Skip to main content

Blood-Brain Barrier and Blood-CSF Barrier in Metal-Induced Neurotoxicities

  • Chapter
Handbook of Neurotoxicology
  • 457 Accesses

Abstract

For a metal to enter the brain, it must pass the brain-barrier systems that safeguard brain chemical stability. These barriers exist both at the capillaries of the brain and the spinal cord, in essentially all parenchyma of the central nervous system (CNS), and at the choroid plexus in brain ventricles. If one assumes that the systemic compartment embraces most tissues and organs, via blood circulation, except the brain, then the CNS appears to comprise a unique compartment whose intrinsic circulation is nearly secluded from the blood circulation. Within this cerebral compartment, the interstitial fluid (ISF) flows between neurons and cerebrospinal fluid (CSF) circulates among major brain structures and ventricles. The direct continuity of ISF and CSF allows for the free exchange of substances within the extracellular space of the cerebral compartment. Thus, the barrier that separates the systemic compartment from ISF is defined as the blood-brain barrier (BBB), while the one that discontinues the circulation between systemic and CSF compartments is named blood-CSF barrier (BCB) (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradbury, M. W. (1993) The blood-brain barrier. Exp. Physiol. 78, 453–472.

    PubMed  CAS  Google Scholar 

  2. Dayson, H. and Segal, M. B. (eds.) (1996) Physiology of the CSF and Blood-Brain Barriers. CRC Press, New York.

    Google Scholar 

  3. Johanson, C. E. (1995) Ventricles and cerebrospinal fluid, in Neuroscience in Medicine ( Conn, P. M., ed.), Lippincott, Philadelphia, pp. 171–196.

    Google Scholar 

  4. Karnovsky, M. J. (1967) The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell. Biol. 35, 213–236.

    Article  PubMed  CAS  Google Scholar 

  5. Nishimura, H. (1983). Atlas of Human Prenatal Histology. Igaku-Shon, New York, pp. 20–28.

    Google Scholar 

  6. Milhorat, T. H. (1976) Structure and functions of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol 47, 225–288.

    Article  PubMed  CAS  Google Scholar 

  7. Matyszak, M. K., Lawson, L. J., Perry, V. H., and Gordon, S. (1992) Stromal macrophages of the choroid plexus situated at an interface between the brain and peripheral immune system constitutively express major histocompatibility class 11 antigens. J. Neurochem. 40, 173–182.

    CAS  Google Scholar 

  8. van Deurs, B. (1980) Structural aspects of brain barriers, with special reference to the permeability of the cerebral endothelium and choroidal epithelium. Int. Rev. Cytol. 65, 117–191.

    Article  PubMed  Google Scholar 

  9. Morgello, S., Uson, R. R., Schwartz, E. J., and Haber, R. S. (1995) The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia 14, 43–54.

    Article  PubMed  CAS  Google Scholar 

  10. Pardridge, W. M. (1983) Neuropeptides and the blood-brain barrier. Ann. Rev. Physiol. 45, 73–82.

    Article  CAS  Google Scholar 

  11. Zlokovic, B. V., Banks, W. A., Kadi, H. E., Kadi, H. E., Erchegyi, J., Mackic, J. B., et al. (1992) Transport, uptake, and metabolism of blood-borne vasopressin by the blood-brain barrier. Brain Res. 590, 213–218.

    Article  PubMed  CAS  Google Scholar 

  12. Preston, J. E. and Segal, M. B. (1992) The uptake of anionic and cationic amino acids by the isolated perfused sheep choroid plexus. Brain Res. 581, 351–355.

    Article  PubMed  CAS  Google Scholar 

  13. Stoll, J., Wadhwani, K. C., and Smith, Q. R. (1993) Identification of the cationic amino acid transporter (System y+) of the rat blood-brain barrier. J. Neurochem. 60, 1956–1959.

    Article  PubMed  CAS  Google Scholar 

  14. Dratman, M. B., Crutchfield, F. L., and Schoenhoff, M. B. (1991) Transport of iodothyronines from bloodstream to brain: contributions by blood: brain and choroid plexus: cerebrospinal fluid barriers. Brain Res. 554, 229–236.

    Article  PubMed  CAS  Google Scholar 

  15. Lai, Z. N., Emtner, M., Roos, P., and Nyberg, F. (1991) Characterization of putative growth hormone receptors in human choroid plexus. Brain Res. 546, 222–226.

    Article  PubMed  CAS  Google Scholar 

  16. Schreiber, G., Aldred, A. R., Jaworowski, A., Nilsson, C., Achen, M. G., and Segal, M. B. (1990) Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am. J. Physiol. 258, R338 - R345.

    PubMed  CAS  Google Scholar 

  17. Nilsson, C., Lindvall-Axelsson, M., and Owman, C. (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res. Rev. 17, 109–138.

    Article  PubMed  CAS  Google Scholar 

  18. Nohjoh, T., Suzuki, H., Sawada, Y., Sugiyama, Y., Iga, T., and Hanano, M. (1989) Transport of cefodizime, a novel third generation of cephalosporin antibiotics, in isolated rat choroid plexus. J. Pharmacol. Exp. Ther. 250, 324–328.

    PubMed  CAS  Google Scholar 

  19. Suzuki, H., Sawada, Y., Sugiyama, Y., Iga, T., and Hanano, M. (1986) Transport of cimetidine by the rat choroid plexus in vitro. J. Pharmacol. Exp. Ther. 239, 927–935.

    PubMed  CAS  Google Scholar 

  20. Whittico, M. T., Gang, Y. A., and Giacomini, K. M. (1990) Cimetidine transport in isolated brush border membrane vesicles from bovine choroid plexus. J. Pharmacol. Exp. Ther. 255, 615–623.

    PubMed  CAS  Google Scholar 

  21. Borke, J. L., Caride, A. J., Yaksh, T. L., Penniston, J. T., and Kumar, R. (1989) Cerebrospinal fluid calcium homeostasis: evidence for a plasma membrane Ca“-pump in mammalian choroid plexus. Brain Res. 489, 355–360.

    Article  PubMed  CAS  Google Scholar 

  22. Murphy, V. A., Smith, Q. R., and Rapoport, S. I. (1986) Homeostasis of brain and cerebrospinal fluid calcium concentrations during chronic hypo-and hypercalcemia. J. Neurochem. 47, 1735–1741.

    Article  PubMed  CAS  Google Scholar 

  23. Murphy, V. A., Smith, Q. R., and Rapoport, S. I. (1989) Uptake and concentrations of calcium in rat choroid plexus during chronic hypo-and hypercalcemia. Brain Res. 484, 65–70.

    Article  PubMed  CAS  Google Scholar 

  24. Dayson, H. and Pollay, M. (1963) Influence of various drugs on the transport of 1311 and PAH across the cerebrospinal-fluid-blood barrier. J. Physiol. 167, 239–246.

    Google Scholar 

  25. Pollay, M. and Kaplan, R. (1972) Transependymal transport of thiocyanate. J. Neurobiol. 3, 339–346.

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki, H., Sawada, Y., Sugiyama, Y., Iga, T., and Hanano, M. (1987) Anion exchanger mediates benzylpenicillin transport in rat choroid plexus. J. Pharmacol. Exp. Ther. 243, 1145–1152.

    Google Scholar 

  27. Jakobson, A. M. (1991) Bilirubin accumulation by the rabbit choroid plexus in vitro. Biol. Neonate 60, 221–229.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, C. S., O’Tuama, L. A., Mann, J. D., and Roe, C. R. (1983) Saturable accumulation of the anionic herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), by rabbit choroid plexus: early developmental origin and interaction with salicylates. J. Pharmacol. Exp. Ther. 225, 699–704.

    PubMed  CAS  Google Scholar 

  29. Pritchard, J. B. (1980) Accumulation of anionic pesticides by rabbit choroid plexus in vitro. J. Pharmacol. Exp. Ther. 212, 354–359.

    PubMed  CAS  Google Scholar 

  30. Gosling, J. A. and Lu, T. C. (1968) Uptake and distribution of some quaternary ammonium compounds in the central nervous system of the rat. J. Pharmacol. Exp. Ther. 167, 56–62.

    Google Scholar 

  31. Lanman, R. C. and Schanker, L. S. (1980) Transport of choline out of the cranial cerebrospinal fluid spaces of the rabbit. J. Pharmacol. Exp. Ther. 215, 563–568.

    PubMed  CAS  Google Scholar 

  32. Miller, T. B. and Ross, C. R. (1975) Transport of organic cations and anions by choroid plexus. J. Pharmacol. Exp. Ther. 196, 771–777.

    Google Scholar 

  33. DiBenedetto, F. E. and Bito, L. Z. (1986) Transport of prostaglandins and other eicosanoids by the choroid plexus: its characterization and physiological significance. J. Neurochem. 46, 1725–1731.

    Article  PubMed  CAS  Google Scholar 

  34. Huang, J. T. (1982) Accumulation of peptides Tyr-D-Ala-Gly by choroid plexus during ventriculocisternal perfusion of rat brain. Neurochem. Res. 7, 1541–1548.

    Article  CAS  Google Scholar 

  35. Keep, R. F. and Jones, H. C. (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Del,. Brain Res. 56, 47–53.

    Article  CAS  Google Scholar 

  36. Fenstermacher, J. D. (1989) Pharmacology of the blood-brain barrier, in Implications of the Blood-Brain Barrier and Its Manipulation ( Neuwelt, E. A. ed.), Plenum, New York, pp. 137–155.

    Chapter  Google Scholar 

  37. Maktabi, M. A., Heistad, D. D., and Faraci, F. M. (1990). Effects of angiotensin Il on blood flow to choroid plexus. Am. J. Physiol. 258, H414 - H418.

    PubMed  CAS  Google Scholar 

  38. Mayhan, W. C., Faraci, F. M., Spector, R., and Heistad, D. D. (1989) Effect of leukotriene D4 on blood flow to cerebrum and choroid plexus. Am. J. Physiol. 257, H834 - H838.

    PubMed  CAS  Google Scholar 

  39. Page, R. B., Funsch, D. J., Brennan, R. W., and Hernandez, M. J. (1980) Choroid plexus blood flow in the sheep. Brain Res. 197, 532–537.

    Article  PubMed  CAS  Google Scholar 

  40. Guo-Ross, S. X., Yang, E. Y., Walsh, T. J., and Bondy, S. C. (1999) Decrease of glial fibrillary acidic protein in rat frontal cortex following aluminum treatment. J. Neurochem. 73, 1609–1614.

    Article  PubMed  CAS  Google Scholar 

  41. Ingersoll, R. T., Montgomery, E. B., and Aposhian, H. V. (1995) Central nervous system toxicity of manganese. I. Inhibition of spontaneous motor activity in rats after intrathecal administration of manganese chloride. Fundam. Appl. Toxicol. 27, 106–113.

    Article  PubMed  CAS  Google Scholar 

  42. Jones, M., Olafson, K., Del Bigio, M. R., Peeling, J., and Nath, A. (1998) Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol. Exp. Neurol. 57, 563–570.

    Article  PubMed  CAS  Google Scholar 

  43. Ray, D.E., Holton, J. L., Nolan, C. C., Cavanagh, J. B., and Harpur, E. S. (1998) Neuro-toxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. Am. J. Neuroradiol. 19, 1455–1462.

    PubMed  CAS  Google Scholar 

  44. Zheng, W., Zhao, Q., and Graziano, J. H. (1998) Primary culture of rat choroidal epithelial cells: a model for in vitro study of the blood-cerebrospinal fluid barrier. In vitro Cell Biol. Dev. 34, 40–45.

    Article  CAS  Google Scholar 

  45. Zheng, W., Blaner, W. S., and Zhao, Q. (1999) Inhibition by Pb of production and secretion of transthyretin in the choroid plexus: Its relationship to thyroxine transport at the blood-CSF barrier. Toxicol. Appl. Pharmacol. 155, 24–31.

    Article  PubMed  CAS  Google Scholar 

  46. Abbruscato, T. J. and Davis, T. P. (1999) Protein expression of brain endothelial cell Ecadherin after hypoxia/aglycemia: influence of astrocyte contact. Brain Res. 842, 277–286.

    Article  PubMed  CAS  Google Scholar 

  47. Rutten, M. J., Hoover, R. L., and Karnovsky, M.J. (1987) Electrical resistance and macro-molecular permeability of brain endothelial monolayer cultures. Brain Res. 425, 301–310.

    Article  PubMed  CAS  Google Scholar 

  48. Campbell, J. B., Woolley, D. E., Vijayan, V. K., and Overmann, S. R. (1982) Morphometric effects of postnatal lead exposure on hippocampal development of the 15-day-old rat. Brain Res. 255, 595–612.

    PubMed  CAS  Google Scholar 

  49. Slomianka, L., Rungby, J., West, M. J., Danscher, G., and Andersen, A. H. (1989) Dose-dependent bimodal effect of low-level lead exposure on the developing hippocampal region of the rat: a volumetric study. Neurotoxicology 10, 177–190.

    PubMed  CAS  Google Scholar 

  50. Martin, J. H. (1996). Neuroanatomy: Text and Atlas. Appleton & Lange, Stamford.

    Google Scholar 

  51. Friedheim, E., Corvi, C., Graziano, J., Donnelli, T., and Breslin, D. (1983) Choroid plexus as protective sink for heavy metals? Lancet 1 (8331), 981–982.

    Article  PubMed  CAS  Google Scholar 

  52. Zheng, W., Perry, D. F., Nelson, D. L., and Aposhian, H. V. (1991) Protection of cerebrospinal fluid against toxic metals by the choroid plexus. FASEB J. 5, 2188–2193.

    PubMed  CAS  Google Scholar 

  53. Zheng, W., Shen, H., Blaner, S. B., Zhao, Q., Ren, X., and Graziano, J. H. (1 996) Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: The role of the choroid plexus. Toxicol. Appl. Pharmacol. 139, 445–450.

    Google Scholar 

  54. Berlin, M. and Ullberg, S. (1963) Accumulation and retention of mercury in the mouse: an autoradiographic study after a single intravenous injection of mercuric chloride. Arch. Environ. Health 6, 589–601.

    PubMed  CAS  Google Scholar 

  55. Berlin, M. and Ullberg, S. (1963) The fate of Cd-109 in the mouse: an autoradiographic study after a single intravenous injection of 109CdC12. Arch. Environ. Health 7, 686–693.

    PubMed  CAS  Google Scholar 

  56. Finkelstein, Y., Markowitz, M. E., and Rosen, J. F. (1 998) Low-level lead-induced neuro-toxicity in children: an update on central nervous system effects. Brain Res. Brain Res. Rev. 27, 168–176.

    Google Scholar 

  57. Wasserman, G., Graziano, J. H., Factor-Litvak, P., Popovac, D., Morina, N., Musabegovic, A., et al. (1994) Consequences of environmental lead exposure on childhood development at age four. Neurotoxicol. Tetratol. 16, 233–240.

    Article  CAS  Google Scholar 

  58. Pentschew, A. (1965) Morphology and morphogenesis of lead encephalopathy. Acta Neuropathol. 5, 133–160.

    Article  PubMed  CAS  Google Scholar 

  59. Smith, J. E., McLaurin, R. L., Nichols, J. B., and Asbury, A. (1960) Studies in cerebral edema and cerebral swelling. 1. The changes in lead encephalopathy in children compared with those in alkyl tin poisoning in animals. Brain 83, 411–424.

    Article  Google Scholar 

  60. Struzynska, L., Walski, M., Gadamski, R., Dabrowska-Bouta, B., and Rafalowska, U. (1997) Lead-induced abnormalities in blood-brain barrier permeability in experimental chronic toxicity. Mol. Chem. Neuropathol. 31, 207–224.

    Article  PubMed  CAS  Google Scholar 

  61. Dingwall-Fordyce, I. and Lane, R. E. (1963) A follow-up study of lead workers. Br. J. Indust. Med. 20, 313.

    CAS  Google Scholar 

  62. Chasen, P. A., Hartmann, J. F., Starr, A. J., Coogan, P. S., Pandolfi, S., Laing, I., Becker, R., and Hass, G. M. (1973) Electron microscopic and chemical studies of the vascular changes and edema of lead encephalopathy. Am. J. Pathol. 74, 215–240.

    Google Scholar 

  63. Goldstein, G. W., Asbury, A. K., and Diamond, I. (1974) Pathogenesis of lead encephalopathy. Uptake of lead and reaction of brain capillaries. Arch. Neurol. 31, 382–389.

    Article  PubMed  CAS  Google Scholar 

  64. Sundstrom, R., Muntzing, K., Kalimo, H., and Sourander, P. (1985) Changes in the integrity of the blood-brain barrier in suckling rats with low dose lead encephalopathy. Acta Neuropathol. 68, 1–9.

    Article  PubMed  CAS  Google Scholar 

  65. Toews, A. D., Kolber, A., Hayward, J., Krigman, M. R., and Morell, P. (1978) Experimental lead encephalopathy in the suckling rat: Concentration of lead in cellular factions enriched in brain capillaries. Brain Res. 147, 131–138.

    Article  PubMed  CAS  Google Scholar 

  66. Press, M. F. (1977) Lead encephalopathy in neonatal Long-Evans rats: morphologic studies. J. Neuropathol. Exp. Neurol. 36, 169–93.

    Article  PubMed  CAS  Google Scholar 

  67. Manton, W. I., Kirkpatrick, J. B., and Cook, J. D. (1984) Does the choroid plexus really protect the brain from lead? Lancet 11 (8398), 351.

    Article  Google Scholar 

  68. Eichenbaum, J. and Zheng, W. (2000). Distribution of lead and transthyretin in human eyes. J. Toxicol. Clin. Toxicol. 38 (4), 377–381.

    Article  PubMed  CAS  Google Scholar 

  69. O’Tuama, L. A., Kim, C. S., Gatzy, J. T., Krigman, M. R., and Mushak, P. (1976) The distribution of inorganic lead in Guinea pig brain and neural barrier tissues in control and lead-poisoned animals. Toxicol. Appl. Pharmacol. 36, 1–9.

    Article  PubMed  Google Scholar 

  70. Kerper, L. E. and Hinkle, P. M. (1997) Lead uptake in brain capillary endothelial cells: activation by calcium store depletion. Toxicol. Appl. Pharmacol. 46, 127–133.

    Google Scholar 

  71. Bradbury, M. W. B. and Deane, R. (1988) Brain endothelium and interstitum as sites for effects of lead. Ann. NYAcad. Sci. 529, 1–8.

    Article  CAS  Google Scholar 

  72. Deane, R. and Bradbury, M. W. B. (1990) Transport of lead-203 at the blood-brain barrier during short cerebrovascular perfusion with saline in the rat. J. Neurochem. 54, 905–914.

    Article  PubMed  CAS  Google Scholar 

  73. Silbergeld, E. K., Wolinsky, J. S., and Goldstein, G. W. (1980) Electron probe microanalysis of isolated brain capillaries poisoned with lead. Brain Res. 189, 369–376.

    Article  PubMed  CAS  Google Scholar 

  74. Markovac, J. and Goldstein, G. W. (1988) Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334, 71–73.

    Article  PubMed  CAS  Google Scholar 

  75. Zhao, Q., Slavkovich, V., and, Zheng, W (1998) Lead exposure promotes translocation of protein kinase C activity in rat choroid plexus in vitro, but not in vivo. Toxicol. Appl. Pharmacol. 149, 99–106.

    Article  PubMed  CAS  Google Scholar 

  76. Gainer, M. (1985) Diacylglycerol inhibits gap junction communication in cultured epithelial cells: evidence for a role of protein kinase C. Biochim. Biophys. Res. Commun. 126, 1109–1113.

    Article  CAS  Google Scholar 

  77. Ojakian, G. K. (1981) Tumor promoter-induced changes in the permeability of epithelial cell tight junctions. Cell 23, 95–98.

    Article  PubMed  CAS  Google Scholar 

  78. Lynch, J. J., Ferro, T. J., Blumenstock, F. A., Brockenauer, A. M., and Malik, A. B. (1991) Increased endothelial albumin permeability mediated by protein kinases S activation. J. Clin. Invest. 85, 1991–1998.

    Google Scholar 

  79. Laterra, J., Bressler, J. P., Indurti, R. R., Belloni-Olivi, L., and Goldstein, G. W. (1992) Inhibition of astroglia-induced endothelial differentiation by inorganic lead: a role for protein kinase C. Proc. Natl. Acad. Sci. USA 89, 10,748–10, 752.

    Google Scholar 

  80. Chai, S. S. and Webb, R. C. (1988) Effects of lead on vascular reactivity. Environ. Health Perspect. 78, 85–89.

    Article  PubMed  CAS  Google Scholar 

  81. Long, G. J., Rosen, J. F., and Schanne, F. A. X. (1994) Lead activation of protein kinase C from rat brain. J. Biol. Chem. 269, 834–837.

    PubMed  CAS  Google Scholar 

  82. Bressler, J. P. and Goldstein, G. W. (1991) Mechanisms of lead neurotoxicity. Biochem. Pharmacol. 41, 479–484.

    Article  PubMed  CAS  Google Scholar 

  83. Harry, G. J., Schmitt, T. J., Gong, Z., Brown, H., Zawia, N., and Evans, H. L. (1996) Lead-induced alterations of glial fibrillary acidic protein (GFAP) in the developing rat brain. Toxicol. Appl. Pharmacol. 139, 84–93.

    Article  PubMed  CAS  Google Scholar 

  84. Clarkson, T. W. (1987) Metal toxicity in the central nervous system. Environ. Health Persp. 75, 59–64.

    Article  CAS  Google Scholar 

  85. Swain, E. B., Engstrom, D. R., Brigham, M. E., Henning, T. A., and Brezonik, P. L. (1992) Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257, 784–787.

    Article  PubMed  CAS  Google Scholar 

  86. Atchison, W. D. and Hare, M. F. (1994) Mechanisms of methylmercury-induced neuro-toxicity. FASEB J. 8, 622–629.

    PubMed  CAS  Google Scholar 

  87. Davis, L. E., Kornfeld, M., Mooney, H. S., Fiedler, K. J., Haaland, K. Y., Orrison, W. W., et al. (1994) Methylmercury poisoning: long-term clinical, radiological, toxicological, and pathological studies of an affected family. Ann. Neural. 35, 680–688.

    Article  CAS  Google Scholar 

  88. Aschner, M. and Clarkson, T. W. (1988) Uptake of methylmercury in the rat brain: effects of amino acids. Brain Res. 462, 31–39.

    Article  PubMed  CAS  Google Scholar 

  89. Hirayama, K. (1980) Effects of amino acids on brain uptake of methyl mercury. Toxicol. Appl. Pharmacol. 55, 318–323.

    Article  PubMed  CAS  Google Scholar 

  90. Kerper, L. E., Ballatori, N., and Clarkson, T. W. (1992) Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am. J. Physiol. 262, R761 - R765.

    PubMed  CAS  Google Scholar 

  91. Takeuchi, T., Eto, K., and Tokunaga, H. (1989) Mercury level and histochemical distribution in a human brain with Minamata disease following a long-term clinical course of twenty-six years. Neurotoxicology 10, 651–657.

    PubMed  CAS  Google Scholar 

  92. Choi, B. H., Kim, R. C., and Peckham, N. H. (1988) Hydrocephalus following prenatal methylmercury poisoning. Acta Neuropathol. 75, 325–330.

    Article  PubMed  CAS  Google Scholar 

  93. Peterson, E. W. and Cardoso, E. R. (1983) The blood-brain barrier following experimental subarachnoid hemorrhage. Part 2: Response to mercuric chloride infusion. J. Neurosurg. 58, 345–351.

    Article  PubMed  CAS  Google Scholar 

  94. Marlin, A. E., Brown, W. E., Huntington, H. W., and Epstein, F. (1980) Effect of the durai application of Zenker’s solution on the feline brain. Neurosurgery 6, 45–48.

    Article  PubMed  CAS  Google Scholar 

  95. Albrecht, J., Szumanska, G., Gadamski, R., and Gajkowska, B. (1994) Changes of activity and ultrastructural localization of alkaline phosphatase in cerebral cortical microvessels of rat after single intraperitoneal administration of mercuric chloride. Neurotoxicology 15, 897–902.

    PubMed  CAS  Google Scholar 

  96. Davis, L. E., Wands, J. R., Weiss, S. A., Price, D. L., and Girling, E. F. (1974) Central nervous system intoxication from mercurous chloride laxatives. Quantitative, histochemical, and ultrastructural studies. Arch. Neurol. 30, 428–431.

    Article  PubMed  CAS  Google Scholar 

  97. Brun, A., Abdulla, M., Ihse, I., and Samuelsson, B. (1976) Uptake and localization of mercury in the brain of rats after prolonged oral feeding with mercuric chloride. Histochemistry 47, 23–29.

    Article  PubMed  CAS  Google Scholar 

  98. Placidi, G. F., Dell’Osso, L., Viola, P. L., and Bertelli, A. (1983) Distribution of inhaled mercury (203Hg) in various organs. Int. J. Tissue React. 5, 193–200.

    PubMed  CAS  Google Scholar 

  99. Steinwall, O. and Olsson, Y. (1969) Impairment of the blood-brain barrier in mercury poisoning. Acta Neurol. Scand. 45, 351–361.

    Article  PubMed  CAS  Google Scholar 

  100. Suda, I., Eto, K., Tokunaga, H., Furusawa, R., Suetomi, K., and Takahashi, H. (1989) Different histochemical findings in the brain produced by mercuric chloride and methyl mercury chloride in rats. Neurotoxicology 10, 113–126.

    PubMed  CAS  Google Scholar 

  101. Moller-Madsen, B. (1990) Localization of mercury in CNS of the rat. II. Intraperitoneal injection of methylmercuric chloride (CH3HgC1) and mercuric chloride (HgCl2). Toxicol. Appl. Pharmacol. 103, 303–323.

    Article  PubMed  CAS  Google Scholar 

  102. Moller-Madsen, B (1991) Localization of mercury in CNS of the rat. III. Oral administration of methylmercuric chloride (CH3HgC1). Fundam. Appl. Toxicol. 16, 172–187.

    Article  PubMed  CAS  Google Scholar 

  103. Sakai, K. (1975) Time-dependent distribution of 203Hg-methylmercuric chloride in tissues and cells of rats. Jpn. J. Exp. Med. 45, 63–77.

    PubMed  CAS  Google Scholar 

  104. Rastogi, R. B., Merali, Z., and Singhal, R. L. (1977) Cadmium alters behavior and the biosynthetic capacity of catecholamines and serotonin in neonatal rat brain. J. Neurochem. 28, 789–794.

    Article  PubMed  CAS  Google Scholar 

  105. Nation, J. R., Clark, D. E., Bourgeois, A. J., and Baker, D. M. (1983) The effects of chronic cadmium exposure on schedule controlled responding and conditioned suppression in the adult rat. Neurobehay. Toxicol. Teratol. 5, 275–282.

    CAS  Google Scholar 

  106. Evans, J. and Hastings, L. (1992). Accumulation of Cd(Il) in the CNS depending on the route of administration: intraperitoneal, intratracheal, or intranasal. Fundam. Appl. Toxicol. 19, 275–278.

    Article  PubMed  CAS  Google Scholar 

  107. Provias, J. P., Ackerley, C. A., Smith, C., and Becker, L. E. (1994) Cadmium encephalopathy: a report with elemental analysis and pathological findings. Acta Neuropathol. (Berl). 88, 583–586.

    CAS  Google Scholar 

  108. Shukla, A., Shukla, G. S., and Srimal, R. C. (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum. Exp. Toxicol. 15, 400–405.

    Article  PubMed  CAS  Google Scholar 

  109. Christensen, C. W. and Fujimoto, J. M. (1984) Cadmium induced hypothermia in mice: dose dependent tolerance development. Gen. Pharmacol. 15, 263–266.

    Article  PubMed  CAS  Google Scholar 

  110. Arvidson, B. and Tjalve, H. (1986) Distribution of cadmium-109 in the nervous system of rats after intravenous injection. Acta Neuropathol. 69, 111–116.

    Article  PubMed  CAS  Google Scholar 

  111. Valois, A. A. and Webster, W. S. (1987) The choroid plexus and cerebral vasculature as target sites for cadmium following acute exposure in neonatal and adult mice: An autoradiographic and gamma counting study. Toxicology 46, 43–55.

    Article  PubMed  CAS  Google Scholar 

  112. Valois, A. A. and Webster, W. S. (1989) The choroid plexus as a target site for cadmium toxicity following chronic exposure in the adult mouse: an ultrastructural study. Toxicology 55, 193–205.

    Article  PubMed  CAS  Google Scholar 

  113. Nishimura, N., Nishimura, H., Ghaffar, A., and Tohyama, C. T. I. (1992) Localization of metallothionein in the brain of rat and mouse. J. Histochem. Cytochem. 40, 309–315.

    Article  PubMed  CAS  Google Scholar 

  114. Beckett, W. S., Moore, J. L., Keogh, J. P., and Bleecker, M. L. (1986) Acute encephalopathy due to occupational exposure to arsenic. Br. J. Ind. Med. 43, 66–67.

    PubMed  CAS  Google Scholar 

  115. Chen, G. S., Asai, T., Suzuki, Y., Nishioka, K., and Nishiyama, S. (1990) A possible pathogenesis for Blackfoot disease: effects of trivalent arsenic (As2O3) on cultured human umbilical vein endothelial cells. J. Dermatol. 17, 599–608.

    PubMed  CAS  Google Scholar 

  116. Yu, H. S., Chang, K. L., Kao, Y. H., Yu, C. L., Chen, G. S., Chang, C. H., and Fang, K. T. (1998) In vitro cytotoxicity of IgG antibodies on vascular endothelial cells from patients with endemic peripheral vascular disease in Taiwan. Atherosclerosis 137, 141–147.

    Article  PubMed  CAS  Google Scholar 

  117. Barchowsky, A., Roussel, R. R., Klei, L. R., James, P. E., Ganju, N., and Smith, K. R. (1999) Low levels of arsenic trioxide stimulate proliferative signals in primary vascular cells without activating stress effector pathways. Toxicol. Appl. Pharmacol. 159, 65–75.

    Article  PubMed  CAS  Google Scholar 

  118. Herbert, J., Wilcox, J. N., Pham, K. C., Fremeau, R. T., Zeviani, M., Dwork, A., Soprano, D. R., Makover, A., Goodman, D.S., Zimmerman, E. A., Roberts, J. L., and Schon, E. A. (1986) Transthyretin: a choroid plexus-specific transport protein in human brain. Neurology 36, 900–911.

    Article  PubMed  CAS  Google Scholar 

  119. Hagen, G. A. and Elliott, W. J. (1973) Transport of thyroid hormones in serum and cerebral spinal fluid. J. Clin. Endocrinol. Metab. 37, 415–422.

    Article  PubMed  CAS  Google Scholar 

  120. Larsen P. D. and DeLallo L. (1989) Cerebrospinal fluid transthyretin in the neonate and blood-cerebrospinal fluid barrier permeability. Ann. Neurol. 25, 628–630.

    Article  PubMed  CAS  Google Scholar 

  121. Blay, P., Nilsson, C., Owman, C., Aldred, A., and Schreiber, G. (1993) Transthyretin expression in rat brain: effect of thyroid functional state and role in thyroxine transport. Brain Res. 632, 114–120.

    Article  PubMed  CAS  Google Scholar 

  122. Chanoine J. P., Alex S., Fang S. L., Stone S., Leonard J. L., Korhle J., and Braverman L. E. (1992) Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain. Endocrinology 130, 933–938.

    Article  PubMed  CAS  Google Scholar 

  123. Southwell, B. R., Duan, W., Alcorn, D., Brack, C., Richardson, S. J., Kohrle, J., and Schreiber G. (1993) Thyroxine transport to the brain: role of protein synthesis by the choroid plexus. Endocrinology 133, 2116–2126.

    Article  PubMed  CAS  Google Scholar 

  124. Cavallaro, T., Martone, R. L., Stylianopoulou, F., and Herber, J. (1993) Differential expression of the insulin-like growth factor-II and transthyretin genes in the developing rat choroid plexus. J. Neuropathol. Exp. Neurol. 52, 153–162.

    Article  PubMed  CAS  Google Scholar 

  125. Thomas, T., Schreiber, G., and Jaworowski, A. (1989) Developmental patterns of gene expression of secreted proteins in brain and choroid plexus. Dev. Biol. 134, 38–47.

    Article  PubMed  CAS  Google Scholar 

  126. Dussault, J. H. and Ruel, J. (1987) Thyroid hormones and brain development. Ann. Rev. Physiol. 49, 321–334.

    Article  CAS  Google Scholar 

  127. Glorieux, J., Dussault, J. H., Letarte, J., Guyde, H., and Morissette, J. (1983) Preliminary results on the mental development of hypothyroid children detected by the Quebec Screening Program. J. Pediatr. 102, 19–22.

    Article  PubMed  CAS  Google Scholar 

  128. Legrand, J. (1984) Effect of thyroid hormones on central nervous system development, in Neurobehavioral Teratology ( Yanai, J., ed.), Elsevier, New York, pp. 331–363.

    Google Scholar 

  129. Smith, D. W., Blizzard, R. M., and Wilkins, L. (1957) The mental prognosis in hypothyroidism of infancy in childhood. Pediatrics 19, 1011–1022.

    PubMed  CAS  Google Scholar 

  130. Barbeau, A., Inoué, N., and Cloutier, T. (1976) Role of manganese in dystonia. Adv. Neurol. 14, 339–352.

    PubMed  CAS  Google Scholar 

  131. Mena, I., Court, J., Fuenzalida, S., Papavasiliou, P. S., and Cotzias, G. C. (1970) Modification of chronic manganese poisoning. Treatment with L-dopa or 5-OH tryptophane. New. Engl. J. Med. 282, 5–10.

    Article  PubMed  CAS  Google Scholar 

  132. Tepper, L. B. (1961) Hazards to health: Manganese. N. Engl. J. Med. 264, 347–348.

    Article  PubMed  CAS  Google Scholar 

  133. Jenner, P., Schapira, A. H., and Marsden, C. D. (1992) New insights into the cause of Parkinson’s disease. Neurology 42, 2241–2250.

    Article  PubMed  CAS  Google Scholar 

  134. Loeffler, D. A., Connor, J. R., Juneau, P. L., Snyder, B. S., Kanaley, L., DeMaggio, A. J., et al. (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J. Neurochem. 65, 710–724.

    Article  PubMed  CAS  Google Scholar 

  135. Youdim, M. B. H., Ben-Shachar, D., and Riederer, P. (1993) The possible role of iron in the etiopathology of Parkinson’s disease. Mov. Disord. 8, 1–12.

    Article  PubMed  CAS  Google Scholar 

  136. Michotte, Y., Massart, D.L., Lowenthal, A., Knaepen, L., Pelsmaekers, J., and Collard, M. (1977) A morphological and chemical study of calcification of the choroid plexus. J. Neurol. 216, 127–133.

    Article  PubMed  CAS  Google Scholar 

  137. Valois, A. A. and Webster, W. S. (1989) Retention and distribution of manganese in the mouse brain following acute exposure on postnatal day 0, 7, 14, or 42: an autoradio-graphic and gamma counting study. Toxicology 57, 315–328.

    Article  PubMed  CAS  Google Scholar 

  138. Zheng, W., Ren, S., and Graziano, J. H. (1998) Manganese inhibits mitochondrial aconitase: A mechanism of manganese neurotoxicity. Brain Res. 799, 334–342.

    Article  PubMed  CAS  Google Scholar 

  139. Murphy, V. A., Wadhwani, K. C., Smith, Q. R., and Rapoport, S. I. (1991) Saturable transport of manganese(II) across the rat blood-brain barrier. J. Neurochem. 57, 948–954.

    Article  PubMed  CAS  Google Scholar 

  140. Aschner, M. and Gannon, M. (1994) Manganese transport across the rat blood-brain bar rier: saturable and transferrin-dependent transport mechanisms. Brain Res. Bull. 33, 345–349.

    Article  PubMed  CAS  Google Scholar 

  141. Rabin, O., Hegedus, L., Bourre, J. M., and Smith, Q. R. (1993) Rapid brain uptake of manganese(II) across the blood-brain barrier. J. Neurochem. 61, 509–517.

    Article  PubMed  CAS  Google Scholar 

  142. Smith, Q. R., Rabin, O., and Chikhale, E. G. (1997) Deliver of metals to brain and the role of the blood-brain barrier, in Metals and Oxidative Damage in Neurological Disorders ( Connor, J. R., ed.), Plenum, New York, pp. 113–130.

    Google Scholar 

  143. Dickinson, T. K., Devenyi, A. G., and Connor, J. R. (1996) Distribution of injected iron-59 and manganese-54 in hypotransferrinemic mice. J. Lab. Clin. Med. 128, 270–278.

    Article  PubMed  CAS  Google Scholar 

  144. Malecki, E. A., Devenyi, A. G., Beard, J. L., and Connor, J. R. (1998) Transferrin response in normal and iron-deficient mice heterozygotic for hypotransferrinemia; effects on iron and manganese accumulation. Biometals 11, 265–276.

    Article  PubMed  CAS  Google Scholar 

  145. Zheng, W., Zhao, Q., Slavkovich, V., Aschner, M., and, Graziano, J. H. (1999) Alteration of iron homeostasis following chronic exposure to manganese in rats. Brain Res. 833, 125–132.

    Article  PubMed  CAS  Google Scholar 

  146. Connor, J. R. and Benkovic, S. A. (1992) Iron regulation in the brain: histochemical, biochemical, and molecular considerations. Ann. Neurol. 32 (Suppl), S51 - S61.

    Article  PubMed  CAS  Google Scholar 

  147. Jefferies, W. A., Brandon, M. R., Hunt, S. V., Williams, A. F., Gatter, K. C., and Mason, D. Y. (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312, 162–163.

    Article  PubMed  CAS  Google Scholar 

  148. Moos, T. and Mollgard, K. (1993) A sensitive post-DAB enhancement technique for demonstration of iron in the central nervous system. Histochemistry 99, 471–475.

    PubMed  CAS  Google Scholar 

  149. Beinert, H. and Kennedy, M. C. (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 7, 1442–1449.

    PubMed  CAS  Google Scholar 

  150. Klausner, R. D., Rouault, T. A., and Harford, J. B. (1993) Regulating the fate of mRNA: The control of cellular iron metabolism. Cell 72, 1928.

    Article  Google Scholar 

  151. Chen, J. Y., Tsao, G., Zhao, Q., and Zheng, W. (2001) Differential cytotoxicity of Mn(II) and Mn(III) on [Fe-S] containing enzymes in vitro. Toxicol. App!. Pharmacol.,in press.

    Google Scholar 

  152. Dincer, Z., Haywood, S., and Jasani, B. (1999) Immunocytochemical detection of metallothionein (MT1 and MT2) in copper-enhanced sheep brains. J. Comp. Pathol. 120, 29–37.

    Article  PubMed  CAS  Google Scholar 

  153. Tayarani, I., Cloez, I., Clement, M., and Bourre, J. M. (1989) Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. J. Neurochem. 53, 817–824.

    Article  PubMed  CAS  Google Scholar 

  154. Nishihara, E., Furuyama, T., Yamashita, S., and Mori, N. (1998) Expression of copper trafficking genes in the mouse brain. Neuroreport 9, 3259–3263.

    Article  PubMed  CAS  Google Scholar 

  155. Crowe, A. and Morgan, E. H. (1996) Iron and copper interact during their uptake and deposition in the brain and other organs of developing rats exposed to dietary excess of the two metals. J. Nutr. 7, 183–194.

    Google Scholar 

  156. Agnew, W. F. (1972) Transplacental uptake of l27mtellurium studied by whole-body auto-radiography. Teratology 6, 331–338.

    Article  PubMed  CAS  Google Scholar 

  157. Agnew, W. F., Snyder, D. A., and Cheng, J. T. (1974) Metabolic inhibition of iodide transport in choroid plexus and ciliary body by tellurium and selenium. Microvasc. Res. 8, 156–163.

    Article  PubMed  CAS  Google Scholar 

  158. Yuen, T. G., Agnew, W. F., and Carregal, E. J. (1975) Lysosomal handling of tellurium by the choroid plexus following chronic administration: an ultrastructural study. Exp. Neurol. 47, 213–228.

    Article  PubMed  CAS  Google Scholar 

  159. Kissel, K., Hamm, S., Schulz, M., Vecchi, A., Garlanda, C., and Engelhardt, B. (1998) Immunohistochemical localization of the murine transferrin receptor (TfR) on blood-tissue barriers using a novel anti-TfR monoclonal antibody. Histochem. Cell Biol. 110, 63–72.

    Article  PubMed  CAS  Google Scholar 

  160. Castelnau, P. A., Garrett, R. S., Palinski, W., Witztum, J. L., Campbell, I. L., and Powell, H. C. (1998) Abnormal iron deposition associated with lipid peroxidation in transgenic mice expressing interleukin-6 in the brain. J. Neuropathol. Exp. Neurol. 57, 268–282.

    Article  PubMed  CAS  Google Scholar 

  161. van Gelder, W., Huijskes-Heins, M. I., Cleton-Soeteman, M. I., van Dijk, J. P., and van Eijk, H. G. (1998). Iron uptake in blood-brain barrier endothelial cells cultured in iron-depleted and iron-enriched media. J. Neurochem. 71, 1134–1140.

    Article  PubMed  Google Scholar 

  162. Morris, C. M., Keith, A. B., Edwardson, J. A., and Pullen, R. G. (1992) Uptake and distribution of iron and transferrin in the adult rat brain. J. Neurochem. 59, 300–306.

    Article  PubMed  CAS  Google Scholar 

  163. Crowe, A. and Morgan, E. H. (1992) Iron and transferrin uptake by brain and cerebrospinal fluid in the rat. Brain Res. 592, 8–16.

    Article  PubMed  CAS  Google Scholar 

  164. Dwork, A. J. (1995) Effects of diet and development upon the uptake and distribution of cerebral iron. J. Neurol. Sci. 134 (Suppl), 45–51.

    Article  PubMed  CAS  Google Scholar 

  165. Broadwell, R. D., Baker-Cairns, B. J., Friden, P. M., Oliver, C., and Villegas, J. C. (1996) Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transfer-rin and antibody against the transferrin receptor. Exp. Neurol. 142, 47–65.

    Article  PubMed  CAS  Google Scholar 

  166. Lu, J., Kaur, C., and Ling, E. A. (1995) Expression and upregulation of transferrin receptors and iron uptake in the epiplexus cells of different aged rats injected with lipopolysaccharide and interferon-gamma. J. Anat. 187, 603–611.

    PubMed  CAS  Google Scholar 

  167. Moos, T. (1996) Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system. J. Comp. Neurol. 375, 675–692.

    Article  PubMed  CAS  Google Scholar 

  168. Danscher, G (1981). Light and electron microscopic localization of silver in biological tissue. Histochemistry 71, 177–186.

    Article  PubMed  CAS  Google Scholar 

  169. Stoltenberg, M., Juhl, S., Poulsen, E. H., and Ernst, E. (1994) Autometallographic detection of silver in hypothalamic neurons of rats exposed to silver nitrate. J. Appl. Toxicol. 14, 275–280.

    Article  PubMed  CAS  Google Scholar 

  170. Rungby, J. and Danscher, G. (1983) Neuronal accumulation of silver in brains of progeny from argyric rats. Acta Neuropathol. 61, 258–262.

    Article  PubMed  CAS  Google Scholar 

  171. Goebel, H. H. and Muller, J. (1973) Ultrastructural observations on silver deposition in the choroid plexus of a patient with argyria. Acta Neuropathol. 26, 247–251.

    Article  PubMed  CAS  Google Scholar 

  172. Rish, B. L. and Meacham, W. F. (1967) Experimental study of the intraventricular instillation of radioactive gold. J. Neurosurg. 27, 15–20.

    Article  PubMed  CAS  Google Scholar 

  173. Franklin, P. A., Pullen, R. G. L., and Hall, G. H. (1992) Blood-brain exchange routes and distribution of 65Zn in rat brain. Neurochem Res. 17, 767–771.

    Article  PubMed  CAS  Google Scholar 

  174. Schultze, C. and Firth, J. A. (1992) Interendothelial junctions during blood-brain barrier development in the rat. Dev. Brain Res. 69, 85–95.

    Article  Google Scholar 

  175. Ferguson, P. K. and Woodbury, D. M. (1969) Penetration of 14C-inulin and 14C-sucrose into brain, cerebrospinal fluid and skeletal muscle in developing rats. Exp. Brain Res. 7, 181–194.

    Article  PubMed  CAS  Google Scholar 

  176. Kristensson, K. and Olsson, Y. (1971) The perineurium as a diffusion barrier to protein tracers. Acta Neuropathol. 17, 127–138.

    Article  PubMed  CAS  Google Scholar 

  177. Saunders, N. R. (1977) Ontogeny of the blood-brain barrier. Exp. Eye Res. 25 (Suppl), 523–550.

    Article  PubMed  CAS  Google Scholar 

  178. Johanson, C. E. (1989) Ontogeny and phylogeny of the blood-brain barrier in Implications of the Blood-Brain Barrier and Its Manipulation (Neuwelt, E. A., ed.), Plenum, New York, pp. 157–198.

    Google Scholar 

  179. Johanson, C. E. (1989) Potential for pharmacologic manipulation of the blood-cerebrospinal fluid barrier, in Implications of the Blood-Brain Barrier and Its Manipulation ( Neuwelt, E. A., ed.), Plenum, New York, pp. 223–260.

    Chapter  Google Scholar 

  180. Lefauconnier, J. M., Hauw, J. J., and Bernard, G. (1983) Regressive or lethal lead encephalopathy in the suckling rat. Correlation of lead levels and morphological findings. J. Neuropathol. Exp. Neurol. 42, 177–190.

    Article  PubMed  CAS  Google Scholar 

  181. Thorlacius-Ussing, O. and Rungby, J. (1984) Ultrastructural localization of exogenous silver in the anterior pituitary gland of the rat. Exp. Mol. Pathol. 41, 58–66.

    Article  PubMed  CAS  Google Scholar 

  182. Arvidson, B. (1986) Autoradiographic localization of cadmium in the rat brain. Neurotoxicology 7, 89–96.

    PubMed  CAS  Google Scholar 

  183. Hayashi, Y., Nomura, M., Yamagishi, S., Harada, S., Yamashita, J., and Yamamoto, H. (1997) Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astgrocytes. Glia 19, 13–26.

    Article  PubMed  CAS  Google Scholar 

  184. a.Abbott, N. J., Revest, P. A., and Romero, I. A. (1992) Astrocyte-endothelial interaction: physiology and pathology. Neuropathol. Appl. Neurobiol. 18, 424–433.

    Google Scholar 

  185. Yamagata, K., Tagami, M., Nara, Y., Fujino, H., Kubota, A., Numano, F., et al. (1997) Faulty induction of blood-brain barrier functions by astrocytes isolated from stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 24, 686–691.

    Article  PubMed  CAS  Google Scholar 

  186. Nishino, H., Kumazaki, M., Fukuda, A., Fujimoto, I., Shimano, Y., Hida, H., et al. (1997) Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunciton of the blood-brain barrier: involvement of dopamine toxicity. Neurosci. Res. 27, 343–355.

    Article  PubMed  CAS  Google Scholar 

  187. Selvin-Testa, A., Capani, F., Loidl, C. F., Lopez, E. M., and Pecci-Saavedra, J. (1997) Prenatal and postnatal lead exposure induces 70 kDa heat shock protein in young rat brain prior to changes in astrocyte cytoskeleton. Neurotoxicology 18, 805–817.

    PubMed  CAS  Google Scholar 

  188. Aschner, M., Vrana, K. E., and Zheng, W (1999) Manganese uptake and distribution in the central nervous system (CNS). NeuroToxicology 20, 173–180.

    CAS  Google Scholar 

  189. Aschner, M. (1996) Astrocytes as modulators of mercury-induced neurotoxicity. Neurotoxicology 17, 663–669.

    PubMed  CAS  Google Scholar 

  190. Kramer, K. K., Liu, J., Choudhuri, S., and Klaassen, C. D. (1996) Induction of metallothionein mRNA and protein in murine astrocyte cultures. Toxicol. Appl. Pharmacol. 136, 94–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zheng, W. (2002). Blood-Brain Barrier and Blood-CSF Barrier in Metal-Induced Neurotoxicities. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics