Skip to main content

Molecular Mechanism of Action of Botulinal Neurotoxins and the Synaptic Remodeling They Induce In Vivo at the Skeletal Neuromuscular Junction

  • Chapter
Handbook of Neurotoxicology

Abstract

Botulinal neurotoxins (BoNTs) have long been known to have potent and specific paralytic effects at the vertebrate neuromuscular junction (NMJ). Although they are the most toxic substances known, the serotype A is now being used for therapeutic purposes, mainly to treat involuntary muscle contractions, but also for a number of other medical applications (reviewed in ref. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, E. A. (1999) Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Annu. Rev. Microbiol. 53, 551–575.

    Article  PubMed  CAS  Google Scholar 

  2. Schiavo, G., Matteoli, M., and Montecucco, C. (2000) Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717–766.

    PubMed  CAS  Google Scholar 

  3. Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R., and Stevens, R. C. (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 5, 898–902.

    Article  PubMed  CAS  Google Scholar 

  4. Hanson, M. A. and Stevens, R. C. (2000) Cocrystal structure of synaptobrevin-11 bound to botulinum neurotoxin type B at 2.0 A resolution. Nat. Struct. Biol. 7, 687–692.

    Article  PubMed  CAS  Google Scholar 

  5. Swaminathan, S. and Eswaramoorthy, S. (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol. 7, 693–699.

    Article  PubMed  CAS  Google Scholar 

  6. Simpson, L. L. (1986) Molecular pharmacology of botulinum toxin and tetanus toxin. Annu. Rev. Pharmacol. Toxicol. 26, 427–453.

    Article  PubMed  CAS  Google Scholar 

  7. Simpson, L. L. (ed.) (1989) Botulinum Neurotoxin and Tetanus Toxin. Academic Press, San Diego.

    Google Scholar 

  8. Habermann, E. and Dreyer, F. (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr. Top. Microbiol. Immunol. 129, 93–179.

    Article  PubMed  CAS  Google Scholar 

  9. Van der Kloot, W. and Molgó, J. (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74, 915–926.

    Article  Google Scholar 

  10. Humeau, Y., Doussau, F., Grant, N. J., and Poulain, B. (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82, 427–446.

    Article  PubMed  CAS  Google Scholar 

  11. Minton, N. P. (1995) Molecular genetics of clostridial neurotoxins. Curr. Top. Microbiol. Immunol. 195, 161–194.

    Article  PubMed  CAS  Google Scholar 

  12. Inoue, K., Fujinaga, Y., Watanabe, T., et al. (1996) Molecular composition of Clostridium botulinum type A progenitor toxins. Infect. Immun. 64, 1589–1594.

    PubMed  CAS  Google Scholar 

  13. Popoff, M. R. and Marvaud, J.-C. (1999) Structural and genomic features of clostridial neurotoxins, in The Comprehensive Sourcebook of Bacterial Protein Toxins ( Alouf, J. E. and Freer, J. H., eds.), Academic Press, London, pp. 174–201.

    Google Scholar 

  14. Fujita, R., Fujinaga, Y., Inoue, K., Nakajima, H., Kumon, H., and Oguma, K. (1995) Molecular characterization of two forms of nontoxic-nonhemagglutinin components of Clostridium botulinum type A progenitor toxins. FEBS Lett. 376, 41–44.

    Article  PubMed  CAS  Google Scholar 

  15. Henderson, I., Whelan, S. M., Davis, T. O., and Minton, N. P. (1996) Genetic characterisation of the botulinum toxin complex of Clostridium botulinum strain NCTC 2916. FEMS Microbiol. Lett. 140, 151–158.

    Article  PubMed  CAS  Google Scholar 

  16. Burkard, F., Chen, F., Kuziemko, G. M., and Stevens, R. C. (1997) Electron-density projection map of the botulinum neurotoxin 900-kilodalton complex by electron crystallography. J. Struct. Biol. 120, 78–84.

    Article  PubMed  CAS  Google Scholar 

  17. Henderson, I., Davis, T., Elmore, M., and Minton, N. (1997) The genetic basis of toxin production in Clostridium botulinum and Clostridium tetani, in The Clostridia: Molecular Biology and Pathogenesis ( Rood, I., ed.), Academic Press, New York, pp. 261–294.

    Google Scholar 

  18. Hutson, R. A., Zhou, Y., Collins, M. D., Johnson, E. A., Hatheway, C. L., and Sugiyama, H. (1996) Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J. Biol. Chem. 271, 10,786–10, 792.

    Google Scholar 

  19. Moriishi, K., Koura, M., Fujii, N., et al. (1996) Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types Cl and D, and PCR detection of this gene from Clostridium botulinum type C organisms. Appl. Environ. Microbiol. 62, 662–667.

    PubMed  CAS  Google Scholar 

  20. Moriishi, K., Koura, M., Abe, N., et al. (1996) Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim. Biophys. Acta 1307, 123–126.

    Article  PubMed  Google Scholar 

  21. Sakaguchi, G. (1983) Clostridium botulinum toxins. Pharmac. Ther. 19, 165–194.

    CAS  Google Scholar 

  22. Chen, F., Kuziemko, G. M., and Stevens, R. C. (1998) Biophysical characterization of the stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the 900kilodalton botulinum toxin complex species. Infect. Immun. 66, 2420–2425.

    PubMed  CAS  Google Scholar 

  23. Maksymowych, A. B. and Simpson, L. L. (1998) Binding and transcytosis of botulinum neurotoxin by polarized human colon-carcinoma cells. J. Biol. Chem. 273, 21,950–21, 957.

    Google Scholar 

  24. Maksymowych, A. B., Reinhard, M., Malizio, C. J., Goodnough, M. C., Johnson, E. A., and Simpson, L. L. (1999) Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect. Immun. 67, 4708–4712.

    PubMed  CAS  Google Scholar 

  25. Niemann, H. (1991) Molecular biology of clostridial neurotoxins, in A Sourcebook of Bacterial Protein Toxins ( Alouf, J. E. and Freer, J. H., eds.) Academic Press, London, pp. 303–348.

    Google Scholar 

  26. DasGupta, B. R. (1994) Structures of botulinum neurotoxin, its functional domains, and perspectives on the crystalline type A toxin, in Therapy with Botulinum Toxin ( Jankovic, J. and Hallett, M., eds.) Marcel Dekker, New York, pp. 15–39.

    Google Scholar 

  27. Krieglstein, K. G., Henschen, A. H., Weller, U., and Habermann, E. (1991) Limited proteolysis of tetanus toxin. Relation to activity and identification of cleavage sites. Eur. J. Biochem. 202, 41–51.

    Article  PubMed  CAS  Google Scholar 

  28. Schiavo, G., Papini, E., Genna, G., and Montecucco, C. (1990) An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect. Immun. 58, 4136–4141.

    PubMed  CAS  Google Scholar 

  29. de Paiva, A., Poulain, B., Lawrence, G. W., Shone, C. C., Tauc, L., and Dolly, J. O. (1993) A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J. Biol. Chem. 268, 20,838–20,844.

    Google Scholar 

  30. Kozaki, S., Miki, A., Kamata, Y., Ogasawara, J., and Sakaguchi, G. (1989) Immunological characterization of papain-induced fragments of Clostridium botulinum type A neurotoxin and interaction of the fragments with brain synaptosomes. Infect. Immun. 57, 2634–2639.

    PubMed  CAS  Google Scholar 

  31. Lalli, G., Herreros, J., Osborne, S. L., Montecucco, C., Rossetto, O., and Schiavo, G. (1999) Functional characterisation of tetanus and botulinum neurotoxins binding domains. J. Cell Sci. 112, 2715–2724.

    PubMed  CAS  Google Scholar 

  32. Kurazono, H., Mochida, S., Binz, T., et al. (1992) Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A. J. Biol. Chem. 267, 14,721–14, 729.

    Google Scholar 

  33. Jiang, W. and Bond, J. S. (1992) Families of metalloendopeptidases and their relationships. FEBS Lett. 312, 110–114.

    Article  PubMed  CAS  Google Scholar 

  34. Schiavo, G., Poulain, B., Rossetto, O., Benfenati, F., Tauc, L., and Montecucco, C. (1992) Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depends on zinc. EMBO J. 11, 3577–3583.

    PubMed  CAS  Google Scholar 

  35. Wright, J. F., Pernollet, M., Reboul, A., Aude, C., and Colomb, M. G. (1992) Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin. J. Biol. Chem. 267, 9053–9058.

    PubMed  CAS  Google Scholar 

  36. Tonello, F., Schiavo, G., and Montecucco, C. (1997) Metal substitution of tetanus neuro-toxin. Biochem. J. 322, 507–510.

    PubMed  CAS  Google Scholar 

  37. Umland, T. C., Wingert, L. M., Swaminathan, S., Furey, W. F., Schmidt, J. J., and Sax, M. (1997) Structure of the receptor binding fragment He of tetanus toxin. Nat. Struct. Biol. 4, 788–792.

    Article  PubMed  CAS  Google Scholar 

  38. Knapp, M., Segelke, B., and Rupp, B. (1998) The 1.61 Angstrom structure of the tetanus toxin. Ganglioside binding region: solved by MAD and MIR phase combination. Am. Cryst. Assoc., Abstract. Papers 25, 90.

    Google Scholar 

  39. Emsley, P., Fotinou, C., Black, I., et al. (2000) The structures of the H-C fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J. Biol. Chem. 275, 8889–8894.

    Article  PubMed  CAS  Google Scholar 

  40. Lacy, D. B. and Stevens, R. C. (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol. 291, 1091–1104.

    Article  PubMed  CAS  Google Scholar 

  41. Schmitt, A., Dreyer, F., and John, C. (1981) At least three sequential steps are involved in the tetanus toxin-induced block of neuromuscular transmission. Naunyn Schmiedebergs Arch. Pharmacol. 317, 326–330.

    Article  PubMed  CAS  Google Scholar 

  42. Montecucco, C. and Schiavo, G. (1995) Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 28, 423–472.

    Article  PubMed  CAS  Google Scholar 

  43. Penner, R., Neher, E., and Dreyer, F. (1986) Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324, 76–78.

    Article  PubMed  CAS  Google Scholar 

  44. Poulain, B., Tauc, L., Maisey, E. A., Wadsworth, J. D., Mohan, P. M., and Dolly, J. O. (1988) Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the larger chain. Proc. Natl. Acad. Sci. USA 85, 4090–4094.

    Article  PubMed  CAS  Google Scholar 

  45. Ahnert-Hilger, G., Weller, U., Dauzenroth, M. E., Habermann, E., and Gratzl, M. (1989) The tetanus toxin light chain inhibits exocytosis. FEBS Lett. 242, 245–248.

    Article  PubMed  CAS  Google Scholar 

  46. Bittner, M. A., Habig, W. H., and Holz, R. W. (1989) Isolated light chain of tetanus toxin inhibits exocytosis: studies in digitonin-permeabilized cells. J. Neurochem. 53, 966–968.

    Article  PubMed  CAS  Google Scholar 

  47. Bittner, M. A., DasGupta, B. R., and Holz, R. W. (1989) Isolated light chains of botulinum neurotoxins inhibit exocytosis. Studies in digitonin-permeabilized chromaffin cells. J. Biol. Chem. 264, 10,354–10, 360.

    Google Scholar 

  48. Mochida, S., Poulain, B., Weller, U., Habermann, E., and Tauc, L. (1989) Light chain of tetanus toxin intracellularly inhibits acetylcholine release at neuro-neuronal synapses, and its internalization is mediated by heavy chain. FEBS Lett. 253, 47–51.

    Article  PubMed  CAS  Google Scholar 

  49. Hoch, D. H., Romero-Mira, M., Ehrlich, B. E., Finkelstein, A., DasGupta, B. R., and Simpson, L. L. (1985) Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc. Natl. Acad. Sci. USA 82, 1692–1696.

    Article  PubMed  CAS  Google Scholar 

  50. Donovan, J. J. and Middlebrook, J. L. (1986) Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry 25, 2872–2876.

    Article  PubMed  CAS  Google Scholar 

  51. Blaustein, R. O., Germann, W. J., Finkelstein, A., and DasGupta, B. R. (1987) The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett. 226, 115–120.

    Article  PubMed  CAS  Google Scholar 

  52. Shone, C. C., Hambleton, P., and Melling, J. (1987) A 50-kDa fragment from the NH2terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur. J. Biochem. 167, 175–180.

    Article  PubMed  CAS  Google Scholar 

  53. Gambale, F. and Montai, M. (1988) Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys. J. 53, 771–783.

    Article  PubMed  CAS  Google Scholar 

  54. Montal, M. S., Blewitt, R., Tomich, J. M., and Montai, M. (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett. 313, 12–18.

    Article  PubMed  CAS  Google Scholar 

  55. Oblatt-Montal, M., Yamazaki, M., Nelson, R., and Montai, M. (1995) Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Sci. 4, 1490–1497.

    Article  PubMed  CAS  Google Scholar 

  56. Sheridan, R. E., Deshpande, S. S., Nicholson, J. D., and Adler, M. (1997) Structural features of aminoquinolines necessary for antagonist activity against botulinum neurotoxin. Toxicon 35, 1439–1451.

    Article  PubMed  CAS  Google Scholar 

  57. Fu, F. N. and Singh, B. R. (1999) Calcein permeability of liposomes mediated by type A botulinum neurotoxin and its light and heavy chains. J. Prot. Chem. 18, 701–707.

    Article  CAS  Google Scholar 

  58. Bizzini, B., Stoeckel, K., and Schwab, M. (1977) An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J. Neurochem. 28, 529–542.

    Article  PubMed  CAS  Google Scholar 

  59. Morris, N. P., Consiglio, E., Kohn, L. D., Habig, W. H., Hardegree, M. C., and Helting, T. B. (1980) Interaction of fragment B and C of tetanus toxin with neural and thyroid membranes and with gangliosides. J. Biol. Chem. 255, 6071–6076.

    PubMed  CAS  Google Scholar 

  60. Weller, U., Taylor, C. F., and Habermann, E. (1986) Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat. Toxicon 24, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  61. Herreros, J., Lalli, G., and Schiavo, G. (2000) C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem. J. 347, 199–204.

    Article  PubMed  CAS  Google Scholar 

  62. Halpern, J. L. and Loftus, A. (1993) Characterization of the receptor-binding domain of tetanus toxin. J. Biol. Chem. 268, 11,188–11, 192.

    Google Scholar 

  63. Shapiro, R. E., Specht, C. D., Collins, B. E., Woods, A. S., Cotter, R. J., and Schnaar, R. L. (1997) Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J. Biol. Chem. 272, 30,380–30, 386.

    Google Scholar 

  64. Kubota, T., Watanabe, T., Yokosawa, N., Tsuzuki, K., Indoh, T., Moriishi, K., et al. (1997) Epitope regions in the heavy chain in Clostridium botulinum type E neurotoxin recognized by monoclonal antibodies. Appl. Environ. Microbiol. 63, 1214–1218.

    CAS  Google Scholar 

  65. Kamata, Y., Yoshimoto, M., and Kozaki, S. (1997) Interaction between botulinum neuro-toxin type-A and ganglioside-ganglioside inactivates the neurotoxin and quenches its tryptophan fluorescence. Toxicon 35, 1337–1340.

    Article  PubMed  CAS  Google Scholar 

  66. Herreros, J., Lalli, G., Montecucco, C., and Schiavo, G. (2000) Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J. Neurochem. 74, 1941–1950.

    Article  PubMed  CAS  Google Scholar 

  67. Lebeda, F. J. and Olson, M. A. (1995) Structural predictions of the channel-forming region of botulinum neurotoxin heavy chain. Toxicon 33, 559–567.

    Article  PubMed  CAS  Google Scholar 

  68. Wiener, M., Freymann, D., Ghosh, P., and Stroud, R. M. (1997) Crystal structure of colicin Ia. Nature 385, 461–464.

    Article  PubMed  CAS  Google Scholar 

  69. Menestrina, G., Forti, S., and Gambale, F. (1989) Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Biophys. J. 55, 393–405.

    Article  PubMed  CAS  Google Scholar 

  70. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C. (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430.

    Article  PubMed  CAS  Google Scholar 

  71. Li, Y., Foran, P., Fairweather, N. F., et al. (1994) A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain. Biochemistry 33, 7014–7020.

    Article  PubMed  CAS  Google Scholar 

  72. Yamasaki, S., Hu, Y., Binz, T., et al. (1994) Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc. Natl. Acad. Sci. USA 91, 4688–4692.

    Article  PubMed  CAS  Google Scholar 

  73. Zhou, L., de Paiva, A., Liu, D., Aoki, R., and Dolly, J. O. (1995) Expression and purification of the light chain of botulinum neurotoxin A: a single mutation abolishes its cleavage of SNAP-25 and neurotoxicity after reconstitution with the heavy chain. Biochemistry 34, 15, 175–15, 181.

    Google Scholar 

  74. Morante, S., Furenlid, L., Schiavo, G., Tonello, F., Zwilling, R., and Montecucco, C. (1996) X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, alkaline protease and thermolysin. Eur. J. Biochem. 235, 606–612.

    Article  PubMed  CAS  Google Scholar 

  75. Meneghini, C. and Morante, S. (1998) The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in X-ray absorption spectroscopy. Biophys. J. 75, 1953–1963.

    Article  PubMed  CAS  Google Scholar 

  76. Halpern, J. L. and Neale, E. A. (1995) Neurospecific binding, internalization, and retrograde axonal transport. Curr. Top. Microbiol. Immunol. 195, 221–241.

    Article  PubMed  CAS  Google Scholar 

  77. Black, J. D. and Dolly, J. O. (1986) Interaction of 1251-labeled botulinum neurotoxins with nerve terminals. H. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J. Cell Biol. 103, 535–544.

    Article  PubMed  CAS  Google Scholar 

  78. Dolly, J. O., Black, J., Williams, R. S., and Melling, J. (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307, 457–460.

    Article  PubMed  CAS  Google Scholar 

  79. Hirokawa, N. and Kitamura, M. (1979) Binding of Clostridium botulinum neurotoxin to the presynaptic membrane in the central nervous system. J. Cell Biol. 81, 43–49.

    Article  PubMed  CAS  Google Scholar 

  80. Williamson, L. C., Bateman, K. E., Clifford, J. C. M., and Neale, E. A. (1999) Neuronal sensitivity to tetanus toxin requires gangliosides. J. Biol. Chem. 274, 25,173–25, 180.

    Google Scholar 

  81. Herreros, J., Marti, E., Ruiz-Montasell, B., Casanova, A., Niemann, H., and Blasi, J. (1997) Localisation of putative receptors for tetanus toxin and botulinum neurotoxin type A in rat central nervous system. Eur. J. Neurosci. 9, 2677–2686.

    Article  PubMed  CAS  Google Scholar 

  82. Montecucco, C. (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem. Sci. 11, 315–317.

    Article  Google Scholar 

  83. Marxen, P., Fuhrmann, U., and Bigalke, H. (1989) Gangliosides mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon 27, 849–859.

    Article  PubMed  CAS  Google Scholar 

  84. Bigalke, H., Muller, H., and Dreyer, F. (1986) Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Toxicon 24, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  85. Sheikh, K. A., Sun, J., Liu, Y., Kawai, H., Crawford, T. O., Proia, R. L., et al. (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc. Natl. Acad. Sci. USA 96, 7532–7537.

    Article  PubMed  CAS  Google Scholar 

  86. Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., et al. (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc. Natl. Acad. Sci. USA 93, 10,662–10, 667.

    Google Scholar 

  87. Kitamura, M., Takamiya, K., Aizawa, S., and Furukawa, K. (1999) Gangliosides are the receptor for C. botulinum neurotoxin in mice. J. Neurochem. 73, S64 - S64.

    Google Scholar 

  88. Williams, R. S., Tse, C. K., Dolly, J. O., Hambleton, P., and Melling, J. (1983) Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur. J. Biochem. 131, 437–445.

    Article  PubMed  CAS  Google Scholar 

  89. Evans, D. M., Williams, R. S., Shone, C. C., Hambleton, P., Melling, J., and Dolly, J. O. (1986) Botulinum neurotoxin type B. Its purification, radioiodination and interaction with rat-brain synaptosomal membranes. Eur. J. Biochem. 154, 409–416.

    Article  PubMed  CAS  Google Scholar 

  90. Agui, T., Syuto, B., Oguma, K., lida, H., and Kubo, S. (1983) Binding of Clostridium botulinum type C neurotoxin to rat brain synaptosomes. J. Biochem. 94, 521–527.

    PubMed  CAS  Google Scholar 

  91. Bakry, N., Kamata, Y., Sorensen, R., and Simpson, L. L. (1991) Tetanus toxin and neuronal membranes: the relationship between binding and toxicity. J. Pharmacol. Exp. Ther. 258, 613–619.

    PubMed  CAS  Google Scholar 

  92. Coffield, J. A., Bakry, N. M., Maksymowych, A. B., and Simpson, L. L. (1999) Characterization of a vertebrate neuromuscular junction that demonstrates selective resistance to botulinum toxin. J. Pharmacol. Exp. Ther. 289, 1509–1516.

    PubMed  CAS  Google Scholar 

  93. Nishiki, T., Kamata, Y., Nemoto, Y., Omori, A., Ito, T., Takahashi, M., and Kozaki S. (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J. Biol. Chem. 269, 10,498–10, 503.

    Google Scholar 

  94. Nishiki, T., Tokuyama, Y., Kamata, Y., Nemoto, Y., Yoshida, A., Sekiguchi, M., et al. (1996) Binding of botulinum type B neurotoxin to Chinese hamster ovary cells transfected with rat synaptotagmin II cDNA. Neurosci. Lett. 208, 105–108.

    Article  PubMed  CAS  Google Scholar 

  95. Nishiki, T., Tokuyama, Y., Kamata, Y., Nemoto, Y., Yoshida, A., Sato, K., et al. (1996) The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GTlb/GD1a. FEBS Lett. 378, 253–257.

    Article  PubMed  CAS  Google Scholar 

  96. Li, L. and Singh, B. R. (1998) Isolation of synaptotagmin as a receptor for type A and type E botulinum neurotoxin and analysis of their comparative binding using a new microtiter plate assay. Nat. Toxins 7, 215–226.

    CAS  Google Scholar 

  97. Bakry, N. M., Kamata, Y., and Simpson, L. L. (1997) Expression of botulinum toxin binding sites in Xenopus oocytes. Infect. Immun. 65, 2225–2232.

    PubMed  CAS  Google Scholar 

  98. Hughes, R. and Whaler, B. C. (1962) Influence of nerve-endings activity and of drugs on the rate of paralysis of rat diaphragm preparations by Clostridium botulinum type A toxin. J. Physiol. (Lond.) 160, 221–233.

    CAS  Google Scholar 

  99. Fishman, P. S., Parks, D. A., Patwardhan, A. J., and Matthews, C. C. (1999) Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H-c). Nat. Toxins 7, 151–156.

    Article  PubMed  CAS  Google Scholar 

  100. Parton, R. G., Ockleford, C. D., and Critchley, D. R. (1987) A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures. J. Neurochem. 49, 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  101. Schwab, M. E. and Thoenen, H. (1978) Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer. J. Cell Biol. 77, 1–13.

    Article  PubMed  CAS  Google Scholar 

  102. Montesano, R., Roth, J., Robert, A., and Orci, L. (1982) Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxin. Nature 296, 651–653.

    Article  PubMed  CAS  Google Scholar 

  103. Damke, H., Baba, T., van der Bliek, A. M., and Schmid, S. L. (1995) Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80.

    Article  PubMed  CAS  Google Scholar 

  104. Henley, J. R., Krueger, W. A., Oswald, B. J., and McNiven, M. A. (1998) Dynaminmediated internalization of caveolae. J. Cell Biol. 141, 85–99.

    Article  PubMed  CAS  Google Scholar 

  105. Turek, J. J., Leamon, C. P., and Low, P. S. (1993) Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J. Cell Sci. 106, 423–430.

    PubMed  CAS  Google Scholar 

  106. Parton, R. G., Ockleford, C. D., and Critchley, D. R. (1988) Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Res. 475, 118–127.

    Article  PubMed  CAS  Google Scholar 

  107. Sandvig, K., Olsnes, S., Petersen, O. W., and van Deurs, B. (1989) Endocytosis from coated pits of Shiga toxins: a glycolipid-binding protein from Shigella dysenteriae. J. Cell Biol. 108, 1331–1343.

    Article  PubMed  CAS  Google Scholar 

  108. Orlandi, P. A. and Fishman, P. H. (1998) Filipin-dependent inhibition of cholera-toxin–evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol. 141, 905–915.

    Article  PubMed  CAS  Google Scholar 

  109. Matteoli, M., Verderio, C., Rossetto, O., Iezzi N., Coco, S., Schiavo, G., and Montecucco, C. (1996) Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc. Natl. Acad. Sci. USA 93, 13,310–13, 315.

    Google Scholar 

  110. Habermann, E. and Erdmann, G. (1978) Pharmacokinetic and histoautoradiographic evidence for the intraaxonal movement of toxin in the pathogenesis of tetanus. Toxicon 16, 611–623.

    Article  PubMed  CAS  Google Scholar 

  111. Menestrina, G., Schiavo, G., and Montecucco, C. (1994) Molecular mechanisms of action of bacterial protein toxins. Mol. Aspects Med. 15, 79–193.

    Article  PubMed  CAS  Google Scholar 

  112. Montecucco, C., Papini, E., and Schiavo, G. (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett. 346, 92–98.

    Article  PubMed  CAS  Google Scholar 

  113. Simpson, L. L. (1982) The interaction between aminoquinolines and presynaptically acting neurotoxins. J. Pharmacol. Exp. Ther. 222, 43–48.

    PubMed  CAS  Google Scholar 

  114. Simpson, L. L. (1983) Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J. Pharmacol. Exp. Ther. 225, 546–552.

    PubMed  CAS  Google Scholar 

  115. Williamson, L. C. and Neale, E. A. (1994) Bafilomycin Al inhibits the action of tetanus toxin in spinal cord neurons in cell culture. J. Neurochem. 63, 2342–2345.

    Article  PubMed  CAS  Google Scholar 

  116. Schmid, M. F., Robinson, J. P., and DasGupta, B. R. (1993) Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature 364, 827–830.

    Article  PubMed  CAS  Google Scholar 

  117. Chaddock, J. A., Purkiss, J. R., Friis, L. M., et al. (2000) Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endopeptidase derivative of Clostridium botulinum neurotoxin type A. Infect. Immun. 68, 2587–2593.

    Article  PubMed  CAS  Google Scholar 

  118. Herreros, J., Lalli, G., Montecucco, C., and Schiavo, G. (1999) Pathophysiological properties of clostridial neurotoxins, in The Comprehensive Sourcebook of Bacterial Protein Toxins ( Freer, J. H. and Alouf, J. E., eds.) Academic Press, London, pp. 202–228.

    Google Scholar 

  119. Schiavo, G., Benfenati, F., Poulain, B., et al. (1992) Tetanus and botulinum B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835.

    Article  PubMed  CAS  Google Scholar 

  120. Ferrer Montiel, A. V., Canaves, J. M., DasGupta, B. R., Wilson, M. C., and Montai, M. (1996) Tyrosine phosphorylation modulates the activity of clostridial neurotoxins. J. Biol. Chem. 271, 18,322–18, 325.

    Google Scholar 

  121. Schiavo, G. and Montecucco, C. (1995) Tetanus and botulism neurotoxins: isolation and assay. Methods Enzymol. 248, 643–652.

    Article  PubMed  CAS  Google Scholar 

  122. Ekong, T. A., McLellan, K., and Sesardic, D. (1995) Immunological detection of Clostridium botulinum toxin type A in therapeutic preparations. J. Immunol. Methods 180, 181–191.

    Article  PubMed  CAS  Google Scholar 

  123. Hallis, B., James, B. A., and Shone, C. C. (1996) Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities. J. Clin. Microbiol. 34, 1934–1938.

    PubMed  CAS  Google Scholar 

  124. Soleilhac, J. M., Cornille, F., Martin, L., Lenoir, C., Fournie-Zaluski, M. C., and Roques, B. P. (1996) A sensitive and rapid fluorescence-based assay for determination of tetanus toxin peptidase activity. Anal. Biochem. 241, 120–127.

    Article  PubMed  CAS  Google Scholar 

  125. Ekong, T. A., McLellan, K., and Sesardic, D. (1996) Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. Microbiology 143, 3337–3347.

    Google Scholar 

  126. Wictome, M., Newton, K., Jameson, K., et al. (1999) Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl. Environ. Microbiol. 65, 3787–3792.

    PubMed  CAS  Google Scholar 

  127. Knight, C. G. (1995) Fluorimetric assay of proteolytic enzymes. Methods Enzymol. 248, 18–34.

    Article  PubMed  CAS  Google Scholar 

  128. Osen Sand, A., Staple, J. K., Naldi, E., et al. (1996) Common and distinct fusion proteins in axonal growth and transmitter release. J. Comp. Neurol. 367, 222–234.

    Article  Google Scholar 

  129. Williamson, L. C., Halpern, J. L., Montecucco, C., Brown, J. E. and Neale, E. A. (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J. Biol. Chem. 271, 7694–7699.

    Article  PubMed  CAS  Google Scholar 

  130. Raciborska, D. A., Trimble, W. S., and Charlton, M. P. (1998) Presynaptic protein interactions in vivo. Evidence from botulinum A, botulinum C, botulinum D and botulinum E action at frog neuromuscular junction. Eur. J. Neurosci. 10, 2617–2628.

    CAS  Google Scholar 

  131. Cornille, F., Goudreau, N., Ficheux, D., Niemann, H., and Roques, B. P. (1994) Solid-phase synthesis, conformational analysis and in vitro cleavage of synthetic human synaptobrevin II 1–93 by tetanus toxin L chain. Eur. J. Biochem. 222, 173–181.

    Article  PubMed  CAS  Google Scholar 

  132. Adler, M., Nicholson, J. D., and Hackley, B. E. (1998) Efficacy of a novel metalloprotease inhibitor on botulinum neurotoxin B activity. FEBS Lett. 429, 234–238.

    Article  PubMed  CAS  Google Scholar 

  133. Martin, L., Cornille, F., Coric, P., Roques, B. P., and Fournie-Zaluski, M. C. (1998) Betaamino-thiols inhibit the zinc metallopeptidase activity of tetanus toxin light chain. J. Med. Chem. 41, 3450–3460.

    Article  PubMed  CAS  Google Scholar 

  134. Martin, L., Cornille, F., Turcaud, S., Meudal, H., Roques, B. P., and Fournie-Zaluski, M. C. (1999) Metallopeptidase inhibitors of tetanus toxin: A combinatorial approach. J. Med. Chem. 42, 515–525.

    Article  PubMed  CAS  Google Scholar 

  135. Söllner, T. (1995) SNAREs and targeted membrane fusion. FEBS Lett. 369, 80–83.

    Article  PubMed  Google Scholar 

  136. Robinson, L. J. and Martin, T. F. (1998) Docking and fusion in neurosecretion. Curr. Opin. Cell Biol. 10, 483–492.

    Article  PubMed  CAS  Google Scholar 

  137. Schiavo, G. and Stenbeck, G. (1998) Molecular analysis of neurotransmitter release. Essays Biochem. 33, 29–41.

    PubMed  CAS  Google Scholar 

  138. Mochida, S. (2000) Protein-protein interactions in neurotransmitter release. Neurosci. Res. 36, 175–182.

    Article  PubMed  CAS  Google Scholar 

  139. Söllner, T., Whiteheart, S. W., Brunner, M., et al. (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.

    Article  PubMed  Google Scholar 

  140. Hayashi, T., McMahon, H., Yamasaki, S., et al. (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061.

    PubMed  CAS  Google Scholar 

  141. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T., and Niemann, H. (1995) Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317–2325.

    PubMed  CAS  Google Scholar 

  142. Sutton, R. B., Fasshauer, D., Jahn, R., and Brunger, A. T. (1998) Crystal-structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395, 347–353.

    Article  PubMed  CAS  Google Scholar 

  143. Poirier, M. A., Xiao, W. Z., MacOsko, J. C., Chan, C., Shin, Y. K., and Bennett, M. K. (1998) The synaptic SNARE complex is a parallel 4-stranded helical bundle. Nat. Struct. Biol. 5, 765–769.

    Article  PubMed  CAS  Google Scholar 

  144. Skehel, J. J. and Wiley, D. C. (1998) Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874.

    Article  PubMed  CAS  Google Scholar 

  145. Kee, Y., Lin, R. C., Hsu, S. C., and Scheller, R. H. (1995) Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation. Neuron 14, 991–998.

    Article  PubMed  CAS  Google Scholar 

  146. Vaidyanathan, V. V., Yoshino, K., Jahnz, M., et al. (1999) Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J. Neurochem. 72, 327–337.

    Article  PubMed  CAS  Google Scholar 

  147. Binscheck, T., Bartels, F., Bergel, H., et al. (1995) IgA protease from Neisseria gonorrhoeae inhibits exocytosis in bovine chromaffin cells like tetanus toxin. J. Biol. Chem. 270, 1770–1774.

    Article  PubMed  CAS  Google Scholar 

  148. Cornille, F., Deloye, F., Fournie-Zaluski, M. C., Roques, B. P., and Poulain, B. (1995) Inhibition of neurotransmitter release by synthetic proline-rich peptides shows that the N-terminal domain of vesicle-associated membrane protein/synaptobrevin is critical for neuroexocytosis. J. Biol. Chem. 270, 16,826–16, 832.

    Google Scholar 

  149. Woodman, P. G. (1997) The roles of NSF, SNAPs and SNAREs during membrane fusion. Biochem. Biophys. Acta 1357, 155–172.

    Article  PubMed  CAS  Google Scholar 

  150. Haas, A. (1998) NSF: fusion and beyond. Trends Cell Biol. 8, 471–473.

    Article  PubMed  CAS  Google Scholar 

  151. Owen, D. J. and Schiavo, G. (1999) A handle on NSF. Nat. Cell Biol. 1, E127–128.

    Article  PubMed  CAS  Google Scholar 

  152. Barnard, R. J. O., Morgan, A., and Burgoyne, R. D. (1997) Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis. J. Cell Biol. 139, 875–883.

    Article  PubMed  CAS  Google Scholar 

  153. Hanson, P. 1., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. E. (1997) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535.

    CAS  Google Scholar 

  154. Hohl, T. M., Parlati, F., Wimmer, C., Rothman, J. E., Sollner, T. H., and Engelhardt, H. (1998) Arrangement of subunits in 20S particles consisting of NSF, SNAPs, and SNARE complexes. Mol. Cell 2, 539–548.

    Article  PubMed  CAS  Google Scholar 

  155. Rizo, J. and Südhof, T. C. (1998) Mechanics of membrane fusion. Nat. Struct. Biol. 5, 839–842.

    Article  PubMed  CAS  Google Scholar 

  156. Weber, T., Zemelman, B. V., McNew, J. A., et al. (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.

    Article  PubMed  CAS  Google Scholar 

  157. Nickel, W., Weber, T., McNew, J. A., Parlati, F., Sollner, T. H., and Rothman, J. E. (1999) Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl. Acad. Sci. USA 96, 12,571–12, 576.

    Google Scholar 

  158. Weber, T., Parlati, F., McNew, J. A., et al. (2000) SNAREpins are functionally resistant to disruption by NSF and alpha SNAP. J. Cell Biol. 149, 1063–1072.

    Article  PubMed  CAS  Google Scholar 

  159. Parlati, F., McNew, J. A., Fukuda, R., Miller, R., Sollner, T. H., and Rothman, J. E. (2000) Topological restriction of SNARE-dependent membrane fusion. Nature 407, 194–198.

    Article  PubMed  CAS  Google Scholar 

  160. Fukuda, R., McNew, J. A., Weber, T., Parlati, F., Engel, T., Nickel, W., et al. (2000) Functional architecture of an intracellular membrane t-SNARE. Nature 407, 198–202.

    Article  PubMed  CAS  Google Scholar 

  161. Pellegrini, L. L., O’Connor, V., Lottspeich, F., and Betz, H. (1995) Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion. EMBO J. 14, 4705–4713.

    PubMed  CAS  Google Scholar 

  162. Pellegrini, L. L., O’Connor, V., and Betz, H. (1994) Fusion complex formation protects synaptobrevin against proteolysis by tetanus toxin light chain. FEBS Leu. 353, 319–323.

    Article  CAS  Google Scholar 

  163. Washbourne, P., Bortoletto, N., Graham, M. E., Wilson, M. C., Burgoyne, R. D., and Montecucco, C. (1999) Botulinum neurotoxin E-insensitive mutants of SNAP-25 fail to bind VAMP but support exocytosis. J. Neurochem. 73, 2424–2433.

    Article  PubMed  CAS  Google Scholar 

  164. Foran, P., Lawrence, G. W., Shone, C. C., Foster, K. A., and Dolly, J. O. (1996) Botulinum neurotoxin Cl cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35, 2630–2636.

    Article  PubMed  CAS  Google Scholar 

  165. Bruns, D., Engers, S., Yang, C., Ossig, R., Jeromin, A., and Jahn, R. (1997) Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis. J. Neurosci. 17, 1898–1910.

    CAS  Google Scholar 

  166. Xu, T., Binz, T., Niemann, H., and Neher, E. (1998) Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature Neurosci. 1, 192–200.

    Article  PubMed  CAS  Google Scholar 

  167. Shone, C. C., Quinn, C. P., Wait, R., Hallis, B., Fooks, S. G., and Hambleton, P. (1993) Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur. J. Biochem. 217, 965–971.

    Article  PubMed  CAS  Google Scholar 

  168. Dayanithi, G., Stecher, B., Höhne-Zell, B., et al. (1994) Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals. Neuroscience 58, 423–431.

    Article  PubMed  CAS  Google Scholar 

  169. Shone, C. C. and Roberts, A. K. (1994) Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur. J. Biochem. 225, 263–270.

    Article  PubMed  CAS  Google Scholar 

  170. Cornille, F., Martin, L., Lenoir, C., Cussac, D., Roques, B. P., and Fourniezaluski, M. C. (1997) Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain. J. Biol. Chem. 272, 3459–3464.

    Article  PubMed  CAS  Google Scholar 

  171. Foran, P., Shone, C. C., and Dolly, J. O. (1994) Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry 33, 15, 365–15, 374.

    Google Scholar 

  172. Yamasaki, S., Baumeister, A., Binz, T., et al. (1994) Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem. 269, 12,764–12, 772.

    Google Scholar 

  173. Rossetto, O., Schiavo, G., Montecucco, C., et al. (1994) SNARE motif and neurotoxins. Nature 372, 415–416.

    Article  PubMed  CAS  Google Scholar 

  174. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H., and O’Kane, C. J. (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351.

    Article  PubMed  CAS  Google Scholar 

  175. Pellizzari, R., Rossetto, O., Lozzi, L., et al. (1996) Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J. Biol. Chem. 271, 20,353–20, 358.

    Google Scholar 

  176. Wictome, M., Rossetto, O., Montecucco, C., and Shone, C. C. (1996) Substrate residues N-terminal to the cleavage site of botulinum type B neurotoxin play a role in determining the specificity of its endopeptidase activity. FEBS Lett. 386, 133–136.

    Article  PubMed  CAS  Google Scholar 

  177. Pellizzari, R., Mason, S., Shone, C. C., and Montecucco, C. (1997) The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEES Lett. 409, 339–342.

    Article  CAS  Google Scholar 

  178. Washbourne, P., Pellizzari, R., Baldini, G., Wilson, M. C., and Montecucco, C. (1997) Botulinum neurotoxin type A and type E require the SNARE motif in SNAP-25 for proteolysis. FEES Lett. 418, 1–5.

    CAS  Google Scholar 

  179. Facchiano, F. and Luini, A. (1992) Tetanus toxin potently stimulates tissue transglutaminase. A possible mechanism of neurotoxicity. J. Biol. Chem. 267, 13,26713, 271.

    Google Scholar 

  180. Facchiano, F., Benfenati, F., Valtorta, F., and Luini, A. (1993) Covalent modification of synapsin I by a tetanus toxin-activated transglutaminase. J. Biol. Chem. 268, 4588–4591.

    PubMed  CAS  Google Scholar 

  181. Ashton, A. C., Li, Y., Doussau, F., et al. (1995) Tetanus toxin inhibits neuroexocytosis even when its Zn2+-dependent protease activity is removed. J. Biol. Chem. 270, 31,38631, 390.

    Google Scholar 

  182. Ray, P., Berman, J. D., Middleton, W., and Brendle, J. (1993) Botulinum toxin inhibits arachidonic acid release associated with acetylcholine release from PC12 cells. J. Biol. Chem. 268, 11,057–11, 064.

    Google Scholar 

  183. Burgen, A. S. V., Dickens, F., and Zatman, L. T. (1949) The action of botulinum toxin on the neuromuscular junction. J. Physiol. (Lond.) 109, 10–24.

    CAS  Google Scholar 

  184. Molgo, J., Comella, J. X., Angaut-Petit, D., Pecot-Dechavassine, M., Tabti, N., Faille, L., et al. (1990) Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J. Physiol. (Paris) 84, 152–166.

    CAS  Google Scholar 

  185. Poulain, B., Molgó, J., and Thesleff, S. (1995) Quantal neurotransmitter release and the clostridial neurotoxins’ targets. Curr. Top. Microbiol. Immunol. 195, 237–249.

    Google Scholar 

  186. Molgo, J., Meunier, F. A., and Sellin, L. C. (1997) Quantal transmitter release at botulinum-treated vertebrate neuromuscular junctions, in Neurochemistry: Cellular, Molecular, and Clinical Aspects ( Teelken, A. W. and Korf, J., eds.), Plenum Press, New York, pp. 713–717.

    Google Scholar 

  187. Molgó, J., Dasgupta, B. R., and Thesleff, S. (1989) Characterization of the actions of botulinum neurotoxin type E at the rat neuromuscular junction. Acta. Physiol. Scand. 137, 497–501.

    Google Scholar 

  188. Wieszt, L. and Dreyer, F. (1991) Mode of action of botulinum toxin E on the transmitter release process at the mouse neuromuscular junction. Naunyn Schmiedebergs Arch. Pharmacol. 344, R74.

    Google Scholar 

  189. Boroff, D. A., del Castillo, J., Evoy, W. H., and Steinhardt, R. A. (1974) Observations on the action of type A botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 240, 227–253.

    CAS  Google Scholar 

  190. Kriebel, M. E., Llados, F., and Matteson, D. R. (1976) Spontaneous subminature endplate potentials in mouse diaphragm muscle: evidence for synchronous release. J. Physiol. (Lond.) 262, 553–581.

    CAS  Google Scholar 

  191. Cull-Candy, S. G., Lundh, H., and Thesleff, S. (1976) Effects of botulinum toxin on neuromuscular transmission in the rat. J. Physiol. (Lond.) 260, 177–203.

    CAS  Google Scholar 

  192. Tse, C. K., Wray, D., Melling, J., and Dolly, J. O. (1986) Actions of beta-bungarotoxin on spontaneous release of transmitter at muscle end-plates treated with botulinum toxin. Toxicon 24, 123–130.

    Article  PubMed  CAS  Google Scholar 

  193. Dolly, J. O., Lande, S., and Wray, D. W. (1987) The effects of in vitro application of purified botulinum neurotoxin at mouse motor nerve terminals. J. Physiol. (Lond.) 386, 475–484.

    CAS  Google Scholar 

  194. Gundersen, C. B. (1980) The effects of botulinum toxin on the synthesis, storage and release of acetylcholine. Prog. Neurobiol. 14, 99–119.

    Article  PubMed  CAS  Google Scholar 

  195. Thesleff, S. and Molgó, J. (1983) A new type of transmitter release at the neuromuscular junction. Neuroscience 9, 1–8.

    Article  PubMed  CAS  Google Scholar 

  196. Molgo, J. and Thesleff, S. (1982) 4-aminoquinoline induced “giant” miniature end-plate potentials at mammalian neuromuscular junctions. Proc. R. Soc. Lond. B. Biol. Sci. 214, 229–247.

    Google Scholar 

  197. Colméus, C., Gomez, S., Molgo, J., and Thesleff, S. (1982) Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botulinum toxin poisoned mammalian neuromuscular junctions. Proc. R. Soc. Lond. B. Biol. Sci. 215, 63–74.

    Article  PubMed  Google Scholar 

  198. Thesleff, S., Molgó, J., and Lundh, H. (1983) Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous quantal transmitter release at the rat neuromuscular junction. Brain Res. 264, 89–97.

    Article  PubMed  CAS  Google Scholar 

  199. Kim, Y. I., Lomo, T., Lupa, M. T., and Thesleff, S. (1984) Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin. J. Physiol. (Loud.) 356, 587–599.

    CAS  Google Scholar 

  200. Vautrin, J. (1992) Miniature endplate potentials induced by ammonium chloride, hyper-tonic shock, and botulinum toxin. J. Neurosci. Res. 31, 318–326.

    Article  PubMed  CAS  Google Scholar 

  201. Sellin, L. C., Molgó, J., Isberg, P.-E., Törnquist, K., Hansson, B., and Thesleff, S. (1996) On the possible origin of Giant or slow rising miniature end-plate potentials at the neuromuscular junctions. Pflügers Arch. 431, 325–334.

    Article  PubMed  CAS  Google Scholar 

  202. Gundersen, C. B., Katz, B., and Miledi, R. (1982). The antagonism between botulinum toxin and calcium in motor nerve terminals. Proc. R. Soc. Lond. B. Biol. Sci. 216, 369–376.

    Article  PubMed  CAS  Google Scholar 

  203. Dreyer, F., Mallart, A., and Brigant, J. L. (1983). Botulinum A toxin and tetanus toxin do not affect presynaptic membrane currents in mammalian motor nerve endings. Brain Res. 270, 373–375.

    Article  PubMed  CAS  Google Scholar 

  204. Mallart, A., Molgó, J., Angaut-Petit, D., and Thesleff, S. (1989) Is the internal calcium regulation altered in type A botulinum toxin-poisoned motor endings? Brain Res. 479, 167–171.

    Article  PubMed  CAS  Google Scholar 

  205. Molgó, J., Siegel, L. S., Tabti, N., and Thesleff, S. (1989) A study of synchronization of quantal transmitter release from mammalian motor endings by the use of botulinal toxins type A and D. J. Physiol. (Load.) 411, 195–205.

    Google Scholar 

  206. Gundersen, C. B., Katz, B., and Miledi, R. (1981) The reduction of endplate responses by botulinum toxin. Proc. R. Soc. Lond. B. Biol. Sci. 213, 489–493.

    Article  PubMed  CAS  Google Scholar 

  207. Molgó, J., Lemeignan, M., and Thesleff, S. (1987) Aminoglycosides and 3,4diaminopyridine on neuromuscular block caused by botulinum type A toxin. Muscle Nerve 10, 464–470.

    Article  PubMed  Google Scholar 

  208. Dreyer, F. and Schmitt, A. (1981) Different effects of botulinum A toxin and tetanus toxin on the transmitter releasing process at the mammalian neuromuscular junction. Neurosci. Lett. 26, 307–311.

    Article  PubMed  CAS  Google Scholar 

  209. Dreyer, F. and Schmitt, A. (1983) Transmitter release in tetanus and botulinum A toxin-poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pflügers. Arch. 399, 228–234.

    Article  PubMed  CAS  Google Scholar 

  210. Simpson, L. L. and Dasgupta, B. R. (1983) Botulinum neurotoxin type E: studies on mechanism of action and on structure-activity relationships. J. Pharmacol. Exp. Ther. 224, 135–140.

    PubMed  CAS  Google Scholar 

  211. Lomneth, R., Suszkiw, J. B., and DasGupta, B. R. (1990) Response of the chick ciliary ganglion-iris neuromuscular preparation to botulinum neurotoxin. Neurosci. Lett. 113, 211–216.

    Article  PubMed  CAS  Google Scholar 

  212. Adler, M., Macdonald, D. A., Sellin, L. C., and Parker, G. W. (1996) Effect of 3,4diaminopyridine on rat extensor digitorum longus muscle paralyzed by local injection of botulinum neurotoxin. Toxicon 34, 237–249.

    Article  PubMed  CAS  Google Scholar 

  213. Coffield, J. A., Bakry, N., Zhang, R. D., Carlson, J., Comella, L. G., and Simpson, L. L. (1997) In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. J. Pharmacol. Exp. Ther. 280, 1489–1498.

    CAS  Google Scholar 

  214. Molgó, J. (1982) Effects of aminopyridines on neuromuscular transmission, in Aminopyridines and Similarly Acting Drugs, Advances in the Biosciences, vol. 35 ( Lechat, P., Thesleff, S., and Bowman, W. C., eds.), Pergamon Press, Oxford, pp. 95–116.

    Google Scholar 

  215. Lundh, H., Leander, S., and Thesleff, S. (1977) Antagonism of the paralysis produced by botulinum toxin in the rat. The effects of tetraethylammonium, guanidine and 4aminopyridine. J. Neurol. Sci. 32, 29–43.

    Article  PubMed  CAS  Google Scholar 

  216. Molgó, J., Lundh, H., and Thesleff, S. (1980) Potency of 3,4-diaminopyridine and 4aminopyridine on mammalian neuromuscular transmission and the effects of pH changes. Eur. J. Pharmacol. 61, 25–34.

    Article  PubMed  Google Scholar 

  217. Sellin, L. C., Kauffman, J. A., and Dasgupta, B. R. (1983) Comparison of the effects of botulinum neurotoxin types A and E at the rat neuromuscular junction. Med. Biol. 61, 120–125.

    CAS  Google Scholar 

  218. Kauffman, J. A., Way, J. F. Jr, Siegel, L. S., and Sellin, L. C. (1985). Comparison of the action of types A and F botulinum toxin at the rat neuromuscular junction. Toxicol. Appl. Pharmacol. 79, 211–217.

    Article  PubMed  CAS  Google Scholar 

  219. Gansel, M., Penner, R., and Dreyer, F. (1987) Distinct sites of action of clostridial neuro-toxins revealed by double-poisoning of mouse motor nerve terminals. Pflügers Arch. 409, 533–539.

    Article  PubMed  CAS  Google Scholar 

  220. Simpson, L. L. (1986) A preclinical evaluation of aminopyridines as putative therapeutic agents in the treatment of botulism. Infect. Immun. 52, 858–862.

    PubMed  CAS  Google Scholar 

  221. Lawrence, G. W., Foran, P., Mohammed, N., DasGupta, B. R., and Dolly, J. O. (1997) Importance of two adjacent C-terminal sequences of SNAP-25 in exocytosis from intact and permeabilized chromaffin cells revealed by inhibition with botulinum neurotoxins A and E. Biochemistry 36, 3061–3067.

    Article  CAS  Google Scholar 

  222. Gerona, R. R., Larsen, E. C., Kowalchyk, J. A., and Martin, T. F. (2000) The C terminus of SNAP25 is essential for Cat+ -dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336.

    Article  PubMed  CAS  Google Scholar 

  223. Schiavo, G., Stenbeck, G., Rothman, J. E., and Sollner, T. H. (1997) Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc. Natl. Acad. Sci. USA 94, 997–1001.

    Article  PubMed  CAS  Google Scholar 

  224. Ilardi, J. M., Mochida, S., and Sheng, Z. H. (1999) Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat. Neurosci. 2, 119–124.

    Article  PubMed  CAS  Google Scholar 

  225. Sellin, L. C., Thesleff, S., and Dasgupta, B. R. (1983) Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Acta. Physiol. Scand. 119, 127–133.

    Article  PubMed  CAS  Google Scholar 

  226. Hua, S. Y., Raciborska, D. A., Trimble, W. S., and Charlton, M. P. (1998) Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J. Neurophysiol. 80, 3233–3246.

    PubMed  CAS  Google Scholar 

  227. Harris, A. J. and Miledi, R. (1971) The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (Land.) 217, 497–515.

    CAS  Google Scholar 

  228. Bray, J. J. and Harris, A. J. (1975) Dissociation between nerve-muscle transmission and nerve trophic effects on rat diaphragm using type D botulinum toxin. J. Physiol. (Land.) 253, 53–77.

    CAS  Google Scholar 

  229. Molgó, J., Meunier, F. A., and Poulain, B. (1996) Effects of 3,4-diaminopyridine on quantal acetylcholine release from neuromuscular junctions paralysed in vivo with botulinum type-F toxin. Toxicon 34, 1092.

    Article  Google Scholar 

  230. Coffield, J. A., Bakry, N., Zhang, R. D., Carlson, J., Gomella, L. G., and Simpson, L. L. (1997) In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. J. Pharmacol. Exp. Ther. 280, 1489–1498.

    CAS  Google Scholar 

  231. Mellanby, J. and Thompson, P. A. (1972) The effect of tetanus toxin at the neuromuscular junction in the goldfish. J. Physiol. (Land.) 224, 407–419.

    CAS  Google Scholar 

  232. Duchen, L. W. and Tonge, D. A. (1973) The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plates in slow and fast skeletal muscle of the mouse. J. Physiol. (Land.) 228, 157–172.

    CAS  Google Scholar 

  233. Dreyer, F., Rosenberg, F., Becker, C., Bigalke, H., and Penner, R. (1987) Differential effects of various secretagogues on quantal transmitter release from mouse motor nerve terminals treated with botulinum A and tetanus toxin. Naunyn Schmiedebergs Arch. Pharmacol. 335, 1–7.

    Article  PubMed  CAS  Google Scholar 

  234. Hunt, J. M., Bommert, K., Charlton, M. P., Kistner, A., Habermann, E., Augustine, G. J., and Betz, H. (1994). A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269–1279.

    Article  PubMed  CAS  Google Scholar 

  235. Llinas, R., Sugimori, M., Chu, D., Morita, M., Blasi, J., Herreros, J., et al. (1994) Transmission at the squid giant synapse was blocked by tetanus toxin by affecting synaptobrevin, a vesicle-bound protein. J. Physiol. (Land.) 477, 129–133.

    CAS  Google Scholar 

  236. Poulain, B., de Paiva, A., Deloye, F., Doussau, F., Tauc, L., Weller, U., and Dolly, J. O. (1996). Differences in the multiple step process of inhibition of neurotransmitter release induced by tetanus toxin and botulinum neurotoxins type A and B at Aplysia synapses. Neuroscience 70, 567–576.

    Article  PubMed  CAS  Google Scholar 

  237. Bevan, S. and Wendon, L. M. (1984) A study of the action of tetanus toxin at rat soleus neuromuscular junctions. J. Physiol. (Land.) 348, 1–17.

    CAS  Google Scholar 

  238. Herreros, J., Miralles, F. X., Solsona, C., Bizzini, B., Blasi, J., and Marsal, J. (1995) Tetanus toxin inhibits spontaneous quantal release and cleaves VAMP/synaptobrevin. Brain Res. 699, 165–170.

    Article  PubMed  CAS  Google Scholar 

  239. Capogna, M., McKinney, R. A., O’Connor, V., Gahwiler, B. H., and Thompson, S. M. (1997) Cat+or Sr2+partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J. Neurosci. 17, 7190–7202.

    PubMed  CAS  Google Scholar 

  240. Mochida, S., Saisu, H., Kobayashi, H., and Abe, T. (1995) Impairment of syntaxin by botulinum neurotoxin Cl or antibodies inhibits acetylcholine release but not Cat channel activity. Neuroscience 65, 905–915.

    Article  PubMed  CAS  Google Scholar 

  241. O’Connor, V., Heuss, C., De Bello, W. M., Dresbach, T., Charlton, M. P., Hunt, J. H., et al. (1997) Disruption of syntaxin-mediated protein interactions blocks neurotransmitter secretion. Proc. Natl. Acad. Sci. USA 94, 12,186–12, 191.

    Google Scholar 

  242. Marsal, J., Ruiz-Montasell, B., Blasi, J., Moreira, J. E., Contreras, D., Sugimori, M., and Llinas, R. (1997) Block of transmitter release by botulinum Cl action on syntaxin at the squid giant synapse. Proc. Natl. Acad. Sci. USA 94, 14,871–14, 876.

    Google Scholar 

  243. Broadie, K., Prokop, A., Bellen, H. J., O’Kane, C. J., Schulze, K. L., and Sweeney, S. T. (1995) Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673.

    Article  PubMed  CAS  Google Scholar 

  244. Lichtman, J. W., Magrassi, L., and Purves, D. (1987) Visualization of neuromuscular junctions over periods of several months in living mice. J. Neurosci. 7, 1215–1222.

    PubMed  CAS  Google Scholar 

  245. Balice-Gordon, R. J. and Lichtman, J. W. (1990) In vivo visualization of the growth of pre-and postsynaptic elements of neuromuscular junctions in the mouse. J. Neurosci. 10, 894–908.

    CAS  Google Scholar 

  246. Jirmanova, I., Sobotroka, M., Thesleff, S., and Zelena, J. (1964) Atrophy in skeletal muscles poisoned with botulinum toxin. Physiol. Bohemoslov. 13, 467–472.

    PubMed  CAS  Google Scholar 

  247. Angaut-Petit, D., Molgo, J., Connold, A., and Faille, L. (1987) The levator auris Longus muscle of the mouse: a convenient preparation for studies of short-and long-term presynaptic effects of drugs or toxins. Neurosci. Lett. 82, 83–88.

    Article  PubMed  CAS  Google Scholar 

  248. Poulain, B., Bader, M. F., and Molgó, J. (2000) In vitro physiological studies on clostridial neurotoxins. Biological models and procedures for extracellular and intracellular application of toxins. Methods Mol. Biol. 145, 259–286.

    PubMed  CAS  Google Scholar 

  249. Duchen, L. W. and Strich, S. J. (1968) The effects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse. Q. J. Exp. Physiol. 53, 84–89.

    CAS  Google Scholar 

  250. Duchen, L. W. (1970) Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: differences between fast and slow muscles. J. Neurol. Neurosurg. Psychiat. 33, 40–54.

    Article  PubMed  CAS  Google Scholar 

  251. Duchen, L. W. (1971) An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J. Neurol. Sci. 14, 47–60.

    Article  PubMed  CAS  Google Scholar 

  252. Brown, M. C., Holland, R. L., and Hopkins, W. G. (1981) Motor nerve sprouting. Annu. Rev. Neurosci. 4, 17–42.

    Article  PubMed  CAS  Google Scholar 

  253. Pestronk, A. and Drachman, D. B. (1988) Motor nerve outgrowth: reduced capacity for sprouting in the terminals of longer axons. Brain Res. 463, 218–222.

    Article  PubMed  CAS  Google Scholar 

  254. Pamphlett, R. (1989) Early terminal and nodal sprouting of motor axons after botulinum toxin. J. Neurol. Sci. 92, 181–192.

    Article  PubMed  CAS  Google Scholar 

  255. Angaut-Petit, D. and Molgó, J. (1989) Presynaptic effects of in vivo injection of type A botulinum toxin in the Levator auris longus muscle of the mouse, in Neuromuscular Junction (Sellin, L. C., Libelius, R., and Thesleff, S., eds,), Elsevier Science, Amsterdam, p. 577.

    Google Scholar 

  256. Angaut-Petit, D., Molgó, J., Comella, J. X., Faille, L., and Tabti, N. (1990) Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type A toxin: morphological and electrophysiological features. Neuroscience 37, 799–808.

    Article  PubMed  CAS  Google Scholar 

  257. Tian, W. H., Festoff, B. W., Blot, S., Diaz, J., and Hantaï, D. (1995) Synaptic transmission blockade increases plasminogen activator activity in mouse skeletal muscle poisoned with botulinum toxin type A. Synapse 20, 24–32.

    Article  PubMed  CAS  Google Scholar 

  258. Juzans, P., Comella, J. X., Molgó, J., Faille, L., and Angaut-Petit, D. (1996) Nerve terminal sprouting in botulinum type-A treated mouse Levator auris Longus muscle. Neuromusc. Disord. 6, 177–185.

    Article  PubMed  CAS  Google Scholar 

  259. Son, Y. J. and Thompson, W. J. (1995) Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14, 133–141.

    Article  PubMed  CAS  Google Scholar 

  260. de Paiva, A., Meunier, F. A., Molgo, J., Aoki, K. R., and Dolly, J. O. (1999) Functional repair of motor endplates after botulinum neurotoxin A poisoning: bi-phasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc. Natl. Acad. Sci. USA 96, 3200–3205.

    Article  PubMed  Google Scholar 

  261. Lee, R. E., Tartell, P. B., Karmody, C. S., and Hunter, D. D. (1999) Association of adhesive macromolecules with terminal sprouts at the neuromuscular junction after botulinum treatment. Otolaryngol. Head Neck Surg. 120, 255–261.

    Article  PubMed  CAS  Google Scholar 

  262. Santafe, M. M., Urbano, F. J., Lanuza, M. A., and Uchitel, O. D. (2000) Multiple types of calcium channels mediate transmitter release during functional recovery of botulinum toxin type A-poisoned mouse motor nerve terminals. Neuroscience 95, 227–234.

    Article  PubMed  CAS  Google Scholar 

  263. Comella, J. X., Molgó, J., and Faille, L. (1993) Sprouting of mammalian motor nerve terminals induced by in vivo injection of botulinum type D toxin and the functional recovery of paralysed neuromuscular junctions. Neurosci. Lett. 153, 61–64.

    Article  PubMed  CAS  Google Scholar 

  264. Molgó, J., Meunier, F. A., Faille, L., Cifuentes-Diaz, C., Cornelia, J. X., Popoff, M. R., and Poulain, B. (1999) Bourgeonnement des terminaisons nerveuses motrices déclenché par différents sérotypes de neurotoxines botuliques, in Dystonie, Neurone et Plasticité ( Christen, Y., Nieoullon, A., and Rascol, O., eds.), Solal éditeur, Marseille, pp. 77–91.

    Google Scholar 

  265. Holds, J. B., Alderson, K., Fogg, S. G., and Anderson, R. L. (1990) Motor nerve sprouting in human orbicularis muscle after botulinum A injection. Invest. Ophthalmol. Vis. Sci. 31, 964–967.

    PubMed  CAS  Google Scholar 

  266. Son, Y. J., Trachtenberg, J. T., and Thompson, W. J. (1996) Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions. Trends Neurosci. 19, 280–285.

    Article  PubMed  CAS  Google Scholar 

  267. Gomez, S., Duchen, L. W., and Hornsey, S. (1982) Effects of x-irradiation on axonal sprouting induced by botulinum toxin. Neuroscience 7, 1023–1036.

    Article  PubMed  CAS  Google Scholar 

  268. Sollner, T. and Rothman, J. E. (1994) Neurotransmission: harnessing fusion machinery at the synapse. Trends Neurosci. 17, 344–348.

    Article  PubMed  CAS  Google Scholar 

  269. Sollner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. E. (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.

    Article  PubMed  CAS  Google Scholar 

  270. Alderson, K., Yee, W. C., and Pestronk, A. (1989) Reorganization of intrinsic components in the distal motor axon during outgrowth. J. Neurocytol. 18, 541–552.

    Article  PubMed  CAS  Google Scholar 

  271. Juzans, P., Molgó, J., Faille, L., and Angaut-Petit, D. (1996) Synaptotagmin II immunoreactivity in normal and botulinum type-A treated mouse motor nerve terminals. Pflügers Arch. 431 (Suppl.), R283 - R284.

    Article  PubMed  CAS  Google Scholar 

  272. Tonge, D. A. (1974) Chronic effects of botulinum toxin on neuromuscular transmission and sensitivity to acetylcholine in slow and fast skeletal muscle of the mouse. J. Physiol. (Lond.) 241, 127–139.

    CAS  Google Scholar 

  273. Betz, W. J., Mao, F., and Bewick, G. S. (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J. Neurosci. 12, 363–375.

    PubMed  CAS  Google Scholar 

  274. Magrassi, L., Purves, D., and Lichtman, J. W. (1987) Fluorescent probes that stain living nerve terminals. J. Neurosci. 7, 1207–1214.

    PubMed  CAS  Google Scholar 

  275. Young, S. H. and Poo, M. M. (1983) Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 305, 634–637.

    Article  PubMed  CAS  Google Scholar 

  276. Hume, R. I., Role, L. W., and Fischbach, G. D. (1983) Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes. Nature 305, 632–634.

    Article  PubMed  CAS  Google Scholar 

  277. Zakharenko, S., Chang, S., O’Donoghue, M., and Popov, S. V. (1999) Neurotransmitter secretion along growing nerve processes: comparison with synaptic vesicle exocytosis. J. Cell Biol. 144, 507–518.

    Article  PubMed  CAS  Google Scholar 

  278. Becher, A., Drenckhahn, A., Pahner, I., Margittai, M., Jahn, R., and Ahnert-Hilger, G. (1999) The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J. Neurosci. 19, 1922–1931.

    PubMed  CAS  Google Scholar 

  279. Verderio, C., Coco, S., Bacci, A., Rossetto, O., De Camilli, P., Montecucco, C., and Matteoli, M. (1999) Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J. Neurosci. 19, 6723–6732.

    PubMed  CAS  Google Scholar 

  280. Eleopra, R., Tugnoli, V., Rossetto, O., De Grandis, D., and Montecucco, C. (1998). Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci. Lett. 256, 135–138.

    Article  CAS  Google Scholar 

  281. Keller, J. E., Neale, E. A., Oyler, G., and Adler, M. (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett. 456, 137–142.

    Article  PubMed  CAS  Google Scholar 

  282. Criado, M., Gil, A., Viniegra, S., and Gutiérrez, L. M. (1999) A single amino acid near the C terminus of the synaptosome associated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells. Proc. Natl. Acad. Sci. USA 96, 7256–7261.

    Article  PubMed  CAS  Google Scholar 

  283. Huang, X. H., Wheeler, M. B., Kang, Y. H., Sheu, L., Lukacs, G. L., Trimble, W. S., and Gaisano, H. Y. (1998) Truncated SNAP-25 (1–197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol. Endocrinol. 12, 1060–1070.

    Article  PubMed  CAS  Google Scholar 

  284. Loewy, A., Liu, W.-S., Baitinger, C., and Willard, M. B. (1991) The major 35S-methionine-labeled rapidly transported protein (superprotein) is identical to SNAP-25, a protein of synaptic terminals. J. Neurosci. 11, 3412–3421.

    PubMed  CAS  Google Scholar 

  285. Lane, S. R. and Liu, Y. C. (1997) Characterization of the palmitoylation domain of SNAP-25. J. Neurochem. 69, 1864–1869.

    Article  PubMed  CAS  Google Scholar 

  286. Canaves, J. M. and Montal, M. (1998) Assembly of a ternary complex by the predicted minimal coiled-coil-forming domains of syntaxin, SNAP-25, and synaptobrevin. A circular dichroism study. J. Biol. Chem. 273, 34,214–34, 221.

    Google Scholar 

  287. Chapman, E., An, S., Barton, N., and Jahn, R. (1994) SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269, 27,427–27, 432.

    Google Scholar 

  288. Raciborska, D. and Charlton, M. (1999) Retention of cleaved synaptosome-associated protein of 25 kDa (SNAP-25) in neuromuscular junctions: a new hypothesis to explain persistence of botulinum A poisoning. Can. J. Physiol. Pharmacol. 77, 679–688.

    Article  PubMed  CAS  Google Scholar 

  289. Brown, M. C., Goodwin, G. M., and Ironton, R. (1977) Prevention of motor nerve sprouting in botulinum toxin poisoned mouse soleus muscles by direct stimulation of the muscle. J. Physiol. (Lond.) 267, 42P - 43 P.

    CAS  Google Scholar 

  290. Lomo, T. (1976). The role of activity in the control of membranes and contractile properties of skeletal muscle, in Motor Innervation of Muscle ( Thesleff, S., ed.), Academic Press, New York, pp. 289–312.

    Google Scholar 

  291. Thesleff, S. (1989) Botulinal neurotoxins as tools in studies of synaptic mechanisms. Q. J. Exp. Physiol. 74, 1003–1017.

    PubMed  CAS  Google Scholar 

  292. Thesleff, S., Molgó, J., and Tägerud, S. (1990). Trophic interrelations at the neuromuscular junction as revealed by the use of botulinal neurotoxins. J. Physiol. (Paris) 84, 167–173.

    CAS  Google Scholar 

  293. Mathers, D. A. and Thesleff, S. (1978) Studies on neurotrophic regulation of murine skeletal muscle. J. Physiol. (Lond.) 282, 105–114.

    CAS  Google Scholar 

  294. Yang, J. S., Sladky, J. T., Kallen, R. G., and Barchi, R. L. (1991) TTX-sensitive and TTX-insensitive sodium channel mRNA transcripts are independently regulated in adult skeletal muscle after denervation. Neuron 7, 421–427.

    Article  PubMed  CAS  Google Scholar 

  295. Tägerud, S., Libelius, R., and Thesleff, S. (1986) Effects of botulinum toxin induced muscle paralysis on endocytosis and lysosomal enzyme activities in mouse skeletal muscle. Pflügers Arch. 407, 275–278.

    Article  PubMed  Google Scholar 

  296. Bambrick, L. and Gordon, T. (1987) Acetylcholine receptors and sodium channels in denervated and botulinum-toxin-treated adult rat muscle. J. Physiol. (Lond.) 382, 69–86.

    CAS  Google Scholar 

  297. Yee, W. C. and Pestronk, A. (1987) Mechanisms of postsynaptic plasticity remodeling of the junctional acetylcholine receptor cluster induced by motor nerve terminal outgrowth. J. Neurosci. 7, 2019–2024.

    PubMed  CAS  Google Scholar 

  298. Bambrick, L. and Gordon, T. (1992) Neural regulation of acetylcholine receptors in rat neonatal muscle. J. Physiol. (Lond.) 449, 479–492.

    CAS  Google Scholar 

  299. Couteaux, R. (1978) Recherches morphologiques et cytochimiques sur I’organisation des tissues excitables. Robin et Mareuge, Paris. pp. 51–77.

    Google Scholar 

  300. Merlie, J. P. and Sanes J. R. (1985) Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature 317, 66–68.

    Article  PubMed  CAS  Google Scholar 

  301. Burden, S. J. (1993) Synapse-specific gene expression. Trends Genet. 9, 12–16.

    Article  PubMed  CAS  Google Scholar 

  302. Moscoso, L. M., Chu, G. C., Gautam, M., Noakes, P. G., Merlie, J. P., and Sanes, J. R. (1995) Synapse-associated expression of an acetylcholine receptor-inducing protein, ARIA/heregulin, and its putative receptors, ErbB2 and ErbB3, in developing mammalian muscle. Dev. Biol. 172, 158–169.

    Article  PubMed  CAS  Google Scholar 

  303. Lipsky, N. G., Drachman, D. B., Pestronk, A., and Shih, P. J. (1989) Neural regulation of mRNA for the alpha-subunit of acetylcholine receptors: role of neuromuscular transmission. Exp. Neurol. 105, 171–176.

    Article  PubMed  CAS  Google Scholar 

  304. Witzemann, V., Brenner, H. R., and Sakmann, B. (1991) Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J. Cell Biol. 114, 125–141.

    Article  PubMed  CAS  Google Scholar 

  305. Koltgen, D., Ceballos-Baumann, A. O., and Franke, C. (1994) Botulinum toxin converts muscle acetylcholine receptors from adult to embryonic type. Muscle Nerve 17, 779–784.

    Article  PubMed  CAS  Google Scholar 

  306. McMahan, U. J. (1990) The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol. 55, 407–418.

    Article  PubMed  CAS  Google Scholar 

  307. Gautam, M., Noakes, P. G., Moscoso, L., Rupp, F., Scheller, R. H., Merlie, J. P., and Sanes, J. R. (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535.

    Article  PubMed  CAS  Google Scholar 

  308. Burgess, R. W., Nguyen, Q. T., Son, Y. J., Lichtman, J. W., and Sanes, J. R. (1999) Alternatively spliced isoforms of nerve-and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23, 33–44.

    Article  PubMed  CAS  Google Scholar 

  309. Valenzuela, D. M., Stitt, T. N., DiStefano, P. S., Rojas, E., Mattsson, K., Compton, D. L., et al. (1995) Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573–584.

    Article  PubMed  CAS  Google Scholar 

  310. Fischbach, G. D. and Rosen, K. M. (1997) ARIA: a neuromuscular junction neuregulin. Anna. Rev. Neurosci. 20, 429–458.

    Article  CAS  Google Scholar 

  311. Sanes, J. R. and Lichtman, J. W. (1999) Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442.

    Article  PubMed  CAS  Google Scholar 

  312. Ishii, D. N. (1989) Relationship of insulin-like growth factor II gene expression in muscle to synaptogenesis. Proc. Natl. Acad. Sci. USA 86, 2898–2902.

    Article  PubMed  CAS  Google Scholar 

  313. Caroni, P., Schneider, C., Kiefer, Mc., and Zapf, J. (1994) Role of muscle insulin-like growth factors in nerve sprouting: suppression of terminal sprouting in paralyzed muscle by IGF-binding protein 4. J. Cell Biol. 125, 893–902.

    Article  PubMed  CAS  Google Scholar 

  314. Skene, J. H. (1989) Axonal growth-associated proteins. Annu. Rev. Neurosci. 12, 127–156.

    Article  PubMed  CAS  Google Scholar 

  315. Benowitz, L. I. and Routtenberg, A. (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  316. Bisby, M. A., Tetzlaff, W., and Brown, M. C. (1996) GAP-43 mRNA in mouse motoneurons undergoing axonal sprouting in response to muscle paralysis of partial denervation. Eur. J. Neurosci. 8, 1240–1248.

    Article  PubMed  CAS  Google Scholar 

  317. Frey, D., Laux, T., Xu, L., Schneider, C., and Caroni, P. (2000) Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J. Cell Biol. 149, 1443–1454.

    Article  PubMed  CAS  Google Scholar 

  318. Hassan, S. M., Jennekens, F. G. I., Wieneke, G., and Veldman, H. (1994) Calcitonin gene-related peptide like immunoreactivity, in botulinum toxin-paralysed rat muscles. Neuromusc. Disord. 4, 489–496.

    Article  PubMed  CAS  Google Scholar 

  319. Sala, C., Andreose, J. S., Fumagalli, G., and Lomo, T. (1995) Calcitonin gene-related peptide: posible role in formation and maintenance of neuromuscular junctions. J. Neurosci. 15, 520–528.

    PubMed  CAS  Google Scholar 

  320. Meunier, F. A., Colasante, C., Faille, L., Gastard, M., and Molgó, J. (1996) Upregulation of calcitonin gene-related peptide at mouse motor nerve terminals poisoned with botulinum type-A toxin. Pflügers Arch. 431 (Suppl.), R297 - R298.

    Article  PubMed  CAS  Google Scholar 

  321. Tarabal, O., Calderó, J., Rivera, J., Sorribas, A., Lopez, R., Molgó, J., and Esquerda, J. E. (1996) Regulation of motoneural calcitonin gene-related peptide (CGRP) during axonal growth and neuromuscular synaptic plasticity induced by botulinum toxin in rats. Eur. J. Neurosci. 8, 829–836.

    Article  PubMed  CAS  Google Scholar 

  322. Tarabal, O., Calderó, J., and Esquerda, J. E. (1996) Intramuscular nerve sprouting induced by CNTF is associated with increases in CGRP content in mouse motor nerve terminals. Neurosci. Lett. 219, 60–64.

    Article  PubMed  CAS  Google Scholar 

  323. Changeux, J. P., Duclert, A., and Sekine, S. (1992) Calcitonin gene-related peptides and neuromuscular interactions. Ann. NYAcad. Sci. 657, 361–378.

    Article  CAS  Google Scholar 

  324. Sanes, J. R., Appel, E. D., Burgess, R. W., Emerson, R. B., Feng, G., Gautam, M., et al. (1998) Development of the neuromuscular junction: genetic analysis in mice. J. Physiol. (Paris) 92, 167–172.

    Article  CAS  Google Scholar 

  325. Salmon, A. M., Damaj, I., Sekine, S., Picciotto, M. R., Marubio, L., and Changeux, J. P. (1999) Modulation of morphine analgesia in alphaCGRP mutant mice. Neuroreport 10, 849–854.

    Article  PubMed  CAS  Google Scholar 

  326. Booth, C. M., Kemplay, S. K., and Brown, M. C. (1990) An antibody to neural cell adhesion molecule impairs motor nerve terminal sprouting in a mouse muscle locally paralysed with botulinum toxin. Neuroscience 35, 85–91.

    Article  PubMed  CAS  Google Scholar 

  327. Walsh, F. S., Hobbs, C., Wells, D. J., Slater, C. R., and Fazeli, S. (2000) Ectopic expression of NCAM in skeletal muscle of transgenic mice results in terminal sprouting at the neuromuscular junction and altered structure but not function. Mol. Cell. Neurosci. 15, 244–261.

    Article  PubMed  CAS  Google Scholar 

  328. Chiquet-Ehrismann, R. (1995) Tenascins, a growing family of extracellular matrix proteins. Experientia 51, 853–862.

    Article  PubMed  CAS  Google Scholar 

  329. Werle-Haller, B. and Chiquet, M. (1993) Dual function of tenascin: simultaneous promotion of neurite growth and inhibition of glial migration. J. Cell Sci. 106, 597–610.

    Google Scholar 

  330. Daniloff, J. K., Crossin, K. L., Pinçon-Raymond, M., Murawsky, M., Rieger, F., and Edelman, G. M. (1989) Expression of cytotactin in the normal and regenerating neuromuscular system. J. Cell Biol. 108, 625–635.

    Article  PubMed  CAS  Google Scholar 

  331. Cifuentes-Diaz, C., Velasco, E., Meunier, F. A., Goudou, D., Belkadi, L., Faille, L., et al. (1998) The peripheral nerve and the neuromuscular junction are affected in the tenascinC-deficient mouse. Cell. Mol. Biol. 44, 357–379.

    PubMed  CAS  Google Scholar 

  332. Cifuentes-Diaz, C., Meunier, F. A., Velasco, E., Faille, L., Goudou, D., Belkadi, L., et al. (1998) Morphological alterations of motor nerve terminals after botulinum type-A poisoning or reinnervation of skeletal muscle in the tenascin-C deficient mouse. J. Physiol. (Paris) 92, 421–422.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meunier, F.A., Herreros, J., Schiavo, G., Poulain, B., Molgó, J. (2002). Molecular Mechanism of Action of Botulinal Neurotoxins and the Synaptic Remodeling They Induce In Vivo at the Skeletal Neuromuscular Junction. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics