody NC41 to influenza N9 neuraminidase: amino acid contacts on the antibody heavy chain. Biochemistry 37, 10,660–10, 670.

    Google Scholar 

  118. Davies, D. R. and Cohen, G. H. (1996) Interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA 93, 7–12.

    CAS  Google Scholar 

  119. Guenneuges, M., Drevet, P., Pinkasfeld, S., Gilquin, B., Ménez, A., and Zinn-Justin, S. (1997) Picosecond to hour time scale dynamics of a “three finger” toxin: correlation with its toxic and antigenic properties. Biochemistry 36, 16,097–16, 108.

    Google Scholar 

  120. Devillers-Thiéry, A., Galzi, J. L., Eiselé, J. L., Bertrand, S., Bertrand, D., and Changeux, J. P. (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J. Membr. Biol. 136, 97–112.

    Google Scholar 

  121. Galzi, J. L. and Changeux, J. P. (1992) The nicotinic acetylcholine receptor: a model of ligand-gated ion channels, in Membrane Proteins: Structures, Interactions and Models ( Pullman, A., ed.), Kluwer Academic, The Netherlands, pp. 127–146.

    Google Scholar 

  122. Lindstrom, J. (1999) Purification and cloning of nicotinic acetylcholine receptors, in Neuronal Nicotinic Receptors. Pharmacology and Therapeutic Opportunities ( Arneric, S. P. and Brioni, J. D., eds.), Wiley-Liss, New York.

    Google Scholar 

  123. Unwin, N. (1993) Nicotinic acetylcholine receptor at 9 A resolution. J Mol. Biol. 229, 1101–1124.

    CAS  Google Scholar 

  124. Miyazawa, A., Fujiyoshi, Y., Stowell, M., and Unwin, N. (1999) Nicotinic acetylcholine receptor at 4.6 Angstrom resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288, 765–786.

    CAS  Google Scholar 

  125. Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van der Oost, J., Smit, A. B. and Sixma, T. K. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–278.

    PubMed  CAS  Google Scholar 

  126. Smit, A. B., Syed, N. I., Schaap, D., van Minnen, J., Klumperman, J., Kits, K. S., ‘et al. (2001) A glia-derived acteylcholine binding protein that modulates synaptic transmission. Nature 411, 261–268.

    PubMed  CAS  Google Scholar 

  127. Weber, M. and Changeux, J. P. (1974) Binding of Naja nigricollis [3H] a-toxin to membrane fragments from Electrophorus and Torpedo electric organs. Mol. Pharmacol. 10, 15–34.

    CAS  Google Scholar 

  128. Martin, B. M., Chibber, B. A., and Maelicke, A. (1983) The sites of neurotoxicity in acobratoxin. J. Biol. Chem. 258, 8714–8722.

    CAS  Google Scholar 

  129. Lin, S., R, and Chang, C., C. (1991) Studies on the status of amino groups in abungarotoxin. Toxicon 29, 937–950.

    CAS  Google Scholar 

  130. Faure, G., Boulain, J. C., Bouet, F., Montenay-Garestier, T., Fromageot, P., and Ménez, A. (1983) Role of indole and amino groups in the structure and function of Naja nigricollis toxin a. Biochemistry 22, 2068–2076.

    PubMed  CAS  Google Scholar 

  131. Chicheportiche, R., Vincent, J. P., Kopeyan, C., Schweitz, H., and Lazdunski, M. (1975) Structure-function relationship in the binding of snake neurotoxins to the Torpedo membrane receptor. Biochemistry 14, 2081–2091.

    PubMed  CAS  Google Scholar 

  132. Hervé, M., Pillet, L., Humbert, P., Tremeau, O., Ducancel, F., Hirth, C., and Ménez, A. (1992) Role and environment of the conserved Lys27 of snake curaremimetic toxins as probed by chemical modifications, site-directed mutagenesis and photolabelling experiments. Eur. J. Biochem. 208, 125–131.

    Google Scholar 

  133. Chang, C.-C., Kawata, Y., Sakayama, F., and Hayashi, K. (1990) The role of an invariant tryptophan residue in a-bungarotoxin and cobrotoxin. Eur. J. Biochem. 193, 567–572.

    CAS  Google Scholar 

  134. Endo, T., Oya, M., Tamiya, N., and Hayashi, K. (1987) Role of C-terminal tail of long neurotoxin from snake venoms in molecular conformation and acetylcholine receptor binding: Protein nuclear magnetic resonance and competition binding studies. Biochemistry 26, 4592–4598.

    Google Scholar 

  135. Boyot, P., Pillet, L., Ducancel, F., and Ménez, A. (1990) A recombinant snake neurotoxin generated by a chemical cleavage of a hybrid protein recovers full biological properties. FEBS Let. 266, 87–90.

    CAS  Google Scholar 

  136. Malany, S., Ackermann, E., Osaka, H., and Taylor, P. (1998) Complementary binding studies between a-neurotoxin and the nicotinic acetylcholine receptor. J. Physiol. ( Paris ) 92, 462–463.

    Google Scholar 

  137. Osaka, H., Malany, S., Kanter, J. R., Sine, S. M., and Taylor, P. (1999) Subunit interface selectivity of the alpha-neurotoxins for the nicotinic acetylcholine receptor. J. Biol. Chem. 274, 9581–9586.

    CAS  Google Scholar 

  138. Rosenthal, J. A., Levandoski, M. M., Chang, B., Potts, J. F., Shi, Q.-L., and Hawrot, E. (1999) The functional role of positively charged amino acid side chains in a-bungarotoxin revealed by site-directed mutagenesis of a His-tagged recombinant a-bungarotoxin. Biochemistry 38, 7847–7855.

    PubMed  CAS  Google Scholar 

  139. Fiordalisi, J. J., Al-Rabiee, R., Chiapinelli, V. A., and Grant, G. A. (1994) Site-directed mutagenesis of x-bungarotoxin: implications for neuronal receptor specificity. Biochemistry 33, 3872–3877.

    PubMed  CAS  Google Scholar 

  140. Grant, G. A., Luetje, C. W., Summers, R., and Xu, X. L. (1998) Differential roles for disulfide bonds in the structural integrity and biological activity of kappa-bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist. Biochemistry 37, 12,166–12, 171.

    Google Scholar 

  141. McArdle, J. J., Lentz, T. L., Witzemann, V., Schwarz, H., Weinstein, S. A., and Schmidt, J. J. (1999) Waglerin-1 selectively blocks the epsilon form of the muscle nicotinic acetylcholine receptor. J. Pharm. Exp. Ther. 289, 543–550.

    CAS  Google Scholar 

  142. Molles, B. E., Kline, E. F., Sine, S. M., McArdle, J. J., and Taylor, P. (1998) Probing the structure of the ligand binding site on the muscle nicotinic receptor with Waglerin peptides. J. Physiol. ( Paris ) 92, 470–471.

    Google Scholar 

  143. Hsio, Y. M., Chuang, C. C., Chuang, L. C., Yu, H. M., Wang, K. T., Chiou, S. H., and Wu, S. H. (1996) protein engineering of venom toxins by synthetic approach and NMR dynamic simulation: status of basic amino acid residues in waglerin I. Biochem. Biophys. Res. Commun. 227, 59–63.

    Google Scholar 

  144. Kao, P. N. and Karlin, A. (1986) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J. Biol. Chem. 261, 8085–8088.

    CAS  Google Scholar 

  145. Dennis, M., Giraudat, J., Kotzyba-Hibert, F., Goeldner, M., Hirth, C., Chang, J. Y., et al. (1988) Amino acids of the Torpedo marmorata acetylcholine receptor labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27, 2346–2357.

    PubMed  CAS  Google Scholar 

  146. Galzi, J. L., Revah, F., Black, D., Goeldner, M., Hirth, C., and Changeux, J. P. (1990) Identification of a novel amino acid alpha-Tyr93 within the active site of the acetylcholine receptor by photoaffinity labeling: additional evidence for a three loop model of the acetylcholine binding site. J Biol. Chem. 265, 10,430–10, 437.

    Google Scholar 

  147. Middleton, R. E. and Cohen, J. B. (1991) Mapping of the acetylcholine binding site of the acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry 30, 6987–6997.

    PubMed  CAS  Google Scholar 

  148. Chiara, D. C. and Cohen, J. B. (1997) Identification of amino acids contributing to high and low affinity d-tubocurarine sites in the Torpedo nicotinic acetylcholine receptor. J. Biol. Chem. 272, 32,940–32, 950.

    Google Scholar 

  149. Abramson, S. N., Culver, P., Klines, T., Li, Y., P., G., Gutman, L., and Taylor, P. (1988) Lophotoxin and related coral toxins covalently label tha a-subunit of the nicotinic acetylcholine receptor. J. Biol. Chem. 263, 18,568–18, 573.

    Google Scholar 

  150. Galzi, J. L., Revah, F., Bessis, A., and Changeux, J. P. (1991) Functional architecture of the nicotinic acetylcholine receptor: From electric organ to brain. Anna. Rev. Pharmacol. Toxicol. 31, 37–72.

    CAS  Google Scholar 

  151. Galzi, J. L. and Changeux, J. P. (1994) Neurotransmitter-gated ion channels as unconventional allosteric proteins. Curr. Opin. Struct. Biol. 4, 554–565.

    CAS  Google Scholar 

  152. Chiara, D. C., Middleton, R. E., and Cohen, J. B. (1998) Identification of tryptophan 55 as the primary site of [H-3]nicotine photoincorporation in the gamma-subunit of the Torpedo nicotinic acetylcholine receptor. FEBS Lett. 423, 223–226.

    CAS  Google Scholar 

  153. Tomaselli, G. F., McLaughlin, J. T., Jurman, M. E., Hawrot, E.. and Yellen, G. (1991) Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. Biophys. J. 60, 721–727.

    CAS  Google Scholar 

  154. Sine, S. M., Quiram, P., Papanikolaou, F., Kreienkamp, H. J., and Taylor, P. (1994) Conserved tyrosines in the alpha subunit of the nicotinic acetylcholine receptor stabilize quaternary ammonium groups of agonists and curariform antagonists. J. Biol. Chem. 269, 8808–8816.

    CAS  Google Scholar 

  155. O’Leary, M. E. and White, M. M. (1992) Mutational analysis of ligand-induced activation of the Torpedo acetylcholine receptor. J. Biol. Chem. 267, 8360–8365.

    Google Scholar 

  156. Aylwin, M. L. and White, M. M. (1994) Ligand-receptor interactions in the nicotinic acetylcholine receptor probed using multiple substitutions at conserved tyrosines on the alpha subunit. FEBS Lett. 349, 99–103.

    PubMed  CAS  Google Scholar 

  157. Galzi, J. L. (1991) Functional significance of aromatic amino acids from three peptide loops of the a7 neuronal nicotinic receptor site investigated by site-directed mutagenesis. FEES Leters 294, 198–202.

    CAS  Google Scholar 

  158. Corringer, P. J., Bertrand, S., Bohler, S., Edelstein, S. J., Changeux, J. P., and Bertrand, D. (1998) Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J. Neurosci. 18, 648–657.

    PubMed  CAS  Google Scholar 

  159. Czajkowski, C. and Karlin, A. (1995) Structure of the nicotinic receptor acetylcholine-binding site. Identification of acidic residues in the delta subunit within 0.9 nm of the 5 alpha subunit-binding. J. Biol. Chem. 270, 3160–3164.

    Google Scholar 

  160. Prince, R. J. and Sine, S. M. (1996) Molecular dissection of subunit interfaces in the acetylcholine receptor. J. Biol. Chem. 271, 25,770–25, 777.

    Google Scholar 

  161. Sine, S. M., Kreienkamp, H. J., Bren, N., Maeda, R., and Taylor, P. (1995) Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of determinants of alpha-conotoxin MI selectivity. Neuron 15, 205–211.

    PubMed  CAS  Google Scholar 

  162. Chiara, D. C., Xie, Y., and Cohen, J. B. (1999) Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: Affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants. Biochemistry 38, 6689–6698.

    PubMed  CAS  Google Scholar 

  163. Tsigelny, I., Sugiyama, N., Sine, S. M., and Taylor, P. (1997) A model of the nicotinic receptor extracellular domain based on sequence identity and residue location. Biophys. J. 73, 52–66.

    CAS  Google Scholar 

  164. Holtzman, E., Wise, D., Wall, J., and Karlin, A. (1982) Electron microscopy of complexes of isolated acetylcholine receptor, biotynyl-toxin and avidin. PNAS 79, 310–314.

    PubMed  CAS  Google Scholar 

  165. Zingsheim, H. P., Barrantes, F. J., Frank, J., Hänike, W., and Neugebauer, D. C. (1982) Direct structural localization of two toxin-recognition sites on ACh receptor protein. Nature 299, 81–84.

    PubMed  CAS  Google Scholar 

  166. Kistler, J. and Stroud, R. M. (1982) Structure and function of an acetylcholine receptor. Biophys. J. 37, 371–383.

    CAS  Google Scholar 

  167. Johnson, D. A., Cushman, R., and Malekzadeh, R. (1990) Orientation of cobra a-toxin on the nicotinic acetylcholine receptor. J. Biol. Chem. 265, 7360–7368.

    Google Scholar 

  168. Kreienkamp, H. J., Utkin, Y. N., Weise, C., Machold, J., Tsetlin, V. I., and Hucho, F. (1992) Investigation of ligand-binding sites of the acetylcholine receptor using photoactivatable derivatives of neurotoxin II from Naja naja oxiana. Biochemistry 31, 8239–8244.

    PubMed  CAS  Google Scholar 

  169. Utkin, Y. N., Krivoshein, A. V., Davydov, V. L., Kasheverov, I. E., Franke, P., Maslennikov, I. V., et al. (1998) Labeling of Torpedo californica nicotinic acetylcholine receptor subunits by cobratoxin derivatives with photoactivatable groups of different chemical nature at Lys23. Eur. J. Biochem. 253, 229–235.

    CAS  Google Scholar 

  170. Utkin, Y. N., Hatanaka, Y., Franke, P., Machold, J., Hucho, F., and Tsetlin, V. I. (1995) Synthesis of nitrodiazirinyl derivatives of neurotoxin II from Naja naja oxiana and their interaction with the Torpedo californica nicotinic acetylcholine receptor. J. Prot. Chem. 14, 197–203.

    CAS  Google Scholar 

  171. Machold, J., Weise, C., Utkin, Y. N., Franke, P., Tsetlin, V. I., and Hucho, F. (1995) A new class of photoactivatable and cleavable derivatives of neurotoxin II from Naja naja oxiana. Synthesis, characterisation, and application for affinity labelling of the nicotinic acetylcholine receptor from Torpedo californica. Eur. J. Biochem. 228, 947–954.

    CAS  Google Scholar 

  172. Chatrenet, B., Kotzba Hibert, F., Mulle, C., Changeux, J. P., Goeldner, M. P., and Hirth, C. (1992) Photoactivatable agonist of the nicotinic acetylcholine receptor: potential probe to characterize the structural transitions of the acetylcholine binding site in different states of the receptor. Mol. Pharmacol. 41, 1100–1106.

    CAS  Google Scholar 

  173. Machold, J., Utkin, Y., Kirsch, D., Kaufmann, R., Tsetlin, V., and Hucho, F. (1995) Photolabeling reveals the proximity of the alpha-neurotoxin binding site to the M2 helix of the ion channel in the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 92, 7282–7286.

    CAS  Google Scholar 

  174. Hucho, F., Tsetlin, V. I., and Machold, J. (1996) The emerging three-dimensional structure of a receptor: the nicotinic acetylcholine receptor. Eur. J. Biochem. 239, 539–557.

    Google Scholar 

  175. Kessler, P., Maurin, S., and Ménez, A. (1998) nAChR and a-neurotoxins: new tools for old acquaintances. J. Physiol. ( Paris ) 92, 447.

    Google Scholar 

  176. Michalet, S., Teixeira, F., Gilquin, B., Mourier, G., Servent, D., Drevet, P., et al. (2000) Relative spatial position of a snake neurotoxin and the reduced disulfide bond a(Cys 192cys193) at the ay interface of the nicotinic acetylcholine receptor. J. Biol. Chem. 275, 25,608–25, 615.

    Google Scholar 

  177. Barchan, D., Kachalsky, S., Neumann, D., Vogel, Z., Ovadia, M., Kochva, E. and Fuchs, S. (1992) How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc. Natl. Acad. Sci. USA 89, 7717–7721.

    CAS  Google Scholar 

  178. Chaturvedi, V., Donnelly-Roberts, D. L., and Lentz, T. L. (1992) Substitutions of Torpedo acetylcholine receptor al subunit residues with snake al and rat nerve a3 subunit residues in recombinant fusion proteins: effect on a-bungarotoxin binding. Biochemistry 31, 1370–1375.

    PubMed  CAS  Google Scholar 

  179. Keller, S. H., Kreienkamp, H. J., Kawanishi, C., and Taylor, P. (1995) Molecular determinants conferring alpha-toxin resistance in recombinant DNA-derived acetylcholine receptors. J. Biol. Chem. 270, 4165–4171.

    Google Scholar 

  180. Kreienkamp, H. J., Sine, S. M., Maeda, R. K., and Taylor, P. (1994) Glycosylation sites selectively interfere with alpha-toxin binding to the nicotinic acetylcholine receptor. J. Biol. Chem. 269, 8108–8114.

    Google Scholar 

  181. Ackermann, E. J., Ang, E. T. H., Kanter, J. R., Tsigelny, I., and Taylor, P. (1998) Identification of pairwise interactions in the alpha-neurotoxin-nicotinic acetylcholine receptor complex through double mutant cycles. J. Biol. Chem. 273, 10,958–10, 964.

    Google Scholar 

  182. Osaka, H., Malany, S., Molles, B. E., Sine, S. M., and Taylor, P. (2000) Pairwise electrostatic interactions between a-neurotoxins and y, 8, and e subunits of the nicotinic acetylcholine receptor. J. Biol. Chem. 275, 5478–5484.

    CAS  Google Scholar 

  183. Sine, S. M. (1997) Identification of equivalent residues in the gamma, delta, and epsilon subunits of the nicotinic receptor that contribute to alpha-bungarotoxin binding. J. Biol. Chem. 272, 23,521–23, 527.

    Google Scholar 

  184. Spura, A., Russin, T. S., Freedman, N. D., Grant, M., McLaughlin, J. Y., and Hawrot, E. (1999) Probing the agonist domain of the nicotinic acetylcholine receptor by cysteine scanning mutagenesis reveals residues in proximity to the a-bungarotoxin binding site. Biochemistry 38, 4912–4921.

    PubMed  CAS  Google Scholar 

  185. Levandoski, M. M., Lin, Y. X., Moise, L., McLaughlin, J. T., Cooper, E., and Hawrot, E. (1999) Chimeric analysis of a neuronal nicotinic acetylcholine receptor reveals amino acids conferring sensitivity to alpha-bungarotoxin. J. Biol. Chem. 274, 26,113–26, 119.

    Google Scholar 

  186. Taylor, P., Osaka, H., Molles, B. E., Sugiyama, N., Marchot, P., Ackermann, et al. (1998) Toxins selective for subunit interfaces as probes of nicotinic acetylcholine receptor structure. J. Physiol. Paris 92, 79–83.

    CAS  Google Scholar 

  187. Luetje, C. W., Piattoni, M., and Patrick, J. (1993) Mapping of ligand binding sites of neuronal nicotinic acetylcholine receptors using chimeric alpha subunits. Mol. Pharmacol. 44, 657–666.

    CAS  Google Scholar 

  188. Luetje, C. W., Maddox, F. N., and Harvey, S. C. (1998) Glycosylation within the cysteine loop and six residues near conserved Cys192/Cys193 are determinants of neuronal bungarotoxin sensitivity on the neuronal nicotinic receptor alpha 3 subunit. Mol. Pharmacol. 53, 1112–1119.

    CAS  Google Scholar 

  189. Harvey, S. C. and Luetje, C. W. (1996) Determinants of competitive antagonist sensitivity on neuronal nicotinic receptor beta subunits. J. Neurosci. 16, 3798–3806.

    PubMed  CAS  Google Scholar 

  190. Le Novere, N., Corringer, P. J., and Changeux, J. P. (1999) Improved secondary structure predictions for a nicotinic receptor subunit: incorporation of solvent accessibility and experimental data into a two-dimensional representation. Biophys. J. 76, 2329–2345.

    Google Scholar 

  191. Chiappinelli, V. A., Weaver, W. R., McLane, K. E., ContiFine, B. M., Fiordalisi, J. J., and Grant, G. A. (1996) Binding of native kappa-neurotoxins and site-directed mutants to nicotinic acetylcholine receptors. Toxicon 34, 1243–1256.

    PubMed  CAS  Google Scholar 

  192. Gorman, S., Viseshakul, N., Cohen, B., Hardy, S., Grant, G. A., Yost, C. S., and Forsayeth, J. R. (1997) A recombinant adenovirus that directs secretion of biologically active k-bungarotoxin from mammalian cells. Mol. Brain Res. 44, 143–146.

    CAS  Google Scholar 

  193. Sugiyama, N., Marchot, P., Kawanishi, C., Osaka, H., Molles, B., Sine, S. M., and Taylor, P. (1998) Residues at the subunit interfaces of the nicotinic acetylcholine receptor that contribute to alpha-conotoxin M1 binding. Mol. Pharmacol. 53, 787–794.

    CAS  Google Scholar 

  194. Quiram, P. A. and Sine, S. M. (1998) Identification of residues in the neuronal alpha(7) acetylcholine receptor that confer selectivity for conotoxin Iml. J. Biol. Chem. 273, 11,001–11, 006.

    CAS  Google Scholar 

  195. Quiram, P. A., Jones, J. J., and Sine, S. M. (1999) Pairwise interactions between neuronal alpha(7) acetylcholine receptors and alpha-conotoxin Im!. J. Biol. Chem. 274, 19,51719, 524.

    Google Scholar 

  196. Malany, S., Osaka, H., Sine, S. M. and Taylor, P. (2000) Orientation of a-neurotoxin at the subunit interfaces of the nicotinic acetylcholine receptor. Biochemistry 39, 15,38815, 398.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Servent, D., Ménez, A. (2002). Snake Neurotoxins that Interact with Nicotinic Acetylcholine Receptors. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics