Skip to main content

Role of Chemokines and Their Receptors in the Induction and Regulation of Autoimmune Disease

  • Chapter
Cytokines and Autoimmune Diseases

Abstract

Chemokines are a large superfamily of approximately 50 peptides. Although they are involved in diverse processes, their central and defining role in mammals appears to be action toward subpopulations of leukocytes (1). This specificity is mediated by selective expression of chemokine receptors, heptahelical G-protein coupled membrane molecules. With time and further study, chemokines have now been implicated in developmental organogenesis, angiogenesis, neoplasia, differentiation, and a host of other physiological and pathological processes (2, 3). Considerable interest has been sparked by the discovery that several chemokine receptors are essential invasion coreceptors for human immunodeficiency virus (HIV)-1 and HIV-2 infection of human cells (4, 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baggiolini, M. (1998) Chemokines and leukocyte traffic. Nature 392(6676), 565–568.

    PubMed  CAS  Google Scholar 

  2. Rollins, B. J. (1997) Chemokines. Blood 90(3), 909–928.

    PubMed  CAS  Google Scholar 

  3. Zlotnik, A., Morales, J., and Hedrick, J. A. (1999) Recent advances in chemokines and chemokine receptors. Crit. Rev. Immunol. 19(1), 1–47.

    PubMed  CAS  Google Scholar 

  4. Bates, P. (1996) Chemokine receptors and HIV-1: an attractive pair? Cell 86, 1–4.

    PubMed  CAS  Google Scholar 

  5. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane G protein-coupled receptor. Science 272, 872–877.

    PubMed  CAS  Google Scholar 

  6. Clark-Lewis, I., Kim, K. S., Rajarathnam, K., Gong, J. H., Dewald, B., Moser, B., et al. (1995) Structure-activity relationships of chemokines. J. Leukoc. Biol. 5745(522), 703–711.

    Google Scholar 

  7. Lusti-Narasimhan, M., Power, C. A., Allet, B., Alouani, S., Bacon, K. B., Mermod, J.-J., et al. (1995) Mutation of Leu25 and Val27 introduces CC chemokine activity into interleukin-8. J. Biol. Chem. 270, 2716–2721.

    PubMed  CAS  Google Scholar 

  8. Van Damme, J., Rampart, M., Conings, R., Decock, B., Van Osselaer, N., Willems, J., et al. (1990) The neutrophil-activating proteins interleukin 8 and β-thromboglobulin: in vitro and in vivo comparison of NH2-terminally processed forms. Eur. J. Immunol. 20, 2113–2118.

    PubMed  Google Scholar 

  9. Oravecz, T., Pall, M., Roderiquez, G., Gorrell, M. D., Ditto, M., Nguyen, N. Y., et al. (1997) Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J. Exp. Med. 186(11), 1865–1872.

    PubMed  CAS  Google Scholar 

  10. Struyf, S., De Meester, I., Scharpe, S., Lenaerts, J. P., Menten, P., Wang, J. M., et al. (1998) Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. Eur. J. Immunol. 28(4), 1262–1271.

    PubMed  CAS  Google Scholar 

  11. Proudfoot, A. E., Power, C. A., Hoogewerf, A. J., Montjovent, M. O., Borlat, F., Offord, R. E., et al. (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J. Biol. Chem. 271(5), 2599–2603.

    PubMed  CAS  Google Scholar 

  12. Zlotnick, A. and Yoshie, O. (2000) Chemokines: a new classification system and their role in immunity. Immunity 12, 121.

    Google Scholar 

  13. Baggiolini, M., Walz, A., and Kunkel, S. L. (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Invest. 84, 1045–1049.

    PubMed  CAS  Google Scholar 

  14. Clark-Lewis, L, Dewald, B., Geiser, T., Moser, B., and Baggiolini, M. (1993) Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc. Natl. Acad. Sci. USA 90(8), 3574–3577.

    PubMed  CAS  Google Scholar 

  15. Baggiolini, M., Dewald, B., and Moser, B. (1994) Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv. Immunol. 55, 97–179.

    PubMed  CAS  Google Scholar 

  16. Cochran, B. J., Reffel, A. C., and Stiles, C. D. (1983) Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 33, 939–947.

    PubMed  CAS  Google Scholar 

  17. Anisowicz, A., Bardwell, L., and Sager, R. (1987) Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells. Proc. Natl. Acad. Sci. USA 84(20), 7188–7192.

    PubMed  CAS  Google Scholar 

  18. Richmond, A., Balentien, E., Thomas, H. G., Flaggs, G., Barton, D. E., Spiess, J., et al. (1988) Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin. EMBO J. 7(7), 2025–2033.

    PubMed  CAS  Google Scholar 

  19. Martins-Green, M. and Bissell, M. J. (1990) Localization of 9E3/CEF-4 in avian tissues: expression is absent in Rous sarcoma virus-induced tumors but is stimulated by injury. J. Cell Biol. 110(3), 581–595.

    PubMed  CAS  Google Scholar 

  20. Oquendo, P., Alberta, J., Wen, D. Z., Graycar, J. L., Derynck, R., and Stiles, C. D. (1989) The platelet-derived growth factor-inducible KC gene encodes a secretory protein related to platelet alpha-granule proteins. J. Biol. Chem. 264(7), 4133–4137.

    PubMed  CAS  Google Scholar 

  21. Robinson, S., Tani, M., Strieter, R. M., Ransohoff, R. M., and Miller, R. H. (1998) The chemokine growth-regulated oncogene-alpha promotes spinal cord oligodendrocyte precursor proliferation. J. Neurosci. 18(24), 10457–10463.

    PubMed  CAS  Google Scholar 

  22. Wu, Q., Miller, R., Ransohoff, R., Robinson, S., Bu, J., and Nishiyama, A. (2000) Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J. Neurosci. 20, 2609–2617.

    PubMed  CAS  Google Scholar 

  23. Strieter, R. M., Polverini, P. J., Arenberg, D. A., and Kunkel, S. L. (1995) The role of CXC chemokines as regulators of angiogenesis. Shock 4(3), 155–160.

    PubMed  CAS  Google Scholar 

  24. Martins-Green, M. and Hanafusa, H. (1997) The 9E3/CEF4 gene and its product the chicken chemotactic and angiogenic factor (cCAF): potential roles in wound healing and tumor development. Cytokine Growth Factor Rev. 8(3), 221–232.

    PubMed  CAS  Google Scholar 

  25. Van Damme, J., Decock, B., Lenaerts, J. P., Conings, R., Bertini, R., and Mantovani, A. et al. (1989) Identification by sequence analysis of chemotactic factors for monocytes produced by normal and transformed cells stimulated with virus, double-stranded RNA or cytokine. Eur. J. Immunol. 19(12), 2367–2373.

    PubMed  Google Scholar 

  26. Wolpe, S. D. and Cerami, A. (1989) Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines. FASEB J. 3(14), 2565–2573.

    PubMed  CAS  Google Scholar 

  27. Cole, K., Strick, C., Loetscher, M., Paradis, T., Ogborne, K., Gladue, R., et al. (1998) Interferon inducible T cell alpha chemattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med. 187, 2009–2021.

    PubMed  CAS  Google Scholar 

  28. Loetscher, M., Gerber, B., Loetscher, P., Jones, S. A., Piali, L., Clark-Lewis, I., et al. (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J. Exp. Med. 184(3), 963–969.

    PubMed  CAS  Google Scholar 

  29. Farber, J. M. (1997) Mig and IP-10: CXC chemokines that target lymphocytes. J. Leukoc. Biol. 61(3), 246–257.

    PubMed  CAS  Google Scholar 

  30. Loetscher, M., Loetscher, P., Brass, N., Meese, E., and Moser, B. (1998) Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur. J. Immunol. 28(11), 3696–3705.

    PubMed  CAS  Google Scholar 

  31. Dewald, B., Moser, B., Barella, L., Schumacher, C., Baggiolini, M., and Clark-Lewis, I. (1992) IP-10, a gamma-interferon-inducible protein related to interleukin-8, lacks neutrophil activating properties. Immunol.Lett. 32, 81–84.

    PubMed  CAS  Google Scholar 

  32. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592), 635–638.

    PubMed  CAS  Google Scholar 

  33. D’Apuzzo, M., Rolink, A., Loetscher, M., Hoxie, J. A., Clark-Lewis, I., Melchers, F., et al. (1997) The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur. J. Immunol. 27(7), 1788–1793.

    CAS  Google Scholar 

  34. Ma, Q., Jones, D., Borghesani, P. R., Segal, R. A., Nagasawa, T., Kishimoto, T., et al. (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95(16), 9448–9453.

    PubMed  CAS  Google Scholar 

  35. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R. (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685), 595–599.

    PubMed  CAS  Google Scholar 

  36. Zhang, L., He, T., Talal, A., Wang, G., Frankel, S. S., and Ho, D.D. (1998) In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J. Virol. 72(6), 5035–5045.

    PubMed  CAS  Google Scholar 

  37. Ma, Q., Jones, D., and Springer, T. A. (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10(4), 463–471.

    PubMed  CAS  Google Scholar 

  38. Kawabata, K., Ujikawa, M., Egawa, T., Kawamoto, H., Tachibana, K., Iizasa, H., et al. (1999) A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc. Natl. Acad. Sci. USA 96(10), 5663–5667.

    PubMed  CAS  Google Scholar 

  39. McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K., and Palis, J. (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol. 213(2), 442–456.

    PubMed  CAS  Google Scholar 

  40. Tachibana, K., Hirota, S., Iizasa, H., Yoshida, H., Kawabata, K., Kataoka, Y., et al. (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393(6685), 591–594.

    PubMed  CAS  Google Scholar 

  41. Daniels, G. D., Zou, J., Charlemagne, J., Partula, S., Cunningham, C., and Secombes, C.J. (1999) Cloning of two chemokine receptor homologs (CXC-R4 and CC-R7) in rainbow trout Oncorhynchus mykiss. J. Leukoc. Biol. 65(5), 684–690.

    PubMed  CAS  Google Scholar 

  42. Forster, R., Mattis, A. E., Kremmer, E., Wolf, E., Brem, G., and Lipp, M. (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87(6), 1037–1047.

    PubMed  CAS  Google Scholar 

  43. Rollins, B., Stier, P., Ernst, T., and Wong, G. (1989) The human homolog of the JE gene encodes a monocyte secretory protein. Mol. Cell Biol. 9(11), 4687–4689.

    PubMed  CAS  Google Scholar 

  44. Rollins, B. J. (1991) JE/MCP-1: an early-response gene encodes a mono-cyte-specific cytokine. Cancer Cells 3(12), 517–524.

    PubMed  CAS  Google Scholar 

  45. Rollins, B. J. (1996) Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in inflammatory disease. Mol. Med. Today 2(5), 198–204.

    PubMed  CAS  Google Scholar 

  46. Van Damme, J., Proost, P., Lenaerts, J. P., and Opdenakker, G. (1992) Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J. Exp. Med. 176(1), 59–65.

    PubMed  Google Scholar 

  47. Proost, P., Wuyts, A., and Van Damme, J. (1996) Human monocyte chemotactic proteins-2 and-3: structural and functional comparison with MCP-1. J. Leukocyte Biol. 59(1), 67–74.

    PubMed  CAS  Google Scholar 

  48. Yoshimura, T., Robinson, E. A., Tanaka, S., Appella, E., Kuratsu, J., and Leonard, E. J. (1989) Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med. 169, 1449–1459.

    PubMed  CAS  Google Scholar 

  49. Carr, M. W., Roth, S. J., Luther, E., Rose, S. S., and Springer, T.A. (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 91, 3652–3656.

    PubMed  CAS  Google Scholar 

  50. Gu, L., Rutledge, B., Fiorillo, J., Ernst, C., Grewal, I., Flavell, R., et al. (1997) In vivo properties of monocyte chemoattractant protein-1. J. Leukoc. Biol. 62(5), 577–580.

    PubMed  CAS  Google Scholar 

  51. Lu, B., Rutledge, B. J., Gu, L., Fiorillo, J., Lukacs, N. W., Kunkel, S. L., et al. (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187(4), 601–608.

    PubMed  CAS  Google Scholar 

  52. Gerard, C., Frossard, J. L., Bhatia, M., Saluja, A., Gerard, N. P., Lu, B., et al. (1997) Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. J. Clin. Invest. 100(8), 2022–2027.

    PubMed  CAS  Google Scholar 

  53. Cook, D. N., Beck, M. A., Coffman, T. M., Kirby, S. L., Sheridan, J. F., Pragneil, I. B., et al. (1995) Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 269(5230), 1583–1585.

    PubMed  CAS  Google Scholar 

  54. Cook, D. N. (1996) The role of MIP-1 alpha in inflammation and hemato-poiesis. J. Leukoc. Biol. 59(1), 61–66.

    PubMed  CAS  Google Scholar 

  55. Karpus, W. L, Lukacs, N. W., McRae, B. L., Strieter, R. M., Kunkel, S. L., and Miller, S. D. (1995) An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155(10), 5003–5010.

    PubMed  CAS  Google Scholar 

  56. Loetscher, P., Uguccioni, M., Bordoli, L., Baggiolini, M., Moser, B., Chizzolini, C., et al. (1998) CCR5 is characteristic of Th1 lymphocytes. Nature 391(6665), 344–345.

    PubMed  CAS  Google Scholar 

  57. Bonecchi, R., Bianchi, G., Bordignon, P. P., D’Ambrosio, D., Lang, R., Borsatti, A., et al. (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187(1), 129–134.

    PubMed  CAS  Google Scholar 

  58. Sallusto, F., Mackay, C. R., and Lanzavecchia, A. (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277(5334), 2005–2007.

    PubMed  CAS  Google Scholar 

  59. Sallusto, F., Lenig, D., Mackay, C. R., and Lanzavecchia, A. (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187(6), 875–883.

    PubMed  CAS  Google Scholar 

  60. Annunziato, F., Galli, G., Cosmi, L., Romagnani, P., Manetti, R., Maggi, E., et al. (1998) Molecules associated with human Th1 or Th2 cells. Eur. Cytokine Netw. 9(3 Suppl), 12–16.

    PubMed  CAS  Google Scholar 

  61. Annunziato, F., Cosmi, L., Galli, G., Beltrame, C., Romagnani, P., Manetti, R., et al. (1999) Assessment of chemokine receptor expression by human Th1 and Th2 cells in vitro and in vivo. J. Leukoc. Biol. 65(5), 691–699.

    PubMed  CAS  Google Scholar 

  62. Chensue, S. W., Warmington, K. S., Allenspach, E. J., Lu, B., Gerard, C., Kunkel, S. L., et al. (1999) Differential expression and cross-regulatory function of RANTES during mycobacterial (type 1) and schistosomal (type 2) antigen-elicited granulomatous inflammation. J. Immunol. 163(1), 165–173.

    PubMed  CAS  Google Scholar 

  63. Bacon, K. B., Premack, B. A., Gardner, P., and Schall, T. J. (1995) Activation of dual T cell signaling pathways by the chemokine RANTES. Science 269(5231), 1727–1730.

    PubMed  CAS  Google Scholar 

  64. Bolin, L. M., Murray, R., Lukacs, N. W., Strieter, R. M., Kunkel, S. L., Schall, T. J., et al. (1998) Primary sensory neurons migrate in response to the chemokine RANTES. J. Neuroimmunol. 81(1–2), 49–57.

    PubMed  CAS  Google Scholar 

  65. Cyster, J. G. (1999) Chemokines and cell migration in secondary lymphoid organs. Science 286(5447), 2098–2102.

    PubMed  CAS  Google Scholar 

  66. Cyster, J. G., Ngo, V. N., Ekland, E. H., Gunn, M. D., Sedgwick, J. D., and Ansel, K. M. (1999) Chemokines and B-cell homing to follicles. Curr. Top. Microbiol. Immunol. 246, 87–92.

    PubMed  CAS  Google Scholar 

  67. Gunn, M. D., Kyuwa, S., Tam, C., Kakiuchi, T., Matsuzawa, A., Williams, L. T., et al. (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189(3), 451–460.

    PubMed  CAS  Google Scholar 

  68. Vassileva, G., Soto, H., Zlotnik, A., Nakano, H., Kakiuchi, T., Hedrick, J. A., et al. (1999) The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J. Exp. Med. 190(8), 1183–1188.

    PubMed  CAS  Google Scholar 

  69. Ngo, V. N., Korner, H., Gunn, M. D., Schmidt, K. N., Riminton, D. S., Cooper, M. D., et al. (1999) Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189(2), 403–412.

    PubMed  CAS  Google Scholar 

  70. Shinkura, R., Kitada, K., Matsuda, F., Tashiro, K., Ikuta, K., Suzuki, M., et al. (1999) Alymphoplasia is caused by a point mutation in the mouse gene encoding NF-kappa b-inducing kinase. Nat. Genet. 22(1), 74–77.

    PubMed  CAS  Google Scholar 

  71. Majumder, S., Zhou, Z.-H. L., and Ransohoff, R. (1996) Transcriptional regulation of chemokine gene expression in astrocytes. J. Neurosci. Res. 45, 758–769.

    PubMed  CAS  Google Scholar 

  72. Narumi, S. and Hamilton, T. A. (1991) Inducible expression of murine IP-10 mRNA varies with the state of macrophage inflammatory activity. J. Immunol. 146, 3038–3044.

    PubMed  CAS  Google Scholar 

  73. Narumi, S., Wyner, L., Staler, M., Tannenbaum, C., and Hamilton, T. (1992) Tissue specific expression of murine IP-10 mRNA following systemic treatment with interferon-g. J. Leukoc. Biol. 52, 27–33.

    PubMed  CAS  Google Scholar 

  74. Ohmori, Y. and Hamilton, T. A. (1994) Cell type and stimulus specific regulation of chemokine gene expression. Biochem. Biophy. Res. Commun. 198, 590–596.

    CAS  Google Scholar 

  75. Ohmori, Y. and Hamilton, T. A. (1995) The interferon-stimulated response element and a kappa B site mediate synergistic induction of murine IP-10 gene transcription by IFN-gamma and TNF-alpha. J. Immunol. 154(10), 5235–5244.

    PubMed  CAS  Google Scholar 

  76. Wu, C., Ohmori, Y., Bandyopadhyay, S., Sen, G., and Hamilton, T. (1994) Interferon-stimulated response element and NF kappa B sites cooperate to regulate double-stranded RNA-induced transcription of the IP-10 gene. J. Interferon. Res. 14(6), 357–363.

    PubMed  CAS  Google Scholar 

  77. Majumder, S., Zhou, L. Z., Chaturvedi, P., Babcock, G., Aras, S., and Ransohoff, R. M. (1998) p48/STAT-l alpha-containing complexes play a predominant role in induction of IFN-gamma-inducible protein, 10 kDa (IP-10) by IFN-gamma alone or in synergy with TNF-alpha. J. Immunol. 161(9), 4736–4744.

    PubMed  CAS  Google Scholar 

  78. Kopydlowski, K. M., Salkowski, C. A., Cody, M. J., van Rooijen, N., Major, J., Hamilton, T. A., et al. (1999) Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J. Immunol. 163(3), 1537–1544.

    PubMed  CAS  Google Scholar 

  79. Kim, H. S., Armstrong, D., Hamilton, T. A., and Tebo, J. M. (1998) IL-10 suppresses LPS-induced KC mRNA expression via a translation-dependent decrease in mRNA stability. J. Leukoc. Biol. 64(1), 33–39.

    PubMed  CAS  Google Scholar 

  80. Kishore, R., Tebo, J. M., Kolosov, M., and Hamilton, T. A. (1999) Cutting edge: clustered AU-rich elements are the target of IL-10-mediated mRNA destabilization in mouse macrophages. J. Immunol. 162(5), 2457–2461.

    PubMed  CAS  Google Scholar 

  81. Sedgwick, J. D., Riminton, D. S., Cyster, J. G., and Korner, I. (2000) Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol. Today 21(3), 110–113.

    PubMed  CAS  Google Scholar 

  82. Rollins, B. (ed) (1999) Chemokines and Cancer. Humana Press, Totowa, NJ.

    Google Scholar 

  83. Harter, L., Petersen, F., Flad, H. D., and Brandt, E. (1994) Connective tissue-activating peptide III desensitizes chemokine receptors on neutrophils. Requirement for proteolytic formation of the neutrophil-activating peptide 2. J. Immunol. 153(12), 5698–5708.

    PubMed  CAS  Google Scholar 

  84. Iida, N., Haisa, M., Igarashi, A., Pencev, D., and Grotendorst, G. R. (1996) Leukocyte-derived growth factor links the PDGF and CXC chemokine families of peptides. Faseb. J. 10(11), 1336–1345.

    PubMed  CAS  Google Scholar 

  85. Chaudhuri, A., Zbrzezna, V., Polyakova, J., Pogo, A., Hesselgesser, J., and Horuk, R. (1994) Expression of the Duffy antigen in K562 cells: Evidence that it is the human chemokine erythrocyte receptor. J. Biol. Chem. 269, 7835–7838.

    PubMed  CAS  Google Scholar 

  86. Lu, Z. H., Wang, Z. X., Horuk, R., Hesselgesser, J., Lou, Y. C., Hadley, T. J., et al. (1995) The promiscuous chemokine binding profile of the Duffy antigen/receptor for chemokines is primarily localized to sequences in the aminoterminal domain. J. Biol. Chem. 270(44), 26239–26245.

    PubMed  CAS  Google Scholar 

  87. Nibbs, R. J. B., Wylie, S. M., Pragneil, I. B., and Graham, G. J. (1997) Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1 alpha receptors, CCR-1, CCR-3, and CCR-5. J. Biol. Chem. 272(19), 12,495–12,504.

    PubMed  CAS  Google Scholar 

  88. Horuk, R., Chitnis, C. E., Darbonne, W. C., Colby, T. J., Rybicki, A., Hadley, T. J., et al. (1993) A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261(5125), 1182–1184.

    PubMed  CAS  Google Scholar 

  89. Mallinson, G., Soo, K. S., Schall, T. J., Pisacka, M., and Anstee, D. J. (1995) Mutations in the erythrocyte chemokine receptor (Duffy) gene: the molecular basis of the Fya/Fyb antigens and identification of a deletion in the Duffy gene of an apparently healthy individual with the Fy(a–b-) phenotype. Br. J. Haematol. 90(4), 823–829.

    PubMed  CAS  Google Scholar 

  90. Hadley, T. J., Lu, Z. H., Wasniowska, K., Martin, A. W., Peiper, S. C., Hesselgesser, J., et al. (1994) Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structurally and functionally identical to the erythroid isoform, which is the Duffy blood group antigen. J. Clin. Invest. 94(3), 985–991.

    PubMed  CAS  Google Scholar 

  91. Peiper, S. C., Wang, Z. X., Neote, K., Martin, A. W., Showell, H. J., Conklyn, M. J., et al. (1995) The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med. 181(4), 1311–1317.

    PubMed  CAS  Google Scholar 

  92. Horuk, R., Martin, A., Hesselgesser, J., Hadley, T., Lu, Z. H., Wang, Z. X., et al. (1996) The Duffy antigen receptor for chemokines: structural analysis and expression in the brain. J. Leukoc. Biol. 59(1), 29–38.

    PubMed  CAS  Google Scholar 

  93. Horuk, R., Martin, A. W., Wang, Z., Schweitzer, L., Gerassimides, A., Guo, H., et al. (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J. Immunol. 158(6), 2882–2890.

    PubMed  CAS  Google Scholar 

  94. Whitney, L. W., Becker, K. G., Tresser, N. J., Caballero-Ramos, C. I., Munson, P. J., Prabhu, V. V., et al. (1999) Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann. Neurol. 46(3), 425–428.

    PubMed  CAS  Google Scholar 

  95. Soto, H., Wang, W., Strieter, R. M., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., et al. (1998) The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. Proc. Natl. Acad. Sci. USA 95(14), 8205–8210.

    PubMed  CAS  Google Scholar 

  96. Premack, B. A. and Schall, T. J. (1996) Chemokine receptors: Gateways to inflammation and infection. Nature Med. 2, 1174–1178.

    PubMed  CAS  Google Scholar 

  97. Mantovani, A. (ed) (1999) Chemokines. Karger, Basel.

    Google Scholar 

  98. Mantovani, A. (1999) The chemokine system: redundancy for robust outputs. Immunol. Today 20(6), 254–257.

    PubMed  CAS  Google Scholar 

  99. Broxmeyer, H. E. and Kim, C. H. (1999) Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp. Hematol. 27(7), 1113–1123.

    PubMed  CAS  Google Scholar 

  100. Gerard, C. (1999) Chemokine receptors and ligand specificity: understanding the enigma, in Chemokines and Cancer. (Rollins, B. J., ed.), Humana Press, Totowa, NJ, pp. 21–31.

    Google Scholar 

  101. Murphy, P. M. (1994) Molecular piracy of chemokine receptors by herpesviruses. Infect. Agents Dis. 3(2–3), 137–154.

    CAS  Google Scholar 

  102. Lalani, A. S., Barrett, J. W., and McFadden, G. (2000) Modulating chemokines: more lessons from viruses. Immunol. Today 21(2), 100–106.

    Google Scholar 

  103. Bodaghi, B., Jones, T. R., Zipeto, D., Vita, C., Sun, L., Laurent, L., et al. (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytome-galovirus`-infected cells. J. Exp. Med. 188(5), 855–866.

    PubMed  CAS  Google Scholar 

  104. Howard, J., Justus, D. E., Totmenin, A. V., Shchelkunov, S., and Kotwal, G. J. (1998) Molecular mimicry of the inflammation modulatory proteins (IMPs) of poxviruses: evasion of the inflammatory response to preserve viral habitat. J. Leukoc. Biol. 64(1), 68–71.

    PubMed  CAS  Google Scholar 

  105. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C., and Cesarman, E. (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385(6614), 347–350.

    PubMed  CAS  Google Scholar 

  106. Bais, C., Santomasso, B., Coso, O., Arvanitakis, L., Raaka, E. G., Gutkind, J.S., et al. (1998) G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391(6662), 86–89.

    PubMed  CAS  Google Scholar 

  107. Rosenkilde, M. M., Kledal, T.N., Brauner-Osborne, H., and Schwartz, T. W. (1999) Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74. J. Biol. Chem. 274(2), 956–961.

    PubMed  CAS  Google Scholar 

  108. Gershengorn, M. C., Geras-Raaka, E., Varma, A., and Clark-Lewis, I. (1998) Chemokines activate Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture [see comments]. J. Clin. Invest. 102(8), 1469–1472.

    PubMed  CAS  Google Scholar 

  109. Sallusto, F., Lanzavecchia, A., and Mackay, C. R. (1998) Chemokines and chemokine receptors in T cell priming and Th1/Th2-mediated responses. Immunol. Today 19(12), 568–574.

    PubMed  CAS  Google Scholar 

  110. Sallusto, F., Schaerli, P., Loetscher, P., Schaniel, C., Lenig, D., Mackay, C. R., et al. (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28(9), 2760–2769.

    PubMed  CAS  Google Scholar 

  111. Sozzani, S., Allavena, P., D’Amico, G., Luini, W., Bianchi, G., Kataura, M., et al. (1998) Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J. Immunol. 161(3), 1083–1086.

    PubMed  CAS  Google Scholar 

  112. Sallusto, F., Palermo, B., Lenig, D., Miettinen, M., Matikainen, S., Julkunen, I., et al. (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29(5), 1617–1625.

    PubMed  CAS  Google Scholar 

  113. Bacon, K. B. (1997) Analysis of signal transduction following lymphocyte activation by chemokines. Methods Enzymol. 288, 340–361.

    PubMed  CAS  Google Scholar 

  114. Campbell, J. J., Qin, S., Bacon, K. B., Mackay, C. R., and Butcher, E. C. (1996) Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. J. Cell Biol. 134(1), 255–266.

    PubMed  CAS  Google Scholar 

  115. Hynes, R. O. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.

    PubMed  CAS  Google Scholar 

  116. Wong, M.and Fish, E. N. (1998) RANTES and MIP-1alpha activate stats in T cells. J. Biol. Chem. 273(1), 309–314.

    PubMed  CAS  Google Scholar 

  117. Ganju, R. K., Dutt, P., Wu, L., Newman, W., Avraham, H., Avraham, S., et al. (1998) Beta-chemokine receptor CCR5 signals via the novel tyrosine kinase RAFTK. Blood 91(3), 791–797.

    PubMed  CAS  Google Scholar 

  118. Kelly, M. D., Naif, H. M., Adams, S. L., Cunningham, A. L., and Lloyd, A. R. (1998) Dichotomous effects of beta-chemokines on HIV replication in monocytes and monocyte-derived macrophages. J. Immunol. 160(7), 3091–3095.

    PubMed  CAS  Google Scholar 

  119. Bischoff, S. C., Krieger, M., Brunner, T., Rot, A., von Tscharner, V., Baggiolini, M., et al. (1993) RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Eur. J. Immunol. 23(3), 761–767.

    PubMed  CAS  Google Scholar 

  120. Melchers, F., Rolink, A. G., and Schaniel, C. (1999) The role of chemokines in regulating cell migration during humoral immune responses. Cell 99(4), 351–354.

    PubMed  CAS  Google Scholar 

  121. Cyster, J. G. (2000) Leukocyte migration: scent of the T zone. Curr. Biol. 10(1), R30–33.

    PubMed  CAS  Google Scholar 

  122. Imai, T., Chantry, D., Raport, C. J., Wood, C. L., Nishimura, M., Godiska, R., et al. (1998) Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J. Biol. Chem. 273(3), 1764–1768.

    PubMed  CAS  Google Scholar 

  123. Tang, H. L. and Cyster, J. G. (1999) Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284(5415), 819–822.

    PubMed  CAS  Google Scholar 

  124. Gunn, M. D., Ngo, V. N., Ansel, K. M., Ekland, E. H., Cyster, J. G., and Williams, L. T. (1998) A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature 391(6669), 799–803.

    PubMed  CAS  Google Scholar 

  125. Abbas, A. K., Murphy, K. M., and Sher, A. (1996) Functional diversity of helper T lymphocytes. Nature 383, 787–793.

    PubMed  CAS  Google Scholar 

  126. Mosmann, T. R. and Coffman, R. L. (1989) Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–174.

    PubMed  CAS  Google Scholar 

  127. Bradley, L. M., Asensio, V. C., Schioetz, L. K., Harbertson, J., Krahl, T., Patstone, G., et al. (1999) Islet-specific Th1, but not Th2, cells secrete multiple chemokines and promote rapid induction of autoimmune diabetes. J. Immunol. 162(5), 2511–2520.

    PubMed  CAS  Google Scholar 

  128. Schrum, S., Probst, P., Fleischer, B., and Zipfel, P. F. (1996) Synthesis of the CC-chemokines MIP-1α, MIP-1β, and RANTES is associated with a type 1 immune response. J. Immunol. 157, 3598–3604.

    PubMed  CAS  Google Scholar 

  129. Li, L., Xia, Y., Nguyen, A., Feng, L., and Lo, D. (1998) Th2-induced eotaxin expression and eosinophilia coexist with Th1 responses at the effector stage of lung inflammation. J. Immunol. 161(6), 3128–3135.

    PubMed  CAS  Google Scholar 

  130. Herold, K. C., Lu, J., Rulifson, I., Vezys, V., Taub, D., Grusby, M. J., et al. (1997) Regulation of C-C chemokine production by murine T cells by CD28/ B7 costimulation. J. Immunol. 159, 4150–4153.

    PubMed  CAS  Google Scholar 

  131. Chensue, S. W., Warmington, K. S., Lukacs, N. W., Lincoln, P. M., Burdick, M. D., Strieter, R. M., et al. (1995) Monocyte chemotactic protein expression during schistosome egg granuloma formation. Sequence of production, localization, contribution, and regulation. Am. J. Pathol. 146(1), 130–138.

    PubMed  CAS  Google Scholar 

  132. Lukacs, N. W., Kunkel, S. L., Strieter, R. M., Warmington, K., and Chensue, S. W. (1993) The role of macrophage inflammatory protein la in Shistosoma mansoni egg-induced granulomatous inflammation. J. Exp. Med. 177, 1551–1559.

    PubMed  CAS  Google Scholar 

  133. Karpus, W. J., Lukacs, N. W., Kennedy, K. J., Smith, W. S., Hurst, S. D., and Barrett, T. A. (1997) Differential CC chemokine-induced enhancement of T helper cell cytokine production. J. Immunol. 158, 4129–4136.

    PubMed  CAS  Google Scholar 

  134. Gu, L., Tseng, S., Homer, R. M., Tam, C., Loda, M., and Rollins, B. J. (2000) Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404(6776), 407–411.

    PubMed  CAS  Google Scholar 

  135. Karpus, W. J, Kennedy, K. J., Kunkel, S. L., and Lukacs, N. W. (1998) Monocyte chemotactic protein 1 regulates oral tolerance induction by inhibition of T Helper Cell 1-related cytokines. J. Exp. Med. 187(5), 733–741.

    PubMed  CAS  Google Scholar 

  136. Ponath, P. D., Qin, S., Post, T. W., Wang, J., Wu, L., Gerard, N. P., et al. (1996) Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J. Exp. Med. 183(6), 2437–2448.

    PubMed  CAS  Google Scholar 

  137. Uguccioni, M., Mackay, C. R., Ochensberger, B., Loetscher, P., Rhis, S., LaRosa, G. J., et al. (1997) High expression of the chemokine receptor CCR3 in human blood basophiles. Role in activation by eotaxin, MCP-4, and other chemokines. J. Clin. Invest. 100(5), 1137–1143.

    PubMed  CAS  Google Scholar 

  138. Imai, T., Nagira, M., Takagi, S., Kakizaki, M., Nishimura, M., Wang, J., et al. (1999) Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int. Immunol. 11(1), 81–88.

    PubMed  CAS  Google Scholar 

  139. Luster, A. D. and Ravetch, J. V. (1987) Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J. Exp. Med. 166(4), 1084–1097.

    PubMed  CAS  Google Scholar 

  140. Siveke, J. T. and Hamann, A. (1998) T helper 1 and T helper 2 cells respond differentially to chemokines. J. Immunol. 160(2), 550–554.

    PubMed  CAS  Google Scholar 

  141. Arnason, B. G. (1983) Relevance of experimental allergic encephalomyelitis to multiple sclerosis. Neurol. Clin. 1, 765–782.

    PubMed  CAS  Google Scholar 

  142. McRae, B. L., Kennedy, M. K., Tan, L. J., Dal Canto, M. C., and Miller, S. D. (1992) Induction of active and adoptive chronic-relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J. Neuroimmunol. 38, 229–240.

    PubMed  CAS  Google Scholar 

  143. Tuohy, V. K., Sobel, R. A., Lu, Z., Laursen, R. A., and Lees, M. B. (1992) Myelin proteolipid protein: minimum sequence requirements for active induction of autoimmune encephalomyelitis in SWR/J and SJL/J mice. J. Neuroimmunol. 39, 67–74.

    PubMed  CAS  Google Scholar 

  144. Whitham, R. H., Bourdette, D. N., Hashim, G. A., Herndon, R. M., Ilg, R. C., Vandenbark, A. A., et al. (1991) Lymphocytes from SJL/J mice immunized with spinal cord respond selectively to a peptide of proteolipid protein and transfer relapsing demyelinating experimental autoimmune encephalomyelitis. J. Immunol. 146, 101–107.

    PubMed  CAS  Google Scholar 

  145. Cross, A. H., Cannella, B., Brosnan, C. F., and Raine, C. S. (1990) Homing to central nervous system vasculature by antigen-specific lymphocytes. I. Localization of C14-labeled cells during acute, chronic, and relapsing experimental allergic encephalomyelitis. Lab. Invest. 63, 162–170.

    PubMed  CAS  Google Scholar 

  146. Hickey, W. F., Gonatas, N. K., Kimura, H., and Wilson, D. B. (1983) Identification and quantitation of T lymphocyte subsets found in the spinal cord of the Lewis rat during acute experimental allergic encephalomyelitis. J. Immunol. 131, 2805–2809.

    PubMed  CAS  Google Scholar 

  147. Pope, J. G., Karpus, W. J., Van der Lugt, C., and Miller, S. D. (1996) Flow cytometric and functional analyses of central nervous system-infiltrating cells in SJL/J mice with Theiler’s virus-induced demyelinating disease. J. Immunol. 156, 4050–4058.

    PubMed  CAS  Google Scholar 

  148. Hulkower, K., Brosnan, C. F., Aquino, D. A., Cammer, W., Kulshrestha, S., Guida, M. P., et al. (1993) Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J. Immunol. 150, 2525–2533.

    PubMed  CAS  Google Scholar 

  149. Ransohoff, R. M., Hamilton, T. A., Tani, M., Stoler, M. H., Shick, H. E., Major, J. A., et al. (1993) Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB Journal 7(6), 592–600.

    CAS  Google Scholar 

  150. Godiska, R., Chantry, D., Dietsch, G. N., and Gray, P. W. (1995) Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol. 58(2), 167–176.

    PubMed  CAS  Google Scholar 

  151. Glabinski, A. R., Tani, M., Tuohy, V. K., Tuthill, R. J., and Ransohoff, R. M. (1995) Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behavior Immun. 9(4), 315–330.

    CAS  Google Scholar 

  152. Glabinski, A. R., Tuohy, V. K., and Ransohoff, R. M. (1998) Expression of chemokines RANTES, MIP-1alpha and GRO-alpha correlates with inflammation in acute experimental autoimmune encephalomyelitis. Neuroimmunomodulation 5(3–4), 166–171.

    PubMed  CAS  Google Scholar 

  153. Miyagishi, R., Kikuchi, S., Takayama, C., Inoue, Y., and Tashiro, K. (1997) Identification of cell types producing RANTES, MIP-1α, and MIP-1β in rat experimental autoimmune encephalomyelitis by in situ hybridization. J. Neuroimmunol. 77, 17–26.

    PubMed  CAS  Google Scholar 

  154. Glabinski, A. R., Tani, M., Strieter, R. M., Tuohy, V. K., and Ransohoff, R. M. (1997) Synchronous synthesis of α-and β-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am. J. Pathol. 150, 617–630.

    PubMed  CAS  Google Scholar 

  155. Kennedy, K. J., Strieter, R. M., Kunkel, S. L., Lukacs, N. W., and Karpus, W. J. (1998) Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1α and monocyte chemotactic protein-1. J. Neuroimmunol. 92, 98–108.

    PubMed  CAS  Google Scholar 

  156. Jiang, Y., Salafranca, M. N., Adhikari, S., Xia, Y., Feng, L., Sonntag, M. K., et al. (1998) Chemokine receptor expression in cultured glia and rat experimental allergic encephalomyelitis. J. Neuroimmunol. 86(1), 1–12.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ransohoff, R.M., Karpus, W.J. (2002). Role of Chemokines and Their Receptors in the Induction and Regulation of Autoimmune Disease. In: Kuchroo, V.K., Sarvetnick, N., Hafler, D.A., Nicholson, L.B. (eds) Cytokines and Autoimmune Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-129-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-129-9_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-856-1

  • Online ISBN: 978-1-59259-129-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics